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Elliptic Curve Method Using Complex Multiplication Method

Yusuke AIKAWA†a), Koji NUIDA††b), Nonmembers, and Masaaki SHIRASE†††c), Member

SUMMARY In 2017, Shirase proposed a variant of Elliptic Curve
Method combined with Complex Multiplication method for generating cer-
tain special kinds of elliptic curves. His algorithm can efficiently factor-
ize a given composite integer when it has a prime factor p of the form
4p = 1 + Dv2 for some integer v, where −D is an auxiliary input integer
called a discriminant. However, there is a disadvantage that the previous
method works only for restricted cases where the class polynomial associ-
ated to−D has degree atmost two. In this paper, we propose a generalization
of the previous algorithm to the cases of class polynomials having arbitrary
degrees, which enlarges the class of composite integers factorizable by our
algorithm. We also extend the algorithm to more various cases where we
have 4p = t2 + Dv2 and p + 1 − t is a smooth integer.
key words: integer factorization, elliptic curve method, complex multipli-
cation method, class polynomials

1. Introduction

The security of a large fraction of the currently known pub-
lic key cryptosystems, such as RSA cryptosystem, is based
on the computational hardness of integer factorization. Ac-
cordingly, study and improvement of integer factorization
algorithms are valuable in order to closely evaluate the ac-
tual security level of those cryptosystems in real environ-
ments. Now we note that, there are integer factorization
algorithms (such as Pollard’s p − 1 method) that work effi-
ciently when the input composite integer satisfies a certain
condition depending on each algorithm. By virtue of such
special-purpose integer factorization algorithms, the strength
of composite integers as secret keys are not uniform even if
their bit lengths are equal. From the point of view, it is mean-
ingful to determine the class of easy-to-factorize integers in
order to avoid a use of weak keys in practically implemented
cryptosystems.

Along this direction of research, recently Shirase [7]
proposed a special-purpose efficient integer factorization al-
gorithm, which is a modification of celebrated Elliptic Curve
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Method (invented by Lenstra Jr. [6]; ECM, in short) com-
bined with Complex Multiplication method (CM method, in
short), the latter being an algorithm to generate an elliptic
curve having a certain special property, which was first used
in context of a primality proving [1]. To explain the idea of
[7], let N = pq be a public integer to be factorized and let
p and q be the secret distinct prime factors. Shirase’s algo-
rithm intends to use an elliptic curve E over the ring Z/NZ
with the property that its reduction modulo p becomes an
elliptic curve obtained by CM method over Fp . When p
is of a certain special form, this curve satisfies with very
high probability that the group E(Fp) of rational points over
Fp has order precisely p, therefore the scalar multiplication
N · P for a rational point P over Z/NZ has the unit element
as the E(Fp)-component since N is a multiple of p. Then it
is naively expected that a prime factor of N could be derived
from the coordinates of the point N · P in a way analogous
to the original ECM∗.

However, in fact there are two hurdles against realizing
the aforementioned idea. Roughly speaking, one is to han-
dle CM method over Fp without knowing the corresponding
prime factor p of N . The other is to find a rational point
P of the obtained elliptic curve over Z/NZ; this in general
requires to solve a quadratic equation modulo the composite
integer N , which is difficult when the factorization of N is
not known. Shirase [7] resolved these problems by intro-
ducing a certain extension of the coefficient ring Z/NZ, but
this solution causes another problem as a side effect. That
is, though the way of deriving a prime factor of N from
the coordinates of the finally obtained rational point is easy
in the original ECM, the same procedure is no longer ef-
fective for the present case since the coefficient ring is not
Z/NZ but a more complicated extension ring. Actually, Shi-
rase proposed a concrete solution for this final process only
for restricted cases. More precisely, the condition for the
prime p in CM method (and hence in Shirase’s algorithm)
is closely related to a special kind of polynomial called a

∗One may think that, when an elliptic curve E with complex
multiplication byQ(

√
−D) is used in ECM for a general input N , the

reduction of E modulo p may frequently become supersingular, see
Theorem 13.12, [5], which is not suitable for ECM since #E(Fp ) =
p + 1 always holds in this case. We emphasize, however, that
the present work focuses on special-purpose integer factorization
rather than general-purpose integer factorization such as the original
ECM, and the “certain special form” of p, that is 4p = t2 + Dv2, in
our target case mentioned above guarantees that the supersingular
curve never appear in our case.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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class polynomial, and Shirase’s algorithm is designed in an
ad hoc manner specific to the case where the corresponding
class polynomial has degree at most two. This restricts the
availability of the algorithm for various choices of p, and it
is nontrivial to extend the construction to more general cases
where the degree of the class polynomial is higher.

1.1 Our Contributions

In this paper, we revisit the aforementioned ad hoc construc-
tion of the algorithm in the previous paper [7], and propose
a generalization of the construction that works for any case
of the class polynomial (possibly having degree higher than
two) associated to a special prime factor p of the input integer
N . Although our proposed algorithm still has an intrinsic
limitation for the possibility of the prime factor p inherited
from that of CM method, our generalization indeed enlarges
the class of the effective inputs N significantly. Technically,
in the previous paper [7] a certain polynomial is computed
in order to derive a prime factor of N from the scalar mul-
tiplication N · P of a rational point P. In this paper, we
reveal that this polynomial can be written as the resultant of
the class polynomial and another polynomial that can also
be systematically calculated from the coordinates of N · P.
This fact enabled us to extend the original algorithm to the
case of an arbitrary class polynomial.

Moreover, in contrast to the previous paper [7] which
dealt with only the case of primes p for which CM method
provides an elliptic curve E with E(Fp) of order precisely p,
we also point out that our algorithm can be similarly applied
to the case where E(Fp) derived by CM method has smooth
order, in a way analogous to the original ECM. This further
enlarges the possible choices of the prime factor p for which
our proposed algorithm works efficiently.

1.2 Notation and Terminology

We collect here notation and terminology which is used
throughout this paper.

• Let C be an integer. We say that an integer N is C-
smooth if N |C!. Moreover, for integers, we use the
term “smooth” roughly when the biggest prime factor
is small.

• For a set S, #S denotes the number of elements in S.
• For a field K , K denotes the algebraic closure of K .
• There is the natural morphism Z → Z/NZ and this
induces the morphism between the polynomial rings:
Z[T] → Z/NZ[T]. For f (T ) ∈ Z[T], fN (T ) ∈
Z/NZ[T] denotes the image of f (T ) under this mor-
phism.

• Let K be a field. For f (T ), g(T ) ∈ K[T], we denote
the resultant of f (T ) and g(T ) by Res( f (T ), g(T )). We
recall that f (T ) and g(T ) have a common root in K if
and only if their resultant is zero in K .

• Let D ∈ Z be a positive integer with no odd square
factor such that D ≡ 3 mod 4 or D ≡ 4, 8 mod 16.

Then the negative integer −D is called a discriminant.
Throughout this paper, in order to avoid a case analysis,
we work under the following assumption.

Assumption 1: D , 3, 4

The excluded case D = 3, 4 are included in [7].
• For a discriminant −D, the field

K := Q(
√
−D) := {a + b

√
−D |a, b ∈ Q}

is called an imaginary quadratic field. The largest sub-
ring of K is called the ring of integers of K , which is
denoted by OK . An order of K is a subring of OK such
that Z ( O ⊂ OK .

2. Elliptic Curves

We collect the basic properties of elliptic curves which are
necessary for this paper into this section, for details see
[9], [11], and give a quick review on the Elliptic Curve
Method (ECM, in short) which is a factorization method
for integers introduced by Lenstra, Jr in [6]. The group of
rational points of an elliptic curve plays a crucial role in this
method.

2.1 Elliptic Curves and Its Rational Points

Let K be a field. We assume that the characteristic of K is
neither 2 nor 3 throughout this paper. Algebraic curves E
over K defined by the equation

E : Y 2 = X3+ AX + B (A, B ∈ K, 4A3+27B2 , 0) (1)

are called elliptic curves over K . When we emphasize the
coefficient field K , we write E/K . For an elliptic curve E/K ,
we define the set of rational points:

E(K ) :=
{
(x, y) ∈ K × K | y2 = x3 + Ax + B

}
∪

{
∞

}
where the point ∞ denotes the point at infinity. Elliptic
curves have a marked property: E(K ) carries a structure of
abelian group with the unit element ∞. This group is often
called the Mordell-Weil group of E.

Let E1 and E2 be elliptic curves. An isogeny between
E1 and E2 is a group homomorphism between E1(K ) and
E2(K ) which is given by rational functions, i.e. an isogeny
α : E1(K ) → E2(K ) can be described by

α(x, y) =
( f1(x, y)
g1(x, y)

,
f2(x, y)
g2(x, y)

)
where f i and gi (i = 1, 2) are in K[X,Y ]. In the case
E1 = E2, an isogeny is called an endomorphism and set
EndK (E) := {α : E(K ) → E(K ) |α is an endomorphism of
E}. This carries a structure of ring in the natural way, so we
call it the ring of endomorphisms of E.

Example 2: Let E/K be an elliptic curve. For n ∈ Z, the
map
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[n] : E(K ) → E(K ); P 7→ nP

gives the endomorphism of E, that is, can be described
by rational functions. We give formulas for these func-
tions in §2.2. Then this induces the natural injection
Z ↪→ End(E); n 7→ [n].

Let E be an elliptic curve over C. It is known that
EndC(E) is either Z or an order O in an imaginary quadratic
field Q(

√
−D). We say that E/C has complex multiplication

by an order O if EndC(E) � O.
For the elliptic curve over a field K defined by the

Eq. (1), we define the j-invariant of E as follows:

jE := 1728
4A3

4A3 + 27B2 ∈ K .

Assumption 3: In this paper, we treat elliptic curves E with
jE , 0, 1728. The excluded case jE = 0, 1728 correspond to
the elliptic curves with complex multiplication by the ring of
integers of Q(

√
−3), Q(

√
−1) whose discriminants −D are

−3 and −4 respectively. For these cases, see [7] since their
class polynomials are of degree 1.

For given j0 ∈ K with j0 , 0, 1728, the elliptic curve
E defined by the following equation

E : Y 2 = X3 +
3 j0

1728 − j0
X +

2 j0
1728 − j0

(2)

satisfies jE = j0.

Proposition 4: For elliptic curves E1/K and E2/K , they
are isomorphic over the algebraic closure K of K if and only
if their j-invariants coincide.

This property implies that isomorphic classes of elliptic
curves overC are classified completely by j-invariants. If we
work on an arbitrary field K , the condition “isomorphic over
K” yields the condition “same j-invariant”. However, the
converse does not hold. For an elliptic curve E/K , elliptic
curves with j-invariant jE are called twist of E. We identify
two twists if they are isomorphic over K .

Proposition 5: Let E be an elliptic curve over a finite field
Fp defined by the Eq. (1) with jE , 0, 1728 (recall the
Assumption 3). Then #{twists of E}/∼=2, where ∼ denotes
the equivalence relation meaning isomorphic over Fp . Let
c ∈ F×p be a quadratic nonresidue. Then

E ′ : Y 2 = X3 + c2 AX + c3B

is a twist of E which is not isomorphic over Fp .

2.2 Scalar Multiplications

We describe the map on an elliptic curve E given by multi-
plication by an integer: for n ∈ Z, E(K ) → E(K ); P 7→ nP.
For an elliptic curve Y 2 = X3 + AX + B, we define the
division polynomials by

ψ0 = 0

ψ1 = 1
ψ2 = 2Y
ψ3 = 3X4 + 6AX2 + 12BX − A2

ψ4 = 4Y (X6 + 5AX4 + 20BX3

−5A2X2 − 4ABX − 8B2 − A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 (m ≥ 2)

ψ2m =
ψm

2Y
(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) (m ≥ 3)

and polynomials by

φm = Xψ2
m − ψm+1ψm−1

ωm =
1

4Y
(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1).

Now, we can give the formula for the endomorphism of E
given bymultiplication by an integer. Let P = (x, y) ∈ E(K )
be a rational point on E and n ∈ Z be a positive integer. Then
we have

nP =
( φn(x, y)
ψn(x, y)2 ,

ωn(x, y)
ψn(x, y)3

)
. (3)

Moreover, the following holds:

nP = ∞ ⇔ ψn(x, y) = 0. (4)

2.3 Elliptic Curve Method

We start with a composite number N that we want to factor.
ECM [6] is a method which finds a prime factor of N in the
following procedure.

1. Choose several random pairs (ai, ui, vi) ∈ Z/NZ×3 and
define bi = v2

i − u3
i − aiui ∈ Z/NZ

2. Define elliptic curves Ei : Y 2 = X3 + aiX + bi , then
Pi = (ui, vi) ∈ Ei (Z/NZ)

3. Choose an integer C and compute (C!)Pi on Ei (Z/NZ)
4. If this computation fails for some i, gcd(ψC!(ui, vi), N )

returns a non-trivial divisor of N . If not, start over with
a new choice of a family of elliptic curves or an integer
C.

Strong points of this method are that we have a rational
point of elliptic curves and the process of leading a prime
factor of N is trivial. On the other hand, there is a draw-
back that the generated elliptic curves do not necessarily
have a smooth order. Moreover, it is difficult to choose an
appropriate bound C.

Our method resolves these drawbacks instead of losing
the advantages. Namely, we generate first an elliptic curve
with “good” order and find a rational point later. We utilize
the CM method for a generation of such an elliptic curve.

3. Complex Multiplication

In this section, we define the class polynomials of discrimi-
nants and state the relationship between primes p of special
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form with respect to a discriminant −D and the class poly-
nomial of −D modulo p. After that, we explain the CM
method. For details, see [1], [4], [8] and so forth.

3.1 The Class Polynomials

We denote ELL(−D) by the set of isomorphism classes of
elliptic curves over C with complex multiplication by the
ring of integers OK of K = Q(

√
−D):

ELL(−D) :=
{
[E/C] | EndC(E) � OK

}

where the notation [·] means an isomorphism class, which
is a collection of elliptic curves isomorphic to each others.
We can construct an action of cl (OK ) on ELL(−D), where
cl (OK ) denotes the ideal class group of OK which is one
of the important objects in algebraic number theory, see [4]
for example. The order of the group cl (OK ) is called the
class number of OK . One of the fundamental theorems in
algebraic number theory states that the class number of a
ring of integers is finite. On the other hand, the fact that this
action is simply transitive yields that the class number of OK

coincides with the order of the set ELL(−D): #cl (OK ) =
#ELL(−D). Therefore, the set #ELL(−D) is a finite set.
For details, see [8], Ch.II, §1.

If we write

ELL(−D) :=
{
[E1], [E2], · · · , [Eh]

}
,

in virtue of the finiteness, the complex numbers ji ∈ C (i =
1, 2, · · · , h) which are distinct from each others are obtained
by taking j-invariants of [Ei]. We note that, for elliptic
curves, the condition “isomorphic over C” is equivalent to
the condition “have same j-invariant”. Then we define the
class polynomial of the discriminant −D as:

H−D (T ) :=
h∏
i=1

(T − ji).

The class polynomials have integer coefficients, that is,
H−D (T ) ∈ Z[T], and can be computed by using SAGE [10],
for example. The relationship between the class polynomial
of a discriminant −D and the quadratic equation 4p = X2 +
DY 2 for a prime p is stated as the following (see Theorem 3.2
in [1]).

Proposition 6: For a discriminant −D and a prime number
p, the followings are equivalent:

1 The equation 4p = X2 + DY 2 has the solution in Z.
2 H−D,p (T ) splits completely in Fp .

Here, as in the notation in §1.2, H−D,p (T ) is the image
of H−D (T ) under the natural morphism Z[T]→ Z/pZ[T] =
Fp[T].

3.2 CM Method

As mentioned at the introduction, our idea is to apply the

procedure of ECM to an elliptic curve having “good” order.
Here, we utilize the CM method to generate such an elliptic
curve. The CMmethod is a way to construct an elliptic curve
E/Fp with a specified number of Fp-rational points. To be
precise, we suppose that a prime number p has a special
form 4p = t2 + Dv2 for some discriminant −D (D > 4)
and integers t, v ∈ Z. The integers t2 and v2 are uniquely
determined by p and −D for D > 4. The CM method
is a method which generates an elliptic curve E/Fp with
#E(Fp) = p + 1 ± t for the above p and t.

Under this assumption, since the class polynomial
H−D,p (T ) splits completely in Fp , we can take a root
j0 ∈ Fp of H−D,p (T ). Then we construct an ellip-
tic curve Ej0/Fp with j-invariant j0 as in (2) and write
#Ej0 (Fp) = p + 1 − a (|a | ≤ 2√p). We recall that Hasse’s
theorem shows |#E(Fp) − p − 1| ≤ 2√p. For the following
proposition, we refer to §4.2 in [1].

Proposition 7: In the above setting, we have the equality
a = ±t. Thus if we let E ′j0 be a twist of Ej0 which is not
isomorphic to Ej0 over Fp , either Ej0 or E ′j0 have the order
p + 1 − t.

4. Our Proposed Algorithms

4.1 The Setting

Let −D be a discriminant and N = pq be a composite num-
ber. Throughout this section, we assume that a prime number
p has the form: 4p = t2 + Dv2 for some t, v ∈ Z. For the
class polynomial H−D (T1), we define a ring:

R−DN := Z/NZ[T1]/
(
H−D,N (T1)

)
.

For a random element c ∈ Z/NZ, put A−D,c (T1) := 3c2T1
1728−T1

and B−D,c (T1) := 2c3T1
1728−T1

, and we define an elliptic curve
E−D,c over the ring R−DN as follows:

E−D,c : Y 2 = X3 + A−D,c (T1)X + B−D,c (T1). (5)

Then we have jE−D,c = T1.
By the assumption about the form of p, we can take a

root j0 of the class polynomial H−D,p (T1) in Fp (see Propo-
sition 6). By substituting T1 for j0 in the equation of E−D,c ,
we obtain the elliptic curve over Fp

E−D,cT1=j0
: Y 2 = X3 + A−D,cp ( j0)X + B−D,cp ( j0)

with j-invariant j0. Then the CM method implies that

#E(Fp) = p + 1 ± t .

The next thing that we have to do is to find a rational
point of E−D,c . We will construct a rational point of E−D,c

by extending the coefficient ring R−DN . We choose a random
element x0 ∈ Z/NZ and define a polynomial

τ(T1) := x3
0 + A−D,c (T1)x0 + B−D,c (T1). (6)
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Set

S−D,τ(T1)
N := R−DN [T2]/

(
T2

2 − τ(T1)
)
.

Then we obtain a rational point naturally:

P := (x0,T2) ∈ E−D,c
(
S−D,τ(T1)
N

)
.

Using the formula (3), we can write

nP =
( φn(x0,T2)
ψ2
n(x0,T2)

,
ωn(x0,T2)
ψ3
n(x0,T2)

)
∈ E−D,c (S−D,τ(T1)

N )

and in S−D,τ(T1)
N

ψn(x0,T2) = gn,0(T1) + gn,1(T1)T2,

where gn,i (T1) ∈ Z/NZ[T1] with deg
(
gn,i (T1)

)
<

deg
(
H−D (T1)

)
(i = 0, 1).

4.2 The Fundamental Fact and Algorithms

In the above setting, we state the key fact for the algorithms.

Theorem 8: Notation as above. Suppose that t = 1. More-
over, we assume that #E(Fp) = p and τp ( j0) ∈ Fp is a
quadratic residue. Then, we have

gcd
(
Res(H−D,N (T ), g2

N,0(T ) − g2
N,1(T )τ(T )), N

)
, 1.

Proof : By the assumption, there exists σ ∈ Fp such that
σ2 = τp ( j0). Then, the homomorphism

S−D,τ(T1)
N → Fp; T1 7→ j0, T2 7→ σ

induces E−D,c
(
S−D,τ(T1)
N

)
→ E−D,c (Fp). We denote the

image of P ∈ E−D,c (S−D,τ(T1)
N ) under this morphism by

Pp ∈ E−D,cT1=j0
(Fp).

Moreover, the assumption #E−D,c (Fp) = p yields
N Pp = ∞ ∈ E−D,cT1=j0

(Fp). Thus, by (4), we have

ψN (x0, σ) = gN,0( j0) + gN,1( j0)σ = 0 ∈ Fp

and then

τp ( j0) =
gN,0( j0)2

gN,1( j0)2 ∈ Fp .

Since j0 is a root of H−D,p (T ) in Fp , this means that two
polynomials H−D,p (T ) and gN,0(T )2 − gN,1(T )2τ(T ) have a
common root in Fp . Therefore, we have

gcd
(
Res(H−D,N (T ), g2

N,0(T ) − g2
N,1(T )τ(T )), N ), N

)
≡ 0 mod p,

so we are done. �

This theorem leads Algorithm 1. On the other hand,
the following theorem leads Algorithm 2.

Theorem 9: Notation as above. Suppose that p + 1 − t
is C-smooth. Put M = C!. Moreover, we assume that

#E(Fp) = p + 1 − t and τp ( j0) ∈ Fp is a quadratic residue.
Then, we have

gcd
(
Res(H−D,M (T ), g2

M,0(T )−g2
M,1(T )τ(T )), N

)
, 1.

Proof : The same discussion as above is valid if we add
slight modifications. �

We discuss the success conditions and success proba-
bilities for our proposed algorithms. Algorithm 1 fails when
t , ±1, and Algorithm 2 fails when p + 1 ± t is not a divisor
of C!. Also when t = ±1 in Algorithm 1 or when p+ 1± t is
a divisor of C! in Algorithm 2, these may fail depending on
how to select c ∈ Z/NZ or x0 ∈ Z/NZ, but its probability is
not so high. So, if one selects c or x0 sufficiently many times,
the algorithms succeed with high probability. Conversely,
if these do not succeed, it is highly probable that the above
conditions for t are not satisfied.

In detail, if c is chosen at random, it is expected that
the order of E(Fp) will be randomly determined from two
ways p + 1 ± t, one of which is appropriate and the other is
inappropriate. So, there is a possibility that the algorithm
fails with a probability of 1

2 with respect to how to select
c. Therefore, the expected value of the number of times to
choose c before the algorithm succeeds is considered to 2.

Also, if x0 (and c) is chosen at random, for each of the
roots j1, . . . , jh of H−D (T ), the probability that τp ( ji) is not
a quadratic residue is expected to be 1

2 . The algorithms fail
when this happens for all ji . So, assuming that the behaviors
whether τp ( ji) is a quadratic residue are independent of
each other, the probability that this causes a failure of the
algorithms is thought to be ( 1

2 )h . Therefore, for each c, the
expected value of the number of times to choose x0 before
the algorithm succeeds is less than or equal to 2, and when
h is large this expected value is close to 1.

On the other hand, for solving the equation 4p = X2 +
DY 2, there is a faster algorithm given by Cornacchia, which
is easy to describe, see [2], [3]. As our proposed algorithm
with input discriminant −D is effective only when a prime
factor p of N satisfies 4p = X2 + DY 2 for some X,Y , the
attack by our algorithm will be avoidable by, for example,
checking (in the key generation phase) whether or not the
equation 4p = X2+DY 2 has a solution and then by discarding
the prime p if a solution exists.

Here, we describe the process of our proposed algorithm
in step by step by using a small example. We give an example
of Algorithm 2 only, since the structure of Algorithm 1 is
almost the same as Algorithm 2.

Example 10: We attempt to factor N = 793 = 61 ·13 using
Algorithm 2 with C = 5. Since 4 · 61 = 22 + 15 · 42 and
61 + 1 − 2 = 60 is a divisor of C! = 120, if we choose the
discriminant −D = −15, Algorithm 2 should be successful.

Firstly we choose c = 1 in Z/793Z and con-
struct an elliptic curve E−15,1 over the ring R−15

793 =

Z/793Z[T1]/(H−15,793(T1)) as (5) where the class polyno-
mial of −15 is:

H−15(T1) = T2
1 + 191025T1 − 121287375 ∈ Z[T1].
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Algorithm 1
Input: a composite integer N

a discriminant −D, the class polynomial H−D (T ) of −D
Output: a prime factor of N
1. Choose a random element c ∈ Z/NZ
2. Define an elliptic curve over R−DN by the Eq. (5)
3. Choose a random element x0 ∈ Z/NZ and define τ(T1) as (6)
4. Take the rational point P = (x0, T2) ∈ E−D,c (S−D,τ (T1 )

N )
5. Compute NP

6. Compute gcd
(
Res(H−D,N (T ), g2

N ,0 (T ) − g2
N ,1 (T )τ(T )), N

)
6-1. If it is non-trivial divisor of N , we are done.
6-2. If not, start over with a new choice of c ∈ Z/NZ or x0 ∈ Z/NZ

Since we can write 4 · 61 = 22 + 15 · 42, the polynomial
H−15,61(T1) splits completely in F61 as follows:

H−15,61(T1) = T2
1 + 34T1 + 23

= (T1 + 5)(T1 + 29) ∈ F61[T1]

So, by the CM method, if we substitute a root −5 = 56 of
H−15,61(T1) in F61 for T1 in the coefficients of E−15,1, the
order of E−15,1

T1=56(F61) should be 61 + 1 ± 2 = 60 or 64 since
its j-invariant is equal to 56. Indeed, #E−15,1

T1=56(F61) = 60.
Secondly, we take x0 = 4 and define τ(T1) as (6).

Then, τ61(56) = 49 ∈ F61 is a quadratic residue in F61.
By extending the coefficient ring, we obtain a rational point
over the ring S−15,τ(T1)

793 = Z/793Z[T1,T2]/(H−15,793(T1),T2−
τ(T1)):

P = (4,T2) ∈ E−15,1(S−15,τ(T1)
793 ).

Finally, Algorithm 2 should succeed since #E−15,1
T1=56(F61)

= 60 is 5-smooth. Indeed, we compute the division polyno-
mial ψ5! by using the recurrence relation in §2.2,

ψ5!(4,T2) = g5!,0(T1) + g5!,1(T1)T2

= (549T1 + 61)T2 ∈ S−15,τ(T1)
793

and we compute

g2
5!,0(T1)−g2

5!,1(T1)τ(T1) = 488T1+488 ∈ Z/793Z[T1].

So, we obtain

Res(H−15,793(T1), 488T1 + 488) = 61.

Therefore, the computation of the step 6 in Algorithm 2
outputs

gcd(Res(H−15,793(T1), 488T1 + 488), 793) = gcd(61, 793)
= 61.

Algorithm 2 succeeds since 61 is a divisor of 793.

5. Numerical Examples

Herewe show some examples of discriminants−D and prime
factors p for which our generalized algorithm can factorize
the integer N = pq while the previous algorithm in [7] is not

Algorithm 2
Input: a composite integer N , M = C! for a boundC

a discriminant −D, the class polynomial H−D (T ) of −D
Output: a prime factor of N
1. Choose a random element c ∈ Z/NZ
2. Define an elliptic curve by the Eq. (5)
3. Choose a random element x0 ∈ Z/NZ and define τ(T1) as (6)
4. Take the rational point P = (x0, T2) ∈ E−D,c (S−D,τ (T1 )

N )
5. Compute MP

6. Compute gcd
(
Res(H−D,M (T ), g2

M,0 (T ) − g2
M,1 (T )τ(T )), N

)
6-1. If it is non-trivial divisor of N , we are done.
6-2. If not, start over with a new choice of c ∈ Z/NZ or x0 ∈ Z/NZ

effective.

• −D = −23 (degH−D (X ) = 3)
p = 570942088504121, t = 1210134
4p = t2 + D × 99614562

p + 1 − t = 570942087293988 | 2000!
q = 883478470161233
N = p × q = 504415042902280115530654941193

• −D = −56 (degH−D (X ) = 4)
p = 804161, t = 450
4p = t2 + D × 2322

p + 1 − t = 803712 = 27 × 3 × 7 × 13 × 23
N = p × q = 488391904291

• −D = −131 (degH−D (X ) = 5)
p = 633825300115031367607309441663
4p = 1 + D × 1391166570843392

q = 868610670601296908562434196197
N = p × q = 550547418976985666816226779885
030828558826986967578267955611

6. Conclusion

In this paper, we have given a generalization and an extension
of the previous algorithms proposed by Shirase [7]. To be
precise, we have proposed efficient algorithms which can
factorize a composite integer when it has a prime factor p of
the form 4p = 1 + Dv2 or 4p = t2 + Dv2 with the condition
that p+1− t is a smooth integer, where −D is a discriminant
whose the class polynomial has arbitrary degree. Therefore,
we should avoid using secret prime numbers having the above
property. For given a prime number p and a discriminant
−D, using Cornacchia’s algorithm we can check whether or
not p has the above property with respect to −D.

Experimental evaluations of our algorithms are left as
a future research subject. For example, are these algorithms
applicable up to what degrees of the class polynomials?, and
so on.
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