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Video Applications
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SUMMARY In this paper, we present a high-performance VC-1 main-
profile decoder for high-definition (HD) video applications, which can de-
code HD 720p video streams with 30 fps at 80 MHz. We implemented the
decoder with a one-poly eight-metal 0.13 µm CMOS process, which con-
tains about 261,900 logic gates and on-chip memories of 13.9 KB SRAM
and 13.1 KB ROM and occupies an area of about 5.1 mm2. In designing
the VC-1 decoder, we used a template-based SoC design flow, with which
we performed the design space exploration of the decoder by trying various
configurations of communication channels. Moreover, we also describe ar-
chitectures of the computation blocks optimized to satisfy the requirements
of VC-1 HD applications.
key words: SMPTE 421M-2006 VC-1, video decoder, transaction level
modeling, design space exploration

1. Introduction

The Society of Motion Picture and Television Engineers
(SMPTE) proposed a new video standard called VC-1 in
March 2006 [1], which was derived from Microsoft WMV9.
Recently both HD DVD and Blu-ray Disc have adopted VC-
1 as one of their mandatory video standards. Moreover,
Windows Vista includes a VC-1 decoder and its related com-
ponents for HD DVD playback of VC-1. Although the VC-1
standard is a relatively new standard, it is expected to be as
important as the H.264 video standard [2].

Because the VC-1 standard employs more software-
friendly algorithms to obtain higher compression, the con-
trol path of the VC-1 decoder is known to be relatively more
complex than that of the H.264 decoder in hardware im-
plementation. A dataflow in the VC-1 decoding process is
shown in Fig. 1.

The VC-1 standard has several distinct features. It
adopts a DCT-like integer transform with four different
block sizes such as 8 × 8, 8 × 4, 4 × 8, and 4 × 4. It
supports AC/DC prediction for intra prediction, and bicu-
bic and bilinear filtering for motion compensation. Pixel
range reduction and intensity compensation can be option-
ally performed before motion compensation. Finally, both
overlap smoothing and deblocking filters are employed to
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Fig. 1 Dataflow in the VC-1 decoding process.

reduce blocking artifacts.
In designing the VC-1 decoder, we used a template-

based SoC design flow. It improves design productivity
by exploiting its communication-channel template library
which enables us to evaluate various communication ar-
chitectures in order to find a better design. By using the
efficient SoC design flow, we implemented the VC-1 HD
720p real-time decoder into silicon. To satisfy high memory
bandwidth requirement of the decoder, we employed mem-
ory servers that include a cache, exploit bank-interleaving
and prefetching, and separate two clock domains with asyn-
chronous FIFOs.

In this paper, we explain the architecture of the com-
ponents optimized for VC-1 HD 720p main profile decod-
ing. For syntax parsing, we used a reordered merged VLD
ROM table to reduce the number of ROM accesses. For
inverse transform, we adopted architecture with butterfly
operations to reduce the number of multiplications and ad-
ditions. Moreover, we also optimized the datapath of in-
terpolation filters for motion compensation to share it for
several modes such as bicubic and bilinear filtering. For
macroblock-level overlap smoothing and deblocking, we in-
troduced a data-hazard free sequence of filtering and scram-
bled all the 4×4 sub-blocks into 8 single-port SRAM buffers
for stall-free sub-block-level pipelining.

The rest of this paper is organized as follows. In Sect. 2,
we explain a template-based SoC design flow employed in
designing the VC-1 decoder. We explain system-level archi-
tecture of the decoder in Sect. 3 and describe its component-
level architectures in Sect. 4. Then, we summarize its im-
plementation results in Sect. 5. Finally, we will draw a con-
clusion in Sect. 6.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2. SoC Design Environment

We briefly introduce a template-based SoC design environ-
ment, called SoCBase-DE [3], [4], which we used in design-
ing the VC-1 decoder. SoCBase-DE, developed by Seoul
National University, is an integrated environment for both
design and verification. It provides a channel template li-
brary that includes model generators for many channel ar-
chitecture templates (CATs) for efficient communication re-
finement, which can be regarded as a natural extension of
the ASIC standard-cell library to a higher level.

2.1 SoCBase-DE Design Flow

Designers capture a transactional level model (TLM) of a
system by using SystemC [5] after analyzing its algorith-
mic model in the SoCBase-De design flow, as shown in
Fig. 2. In the TLM step, a system is separated into com-
putation blocks and communication channels. Computation
blocks are connected through channels, with which the sys-
tem’s communication network is composed. In the imple-
mentation step, the computation blocks are partitioned into
software and hardware. In the SoCBase-DE, each hardware
computation block is manually refined to its RTL while each
software computation block reuses its SystemC TLM code
as software code.

The SoCBase-DE provides the channel template li-
brary which supports four types of abstract channels such as

Fig. 2 SoCBase-DE design flow.

FIFOs, variables, broadcasts, and arrays. In other words, the
template library includes various CAT generators for each
abstract channel. In the communication refinement step, we
can generate various CATs by selecting a CAT generator for
a specific micro-architecture in the channel template library
and configuring its parameters [6]. Moreover, all necessary
software interface codes for the refined channels are auto-
matically generated.

Because a CAT is represented with three models such
as a TLM model, a RTL model, and a software model, we

Fig. 3 Design script for a channel refinement example.
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Fig. 4 An example of channel refinements.

can refine it into hardware or software by selecting one of
its corresponding CAT models. Because all their interfaces
to the computation blocks in each abstract level are prede-
fined, we can easily refine them without modifying their in-
terfaces.

2.2 Refinement of Communication Channels

Unlike the platform-based design methodology (PBD) [7],
SoCBase-DE allows us to start with a flexible communi-
cation network and refine it to various configurations for
channels and memory architectures. As an example of com-
munication channel refinement for the SoCBase-DE design
flow, a design script and its corresponding block diagram
are shown in Figs. 3 and 4, respectively. An array channel A
is refined to a SDRAM-based array channel (A′) with AHB
bus; an array channel B to an on-chip SRAM based array
channel (B′).

3. System-Level Architecture

After analyzing the VC-1 algorithm and its reference soft-
ware, we designed the VC-1 decoder by dividing it into
eleven components as shown in Fig. 5. Just for efficient ex-
planation, we partitioned them into three major parts: syn-
tax parsing, image reconstruction, and loop filtering. Before
implementing the components, we first captured a system-

Fig. 5 Block diagram of the VC-1 video decoder.

level TLM using the abstract channels from the CAT library,
as shown in Fig. 6. FIFOs are used for a low volume of data
transfers with synchronization; on the other hand, arrays are
used for a high volume of data transfers.

In the communication DSE step, we can refine array
channels to either an external SDRAM/DDR2 memory sys-
tem or an internal on-chip SRAM memory system. To
satisfy the requirements for the HD-level performance and
area, we refined the system TLM by refining its channels as
shown in Fig. 7. According to the profile data of the VC-
1 decoder [8], the sequence-level parsing part occupies less
than 5%, which is relatively less complex than other func-
tion blocks. Therefore, we implemented it in software for
flexibility while all the other computation blocks are imple-
mented in hardware for high performance.

It is necessary to provide high memory bandwidth
in designing an HD-level video decoder. For example,
the memory bandwidth requirement for VC-1 MP HD
720p 30 fps decoding is up to 378 Mbytes/sec. To support
such high memory bandwidth, we employed two memory
servers, each of which includes a direct-mapped L2 cache
and an SDRAM/DDR2 controller with bank interleaving
and prefetching, as shown in Fig. 8. We traded off its per-
formance and area by configuring its parameters includ-
ing cache size and line-fill length for prefetching. With
the memory server, we could hide the access latency of
SDRAM or DDR2 and increase effective memory band-
width with about 22–50%. This bandwidth gain comes from
the two features based on cache address mapping: bank-
interleaving every SDRAM access as shown in Fig. 9(a) and
cache-line with improving spatial locality by mapping more
frequently changing address bits into the LSB side as shown
in Fig. 9(b), which improves the spatial locality of prefetch
access patterns.

Figure 10 shows the bandwidth utilization of the
SDRAM memory server. The average memory bandwidth
per macroblock required for HD 720p VC-1 decoding is
3.5 kbytes, which corresponds to 378 Mbytes/sec. To sat-
isfy this memory bandwidth requirement with enough room
for future extension to the full-HD decoding, we employed
two memory servers: one for SDR SDRAM and the other
for DDR2 SDRAM. After refining the CATs in the VC-1
video decoder we obtained system architecture with a 32-
bit AMBA bus as shown in Fig. 11. Storage for large array
channels is assigned to an off-chip memory through a multi-
channel configurable memory server. Consequently, about
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Fig. 6 Simplified TLM model for the VC-1 decoder.

Fig. 7 Simplified block diagram of the VC-1 decoder model after
channel refinements.

Fig. 8 Architecture of the memory server.

20 large array channels are directly connected to the mem-
ory servers in the decoder. Note that the memory servers
provide two AHB interfaces for a processor and its periph-
erals such as a TFT LCD controller and a UART.

4. Computation Block Architectures

In this section, we explain the architecture of computation
blocks of the VC-1 decoder in Figs. 6 and 7. Each compu-
tation blocks satisfy its throughput requirement such that its
average number of cycles per MB should be less than 787
for decoding HD 720p 30 frames per second at the operating

Fig. 9 Address mapping for the memory server.

Fig. 10 Average external SDRAM access cycles and transfer-bytes per
MB, and bus utilization for the test bitstream MR3 TANDBERG B of
QCIF 10 frames. (a) AHB bus + a SDRAM controller, (b) a memory server
CAT with f2=f1, and (c) a memory server CAT with f2=2 × f1. Here, f1
and f2 are the system clock and the SDRAM clock, respectively as shown
in Fig. 8.

frequency of 85 MHz, as shown in Fig. 12.

4.1 Syntax Parsing

The syntax parsing part consists of a software sequencer
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Fig. 11 System-level architecture of the VC-1 decoder.

Fig. 12 Operating cycles per MB for HD-level real-time decoding.

and four hardware blocks such as a bitstream loader, a bit-
stream parser, a motion vector decoder, and a macroblock
controller, as shown in Fig. 7. This part’s role is to obtain
syntax elements and decoding parameters from the VC-1
bitstream.

The bitstream loader gets a token, which has a spec-
ified length of bits, according to each request in the three
command FIFOs from a sequencer, a bitstream parser, and
a MVD. Then the bitstream loader puts tokens into their
corresponding token FIFOs. It employs dual buffering and
maximizes the burst length of transfers to reduce an access
latency of the off-chip memory.

The sequencer obtains picture-level parameters, the
motion vector decoder (MVD) calculates motion vectors
from motion vector differences and neighbor motion vec-
tors, and the bitstream parser extracts both macroblock-level
and block-level syntax elements respectively by parsing a
token from their corresponding token FIFOs. By using the
motion vectors and picture parameters, the MB controller
sends commands to other computation blocks in the other
two parts for image reconstruction and loop filtering.

The bitstream parser parses a token by using more than
30 variable length code (VLD) tables. According to the
VC-1 standard, each VLD table should be accessed sequen-
tially until a matched code is found. If there is a match,
the index of the match VLD code is sent to a run-length de-
coder (RLD). This sequential code matching cannot provide
enough performance at the operating frequency of about
100 MHz for HD-level performance. Moreover, it is not effi-
cient to implement them with random logic to decode every

Fig. 13 Average number of VLD table accesses.

code in one cycle because their circuits are not compact due
to their low correlation.

In order to obtain a high-performance parser, therefore
we rearranged the VLD tables by assigning the short codes
to lower addresses in the ROM. By sequentially comparing a
ROM word one by one starting from the lowest address of a
VLD table, it is more probable to find the matched code ear-
lier because shorter codes are accessed more frequently. By
adopting a ROM word that contains multiple VLD codes,
for each access we can compare them in parallel with multi-
ple comparators, which consequently reduce the number of
ROM table accesses substantially.

We compared the average number of the table accesses
in VLD decoding for two cases: one for the original index-
based tables and the other for the re-arranged tables and
found that the latter is at least three times faster than the
former, as shown in Fig. 13.

Because the rearranged VLD table requires a table in-
dex field in addition to the codeword field, its ROM size
gets a little larger although its VLD performance can meet
the HD-level decoding requirement. To reduce this over-
head, we merged four VLD tables for coded-block patterns,
motion vector differentials, and AC/DC coefficients into a
merged VLD ROM to reduce their control logic.

In the VLD ROM for the re-arranged tables, a ROM
word is 232 bits and consists of eight short or four long
codes. The short codes are for the VLD codewords of less
than or equal to 16 bits while long codes, for the VLD codes
of larger than 16 bits which exist only in the VLD table for
DC coefficients. Each code has three fields for a VLD code-
word, its code size, and its index in the original VLD table.
The sizes of fields for a VLD codeword, its size and its in-
dex are 16, 5 and 8 bits respectively in each short-type code,
as shown in Fig. 14. By employing short and long codes
together, we reduced the ROM size by 40.4%.

We also implement the run-level decoder with a
merged run-level ROM table by combining three tables for a
run-level pair, a delta run, and a delta level into one table as
shown in Fig. 15. It has two functions: reading the run-level
for an input and generating a sequence of the coefficients. If
the run-level result represents the escape mode, the merged
run-level table should be accessed again to get a delta level
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Fig. 14 Merged VLD ROM and its matching circuit.

Fig. 15 Data flow of the run-length decoding.

or a delta run. The RLD generates four coefficients simul-
taneously, which are sent to the image reconstruction part.
The average performance of the syntax parsing part is 402
cycles per MB, which can decode a sequence of HD 720p
30 fps images at the operating frequency of 44 MHz.

4.2 Image Reconstruction

The image reconstruction part of the VC-1 decoder consists
of an ITQ block, a reference frame loader, a motion compen-
sator, and an image reconstructor, as shown in Fig. 7. Each
macroblock of an image is sequentially reconstructed by the
reconstructor, which adds its residuals obtained from the in-
verse transform/quantization (ITQ) block that also performs
AC/DC prediction and inverse zigzag operation to the pre-
dicted values of the macroblock. The motion compensator
takes the results of the reference frame loader and the mo-
tion vectors as its inputs and generates the predicted values
for the macroblocks. The reference frame loader load a mac-
roblock from the reference frame by using the integer parts
of the motion vectors. We will explain these three blocks
one by one in the following.

Fig. 16 Block diagram for AC/DC prediction and ITQ.

Table 1 Sequence of AC/DC prediction, IZ and ITQ for four modes.

To share four 4 × 4 sub-block registers, we merged all
the operations for AC/DC prediction, inverse zigzag, inverse
quantization and inverse transform into the ITQ block, as
shown in Fig. 16.

The ITQ block has four operation modes: one for an
intra-block prediction for the 8×8 blocks, and three for inter-
block prediction of different block sizes: 8 × 8, 4 × 4, and
4 × 8/8 × 4. Its internal modules are fully pipelined so that
the ITQ block gets four coefficients per cycle as its input and
generates four residuals every cycle. Its summarized opera-
tion sequences for the four modes are shown in Table 1. In
the INTRA 8×8 mode, AC/DC prediction is first performed
by using coefficients from the three upper-line buffers in
SDRAM and coefficients from the left-neighbor buffer in an
on-chip SRAM buffer. An inverse zigzag block maps each
coefficient into 4×4 register banks according to one of seven
inverse zigzag patterns that depends on the block type, trans-
form type and prediction direction. After inverse zigzag
mapping, AC/DC coefficients are reconstructed, which is
followed by updating the line buffers. Then, row ITQ op-
erations are performed sequentially, which is followed by
updating adjacent buffer. Finally, column ITQ operations
are performed sequentially. To hide the latency of off-chip
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Fig. 17 Butterfly operations for inverse transform.

memory access, buffer updating and ITQ operations are par-
allelized, as shown in Table 1.

The inverse transform of VC-1 is defined by the fol-
lowing matrix equations [1]:

EM×N = (DM×N · TM + 4) � 3

RM×N = (T T
N · EM×N + CN · 1M + 64) � 7

where EM×N is the intermediate matrix obtained by the 1D
inverse transform and RM×N is the resultant matrix of the 2D
inverse transform. DM×N is an input matrix of the inverse
transform, which is computed by the IQ. CN is a column
vector of dimension N and 1M is a row vector of dimension
M. The matrices TM and T T

N contain the inverse transform
coefficients.

In our computation block for the inverse transform, we
employ architecture with butterfly operations to reduce the
number of multiplications and additions as shown in Fig. 17.
By using the modified butterfly scheme, we reduced the
complexity of ITQ logic substantially, which requires only
192 multiplication and 384 additions for an 8 × 8 block in-
verse transform.

Through optimized pipelining, the average perfor-
mance of the ITQ block is 300 cycles per MB, which can
decode a sequence of HD 720p 30 fps images at the operat-
ing frequency of 33 MHz. It outperforms an ITQ design [9]
by 78%.

Inter-prediction is performed by a reference frame
loader and a motion compensator, as shown in Fig. 7. The
reference loader gets a block of reference pixels from the
off-chip memory using an integer-pel motion vector and
writes them to a local SRAM buffer. The motion compen-
sator calculates the predicted pixel values using a fractional-
pel motion vector and the reference pixels. The reference
frame loader contains a transposing unit for vertical interpo-
lation and an intensity compensation unit. The transposing
unit has a four-bank register file for address interleaving to
hide the external memory latency. Moreover, by separating
the reference pixel buffer into the upper and lower banks,
loading reference pixels and reading them for motion com-
pensator (MC) can be executed in parallel.

The MC consists of four interpolation units, a 5 × 4
array of 13-bit registers, and a 22 × 4 pel 13-bit register

Fig. 18 Datapath of the motion compensator.

Fig. 19 Datapath of an interpolation unit for motion compensation.

file as shown in Fig. 18. The MC reads input data into the
5 × 4 register array from one of two reference pixel buffers
in the frame loader. The register array can shift the pix-
els either horizontally or vertically. Each of four interpola-
tion units can read either horizontal or vertical of pixel data
from the 5 × 4 register array and perform either bicubic or
bilinear interpolation. The 52 × 22 buffer stores intermedi-
ate results of vertical or horizontal interpolation. Note that
in VC-1 motion compensation vertical interpolation should
be performed before horizontal interpolation. Vertical and
horizontal filtering can be skipped for some macroblocks,
which depends on their fractional motion vectors and their
positions in the frame.

In order to optimize the interpolation units, we de-
signed a unified interpolation filter that can perform for
various modes such as bicubic/bilinear filtering, verti-
cal/horizontal filtering, and one-way/two-way filtering. Its
datapath, which efficiently performs both bicubic and bilin-
ear filtering, is simplified by exploiting addition and subtrac-
tion terms, as shown in Fig. 19 and requires only 11 adders
and several shifters. The MC block achieves the average
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Fig. 20 Bamboo pattern for storing the packed words of the 10-bit
reconstructed pixels for a 16 × 16 luminance macroblock.

performance that can decode a sequence of HD 720p 30 fps
images at the operating frequency of 37 MHz.

Just like the MC and ITQ blocks, architecture of the
image reconstruction block is also tuned to compute four
vertical reconstructed pixels together. Therefore, it reads
four 8-bit predicted pixels and their corresponding 9-bit
residuals in the FIFO channels from the MC and ITQ blocks,
respectively, and simply add them to reconstruct four 10-
bit unclamped pixels, which are transferred to the external
SDRAM. To minimize fragmentation of the 10-bit pixel data
in byte addressing of the SDRAM, we decided to bundle
three 10-bit pels into a 32-bit word. Therefore, together
with the packed word, its output pattern for a macroblock
is written with a bamboo pattern shown in Fig. 20. Its write
access sequence is zigzagged to simplify the logic for the
read access sequence of the loop filter engine.

4.3 Loop Filtering

The loop filtering engines perform both overlap smoothing
and deblock filtering to soften the blocking artifacts due to
block-level transform and prediction. According to the VC-
1 standard, all overlap smoothing for vertical edges should
be performed before all overlap smoothing for horizontal
edges in the frame level, and then all deblock filtering for
horizontal edges are performed before all deblock filtering
for vertical edges in the frame level.

Because of these filtering order constraints, the MB-
level algorithms for H.264 loop filtering [10], [11] cannot
be applied to VC-1 loop filtering. To reduce the required fil-
tering buffer size, therefore we transformed the frame-level
filtering algorithm to a MB-level one that satisfies the frame-
level filtering order constraints. Figure 21 shows the archi-
tecture for loop filter engines we employed, which can effi-
ciently perform 4-pel edge filtering according to the filtering
orders illustrated in Fig. 22. Note that the VC-1 decoder em-
ploys two filtering engines: one for luminance data and the
other for chrominance data.

The luminance loop filtering engine performs filtering
for all the edges numbered within an extended macroblock

Fig. 21 Architecture of the luminance loop filtering engine.

Fig. 22 Filtering order for edges of the boundaries of 4×4 sub-blocks in
a buffer that stores a macroblock together with right and down sub-blocks.
(For a left-top case)

buffer (EMB) including a macroblcok and its right and down
sub-blocks, as shown in Fig. 21. The engine requires two
(even and odd) EMBs with 4 single-port banks that store
both the input pixels and intermediate filtering results. Note
that a loop filtering engine get a 3-pel packed word from the
image reconstructor and unpack and move it into one of the
two (even and odd) 8×4 internal registers that can transpose
data. The size of each EMB is an array of 20 × 20 10-bit
pels, which can store 25 4 × 4 blocks. The filtering engine
employed two EMBs for ping-pong operation to hide the
access latency of reading the reconstructed pixels stored in
the external SDRAM memory, which is as shown in Fig. 24.
There are 9 cases for filtering edge patterns, each of which
skips different edges according to the current MB position.
Just for the upper-left corner case, the orders for two filtering
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Fig. 23 Scrambling scheme of 25 sub-blocks into 4 banks of a buffer.

Fig. 24 Ping-pong buffering operation of the luminance LFP in a
time-domain diagram.

sequences for luminance and chrominance that satisfy the
VC-1 specification are shown in Fig. 22.

Moreover, pixel data for a pair of sub-blocks should
be moved into one of the 8 × 4 buffers for filtering without
a stall for high performance. To eliminate pipelining stall
of a group of four row- or column-filtering operations, we
scrambled all the 25 sub-blocks into four banks of a single-
port SRAM buffer as shown in Fig. 23. For example, vertical
edge 3 between blocks 5 and 6 is filtered for overlap smooth-
ing and vertical edge 42 for deblocking. Therefore, blocks

5 and 6 should be stored in two different banks of the buffer
so that the filter engine can fetch a pair of 4 pels every cycle
from the local buffer.

Moreover, we simplified the loop filtering engine by
sharing the control circuits for both overlap smoothing and
deblock filtering as shown in Fig. 21. And, two (even and
odd) 8 × 4 internal registers are used for temporary storage
of unpacked reconstructed pixels, all the inputs (outputs) of
filtering from (to) an EMB as shown in Fig. 24. Note that
except buffering the parameters of the input commands, the
inputs and outputs of all internal operations are buffered in
a ping-pong style buffer with two 8 × 4 registers. The LFP
takes from 152 to 560 cycles for a macroblock, which aver-
age is 424 cycles.

Furthermore, we reduced the required cycles of the
loop filtering operations to 252 cycles by employing two
loop filtering engines: one for luminance and the other for
chrominance. We obtained the average performance of de-
coding a sequence of HD 720p 30 fps images at the operat-
ing frequency of 46 MHz.

5. Verification and Implementation

For efficient verification of the computation blocks, we em-
ployed the Syste mVerilog environment [12] together with
three advanced techniques such as assertion-based verifi-
cation (ABV) [13], constrained-random verification (CRV)
[14], and coverage-driven verification (CDV) [14]. Further-
more, to fill the coverage holes of natural image sequences
and video parameters, we used a constrained-randomly gen-
erated image sequence as a test sequence. With these verifi-
cation methods, we achieved a higher confidence level of the
design. For example, statement, branch, condition, and tog-
gle code-coverages for QCIF 300 frames of Akiyo, an image
sequence of the conformance test are 58.2%, 53.3%, 27.3%,
and 58%, respectively; those for the constrained-randomly
generated one are 81.6%, 77.9%, 56.0%, and 88.5%, re-
spectively, which are measured by Questa SV/AFV [15].
Moreover, we achieved full function coverage with CRV and
CVD which cannot be done with conformance tests.

The target specification of the VC-1 decoder is to de-
code HD 720p sequence with 30 fps at the operating fre-
quency of 85 MHz with minimal silicon area. To achieve the
target performance and area, we tried various configurations
for communication DSE. To summarize it with a simpler
table, however we just picked only eight meaningful ones
especially for 14 array CATs that strongly affect the perfor-
mance and area. The DSE result is summarized in Table 2,
where each column represents a configuration with 14 num-
bers. Each number means a uniquely refined array CAT; (1)
one with an on-chip SRAM, (2) one with a SDRAM con-
troller, (3) one with a DDR2 controller, (4) one including a
DDR2 controller with prefetching 8-words, (5) one includ-
ing a DDR2 controller with prefetching 16-words, and (6)
one including a DDR2 controller with prefetching 24 words.

The performance and area for each configuration is il-
lustrated in Fig. 25, where only four configurations such as
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Table 2 Eight configurations for array CATs.

Fig. 25 Simulation results for various memory configurations.

Table 3 Complexity and performance of the computation blocks in the
VC-1 decoder.

C1, C2, C3, and C6 meet the target performance. We im-
plemented C1 into silicon because its area is the smallest
among the four configurations.

Tables 3 and 4 shows the synthesis result and perfor-
mance for each computation block of the configuration C1.
In Table 3, the gate counts are obtained from the timing con-
straint of 133 MHz for a 0.13 µm CMOS process, and the
effect of the external memory latency is not included yet in
the computational performances.

According to the simulation result for a conformance
bitstream SML0001, which includes external memory la-
tency, the average performance of the VC-1 decoder is av-

Table 4 Complexity of the communication channels in the VC-1
decoder.

Table 5 Complexity of computation and communication parts in the
VC-decoder.

Table 6 Comparison of VC-1 decoders.

erage 740 cycles per MB, which can decode HD 720p bit-
stream with 30 fps at 80 MHz. Note that its performance
margin is 47 cycle per MB, compared to the target perfor-
mance.

In designing the VC-1 decoder we manually coded
only the RTL models for the computation components,
which correspond to 47% of the total logic size, as shown
in Table 5. Note that all the communication components are
obtained simply by configuring the CATs selected from the
channel template library in SoCBase-DE. Although the to-
tal logic complexity of the VC-1 decoder is 416,400 gates in
Table 5, it becomes about 261,900 gates if the two memory
server and the AHB bus are excluded in its communication
part.

Table 6 compares the proposed decoder with several
other VC-1 decoders. Because VC-1 is a relatively new
standard, there are only a few published works. The VC-
1 decoders in [16] and [17] are a software solution using
OMPA2420 and DM6437, respectively. Just for VC-1 de-
coding, the performance of the proposed design is 42% bet-
ter than that of the design in [18]. Note that the latter is a
VLSI implementation for a multi-format video codec, which
supports only decoding for VC-1 and both encoding and de-
coding for H.264 and MPEG-4.

For verification purpose, we prototyped the VC-1 de-



CHO et al.: VLSI IMPLEMENTATION OF A VC-1 MAIN PROFILE DECODER FOR HD VIDEO APPLICATIONS
289

Fig. 26 FPGA prototyping board.

Fig. 27 Micrograph of the VC-1 decoder and its working die test.

coder on a FPGA board with a Xilinx Vertex-4 chip, as
shown in Fig. 26. The prototype can decode about 30 fps
in real time for VGA sequence at 33 MHz. As shown in
Fig. 27, we have implemented a VC-1 decoder chip for HD
720p 30 fps with 0.13 µm CMOS technology. The VC-1 de-
coder chip is pad-limited and its area is 25 mm2 including
the pads. The supply voltage is 1.2 V for its core and 3.3 V
for IOs and its maximum operating frequency is 133 MHz
in the typical condition.

6. Conclusions

In this paper, we described a high-performance VC-1 main
profile decoder for HD video applications. With the system-
level and component-level optimizations from algorithmic
and architectural perspectives, the proposed VC-1 design
can achieve real-time decoding on HD 720p video (1280 ×
720 @30 Hz) when operating at 80 MHz. The proposed
design occupies only 5.1 mm2 core area, which requires
261,900 gates with 13.9 KB SRAM and 13.1 KB ROM for a
1P8M 0.13 µm CMOS process.
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