IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
A Two-Level Cache Design Space Exploration System for Embedded Applications
Nobuaki TOJONozomu TOGAWAMasao YANAGISAWATatsuo OHTSUKI
Author information
JOURNAL RESTRICTED ACCESS

2009 Volume E92.A Issue 12 Pages 3238-3247

Details
Abstract

Recently, two-level cache, L1 cache and L2 cache, is commonly used in a processor. Particularly in an embedded system whereby a single application or a class of applications is repeatedly executed on a processor, its cache configuration can be customized such that an optimal one is achieved. An optimal two-level cache configuration can be obtained which minimizes overall memory access time or memory energy consumption by varying the three cache parameters: the number of sets, a line size, and an associativity, for L1 cache and L2 cache. In this paper, we first extend the L1 cache simulation algorithm so that we can explore two-level cache configuration. Second, we propose two-level cache design space exploration algorithms: CRCB-T1 and CRCB-T2, each of which is based on applying Cache Inclusion Property to two-level cache configuration. Each of the proposed algorithms realizes exact cache simulation but decreases the number of cache hit/miss judgments by a factor of several thousands. Experimental results show that, by using our approach, the number of cache hit/miss judgments required to optimize a cache configurations is reduced to 1/50-1/5500 compared to the exhaustive approach. As a result, our proposed approach totally runs an average of 1398.25 times faster compared to the exhaustive approach. Our proposed cache simulation approach achieves the world fastest two-level cache design space exploration.

Content from these authors
© 2009 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top