
論文 / 著書情報
Article / Book Information

Title Discrete Wirtinger-Type Inequalities for Gauging the Power of
Sinusoids Buried in Noise

Authors Saed Samadi, Kaveh Mollaiyan, Akinori Nishihara

出典 / Citation IEICE Trans. Fundamentals, Vol. E92-A, No. 3,  pp. 722-732

発行日 / Pub. date 2009,  3

URL  http://search.ieice.org/

権利情報 / Copyright  本著作物の著作権は電子情報通信学会に帰属します。
 Copyright (c) 2009 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/


722
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.3 MARCH 2009

PAPER Special Section on Latest Advances in Fundamental Theories of Signal Processing

Discrete Wirtinger-Type Inequalities for Gauging the Power of
Sinusoids Buried in Noise

Saed SAMADI†a), Kaveh MOLLAIYAN†b), Nonmembers, and Akinori NISHIHARA††c), Fellow

SUMMARY Two discrete-time Wirtinger-type inequalities relating the
power of a finite-length signal to that of its circularly-convolved version
are developed. The usual boundary conditions that accompany the existing
Wirtinger-type inequalities are relaxed in the proposed inequalities and the
equalizing sinusoidal signal is free to have an arbitrary phase angle. A
measure of this sinusoidal signal’s power, when corrupted with additive
noise, is proposed. The application of the proposed measure, calculated as
a ratio, in the evaluation of the power of a sinusoid of arbitrary phase with
the angular frequency πN , where N is the signal length, is thoroughly studied
and analyzed under additive noise of arbitrary statistical characteristic. The
ratio can be used to gauge the power of sinusoids of frequency π

N with a
small amount of computation by referring to a ratio-versus-SNR curve and
using it to make an estimation of the noise-corrupted sinusoid’s SNR. The
case of additive white noise is also analyzed. A sample permutation scheme
followed by sign modulation is proposed for enlarging the class of target
sinusoids to those with frequencies Mπ

N , where M and N are mutually prime
positive integers. Tandem application of the proposed scheme and ratio
offers a simple method to gauge the power of sinusoids buried in noise. The
generalization of the inequalities to convolution kernels of higher orders
as well as the simplification of the proposed inequalities have also been
studied.
key words: discrete Wirtinger inequalities, Fan-Taussky-Todd inequalities,
sinusoids, spectrum analysis, maximally flat filters, circular convolution,
additive white noise, signal-to-noise ratio

1. Introduction

In 1955, Fan, Taussky, and Todd [1] published an influen-
tial paper extending the continuoues-time Wirtinger inequal-
ities, which relate the integral of the square of functions and
their first derivative, to the discrete time and derived five
discrete versions that hold for sequences of finite length un-
der certain boundary conditions. To prove the inequalities,
they used the properties of the eigenvalues of matrices with
respect to the maximization of the Rayleigh quotient and
showed that, under specific boundary conditions on the sig-
nal, the power contained in the first- or second-order dif-
ferences of a sequence is related to that of the original se-
quence through a sharp inequality. Interestingly, a discrete
form of Wirtinger’s inequality had been discovered earlier
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by I.J. Schoenberg in 1950 [2] but in connection with what
was called the finite Fourier transform then and the discrete
Fourier transform today. Schoenberg used the inequality to
solve a geometric problem concerning the location of the
vertices of a convergent series of polygons.

Since the publication of [1], the discrete Witinger-type
inequalities caught the fancy of a number of researchers
whose activities have been directed at generalizing the in-
equalities in various directions [3] or providing alternative
insights into their nature by developing alternative proofs
[4]. A curious fact about the Fan-Taussky-Todd inequali-
ties and other related inequalities, in both their continuous-
and discrete-time forms, is that they are sharp. In other
words, certain functions or sequences satisfying the bound-
ary conditions can always be found so that the two sides
of the inequalities become exactly equal. In the discrete-
time case, these equalizing signals are generally sinusoids,
of fixed phase and frequency but with a variable amplitude,
whose frequency is a fixed rational multiple of π depending
on the length of the sequence only [1]–[4].

In digital signal processing, problems requiring estima-
tion or detection of sinusoids are abundant and a large num-
ber of spectrum analysis techniques have been developed to
estimate the frequency of a single-tone sinusoid or resolve
multiple sinusoids in the forms of delta-function-like re-
sponses [5], [6]. See [7] for a concise yet excellent treatment
of the techniques. For a new exact and direct approach see
[8]. Since sinusoids play a key role in the discrete Wirtinger
inequalities, from the standpoint of an engineer, we are in-
terested in exploring their application in various signal pro-
cessing problems involving the analysis of discrete-time si-
nusoids. The specific question we raise here is if it is pos-
sible to use these inequalities as a low-cost alternative, in
terms of computational complexity, to the most common de-
vice in signal analysis, i.e., the discrete Fourier transform
(DFT), in order to gauge the power of a discrete-time sinu-
soid buried in additive noise. We are specifically interested
in devising a simple scheme to estimate the signal-to-noise
ratio (SNR) of such sinusoids using a finite number of sam-
ples when their frequency is given as a rational multiple of π.
To be able to provide a solution to our problem, we should
first overcome some inherent obstacles in the application of
the existing inequalities. These include, the limitation in
the manner we form the differences of the signal, which in-
volves simple weights only, the restriction in dealing with
arbitrary discrete-time signals due to the stringent boundary
conditions, and, last but not least, the constraint concerning

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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the phase and frequency of the equalizing sinusoids. It is not
the purpose of this paper to tout the Wirtinger inequalities as
a replacement to the powerful sinusoidal analysis techniques
such as Pisarenko’s [7] method. Rather, we are interested in
empowering the practitioner with an ultimately simple anal-
ysis tool that has the ability to extract useful information
about the SNR of a sinusoid of a known fixed frequency
from an observed finite-length signal.

Our goal in this paper is to first eliminate all of the
accompanying constraints that are attached to the existing
inequalities by modifying them into a form that is free of
boundary conditions and valid for any finite-length signal.
At the same time, we generalize the inequalities by incor-
porating weights of arbitrary values to replace the simple
difference operations used in the existing inequalities. After
proposing two such inequalities that admit arbitrary weights
and are free of boundary conditions, we devise a permuta-
tion and modulation scheme that enlarges the class of equal-
izing sinusoids. In effect, the proposed scheme transforms
the fundamental equalizing signal of the proposed inequal-
ities into one whose angular frequency can be M times
higher. Next, we used the modified and generalized inequal-
ities to propose a measure, calculated as a power ratio in the
time domain, for the evaluation of the strength of a sinusoid
belonging to the set of equalizing signals pertaining to the
proposed inequalities. The performance of the proposed ra-
tio is analyzed when the sinusoid is buried in additive noise.
Various numerical examples show that, by plotting a perfor-
mance curve that tracks the ratio versus the theoretical SNR,
one can use the calculated value of the ratio to find an esti-
mate to the target sinusoid’s SNR for a wide range of values.

The paper is organized as follows. The derivation
process of the proposed inequalities is presented in Sect. 2
where two discrete-time inequalities are established using
Parseval’s identity and their fundamental equalizing sinu-
soids are determined. A power ratio for gauging the power
of the sinusoids is defined and analyzed in Sect. 3. Specif-
ically, it is shown that for both the inequalities, the ra-
tio, when calculated at various theoretical SNR levels, is
bounded by simple curves from above and below. Concrete
examples are presented to depict the role of these bounds in
the performance of the inequalities when used for gauging
the SNR of the sinusoids under additive noise. A scheme,
based on permutation and sign modulation of the observed
signal, is proposed in Sect. 4 for enlarging the class of equal-
izing sinusoids to those whose frequency is an integer mul-
tiple of that of the fundamental sinusoid. Section 5 is dedi-
cated to the derivation of a simplified form of the proposed
inequalities where the weights are canceled from both sides.
Generalization of the proposed inequalities to those with
three or more nonzero weights is considered in Sect. 6 where
it is shown that FIR maximally flat filters having monotone
magnitude responses provide a rich source of weights for
forming higher-order inequalities. Conclusions are drawn
in Sect. 7.

2. Proposed Inequalities and Their Derivation

Two generalized forms of the discrete inequalities of
Wirtinger, also known as Fan-Taussky-Todd inequalities,
are proposed in this section. From a signal processing point
of view, the existing forms of these inequalities involve the
time-domain power in the output of a highpass filter excited
by a finite-length signal and that of the original signal. To
motivate the reader, we present the following inequality, es-
tablished in [1], as an example of a common existing form.
If x1, x2, . . . , xn are n real numbers and x1 = 0, then

n−1∑
i=1

(xi − xi+1)2 ≥ 4 sin2 π

2(2n − 1)

n∑
i=2

x2
i , (1)

and the equality happens if and only if

xi = A sin
(i − 1)π
2n − 1

, i = 1, 2, . . . , n. (2)

The notation used above follows that of [1] but we switch
to our own notation henceforth. Note that in the above in-
equality, the sequence xi must be so that x1 = 0, and even in
that case the phase and frequency of the equalizing sinusoid
are fixed by the length of the sequence. Also, the left side
is formed by simple differences and there is no freedom in
the choice of weights. Various generalizations of the above
inequality exist [3] but the above-mentioned limitations are
always present in one from or another.

2.1 Inequality I and Its Derivation

We start by stating preliminary definitions and then proceed
to establish the first inequality in detail. Let x[n] be a real-
valued signal of length N and x̂[n] be the extended version
of it defined by

x̂[n] =

⎧⎪⎪⎨⎪⎪⎩
x[n], n = 0, 1, . . . ,N − 1,

−x[n − N], n = N,N + 1, . . . , 2N − 1.
(3)

The kth DFT coefficient of x̂[n], given by

X̂[k] =
2N−1∑
n=0

x̂[n]Wnk
2N , k = 0, 1, . . . , 2N − 1, (4)

where WN = e− j 2π
N , vanishes if k is even, i.e.,

X̂[0] = X̂[2] = · · · = X̂[2N − 2] = 0. (5)

In fact, it can be shown that the moduli of the DFT coeffi-
cients X[k], of the original signal, and X̂[k], of the extended
version, are generally related by

|X̂[k]|2 = 4 sin2

(
kπ
2

) ∣∣∣∣∣∣X
(

k
2

)∣∣∣∣∣∣
2

. (6)

In this paper, brackets are used to indicate that the argument
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of the signal is restricted to integers while pairs of paren-
theses are used in the cases where a non-integer argument is
also possible. Note that the evaluation of non-integer-valued
arguments in |X( k

2 )|2, which is not of concern in this paper,
can be carried out, if necessary, using the basic definition of
the DFT.

On the other hand, by Parseval’s identity, the two real
signals are related to each other according to

2N−1∑
k=0

|X̂[k]|2 =2
N−1∑
k=1

|X̂[k]|2 + |X̂[N]|2

=4N
N−1∑
n=0

x[n]2. (7)

Note that if N is even, then the middle coefficient X̂[N] van-
ishes.

The result of the cyclic convolution of x̂[n] with the
2N-point sequence

h[n] = aδ[n] + bδ[n − 2N + 1],

n = 0, 1, . . . , 2N − 1, (8)

where a and b are real constants and δ[n] is the unit impulse
signal, is the 2N-point signal

y[n] = ax̂[n] + bx̂[(n + 1) mod 2N],

n = 0, 1, . . . , 2N − 1. (9)

Since the kth DFT coefficient of y[n] is the product of the
kth DFT coefficients of x̂[n] and h[n], we can write

|Y[k]|2 = |H[k]|2|X̂[k]|2,
k = 0, 1, . . . , 2N − 1, (10)

where Y[k] is the kth coefficient in the 2N-point DFT of y[n]
and

|H[k]|2 = a2 + b2 + 2ab cos
kπ
N
,

k = 0, 1, . . . , 2N − 1. (11)

Application of Parseval’s identity to (9) and (10) gives

2N−1∑
n=0

(ax̂[n] + bx̂[(n + 1) mod 2N])2

=
1

2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2. (12)

The left side of (12) can be expanded as

2
N−2∑
n=0

(ax[n] + bx[n + 1])2 + 2(ax[N − 1] − bx[0])2 (13)

whereas, employing X̂[0] = 0 and in view of the symmet-
ric properties of X̂[k] and H[k], the terms on the right side

of (12) can be regrouped as

1
2N

⎛⎜⎜⎜⎜⎜⎜⎝2
N−1∑
k=1

|X̂[k]|2|H[k]|2 + |X̂[N]|2|H[N]|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (14)

If ab > 0, we can show that

|H[1]| > |H[2]| > · · · > |H[N]| (15)

and hence

max
k=1,...,N

|H[k]|2 = |H[1]|2 = a2 + b2 + 2ab cos
π

N
. (16)

The above observation and the symmetry of the coefficients
|H[k]|(= |H[2N − k]|) lead to the inequality

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≤ 1
2N
|H[1]|2

2N−1∑
n=0

|X̂[k]|2, ab > 0 (17)

By using the relations (12) and (7) to replace the left and
right sides of (17) with equivalent time-domain expressions,
we obtain

N−2∑
n=0

(ax[n] + bx[n + 1])2 + (ax[N − 1] − bx[0])2

≤ |H[1]|2
N−1∑
n=0

x[n]2, ab > 0. (18)

The above expression becomes a strict inequality if x̂[n] is
a real signal that has at least one pair of nonzero DFT coef-
ficients |X̂[k]| = |X̂[2N − k]| for k ∈ {2, 3, . . . ,N}. The only
possibility for an equality occurs when the entire spectral
content of the signal X̂[k] for k ∈ {1, 2, . . . ,N} is concen-
trated at X̂[1] = μe jγ which has the same nonnegative mod-
ulus μ as X̂[2N − 1]. In this case, using the inverse DFT, it
turns out that the non-zero DFT coefficients of X̂[k] generate
the equalizing signal

x̄[n] =
μ

2N
(e jγW−n

2N + e− jγW−n(2N−1)
2N )

=
μ

N
cos

(nπ
N
+ γ

)
. (19)

Since

x̄[n + N] = −x̄[n], (20)

the equalizing signal (19) is perfectly consistent with the
extension of x̄[n] to ˆ̄x[n] as defined in (3).

The above argument establishes that for all real-valued
signals of length N, and for any two real weights a and b,
ab > 0, we always have

N−2∑
n=0

(ax[n] + bx[n + 1])2 + (ax[N − 1] − bx[0])2
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≤
(
a2 + b2 + 2ab cos

π

N

) N−1∑
n=0

|x[n]|2, (21)

where equality holds if and only if

x[n] = x̄[n] = C cos
(nπ

N
+ γ

)
(22)

for some real amplitude C and phase γ. Note that (21) is
expressed in terms of the original signal x[n] and thus there
is no need to actually carry out the extension operation of (3)
or compute any DFT coefficients.

2.2 Inequality II

Another generalized form of Wirtinger’s inequality can be
derived by considering the case where the weights a and b
have opposite signs. If ab < 0, then it can be shown that

|H[1]| < |H[2]| < · · · < |H[N]| (23)

and hence

min
k=1,...,N

|H[k]|2 = |H[1]|2 = a2 + b2 + 2ab cos
π

N
. (24)

The derivation of the second inequality is carried out by fol-
lowing the same steps as those taken for the first inequality
but with the direction of the inequality sign reversed. Con-
sequently, all other conditions unchanged, for any two real
weights a and b, ab < 0, we always have

N−2∑
n=0

(ax[n] + bx[n + 1])2 + (ax[N − 1] − bx[0])2

≥
(
a2 + b2 + 2ab cos

π

N

) N−1∑
n=0

|x[n]|2, (25)

with the equalizing signal given by

x̄[n] = C cos
(nπ

N
+ γ

)
. (26)

It is interesting to note that for both inequalities the equal-
izing signal is a sinusoid of frequency π

N . The difference in
the direction of the two inequalities arises from the relative
sign of the weights a and b.

3. A Measure of Power for Sinusoids and Its Analysis
under Additive Noise

A question of interest relating to the proposed inequalities is
the behaviour of the ratio

R def
=

N−2∑
n=0

(ax[n] + bx[n + 1])2 + (ax[N − 1] − bx[0])2

(
a2 + b2 + 2ab cos

π

N

) N−1∑
n=0

|x[n]|2
,

(27)

where ab > 0, which is a measure of the degree of balance
between the left and right side of the inequality (21). Know-
ing that under the conditions ab > 0 and x[n] = x̄[n] =
C cos( nπ

N + γ), the nonnegative ratio R attains its maximum
value of unity, i.e., 0 ≤ R ≤ 1, the question arises as to if it is
possible to bound R from above and below for an arbitrary
signal x[n] � x̄[n]. In this section, we will see that the an-
swer to the above question is in positive. This is especially
crucial in connection with the practical applicability of R to
the evaluation of the power of the sinusoid x̄[n] when it is
buried in additive noise e[n] in an observed signal expressed
as

x[n] = x̄[n] + e[n]. (28)

In fact, we will see that R can be used as a measure to gauge
the relative power of the sinusoid x̄[n] in the observed finite-
length signal x[n]. In the following, we will analyze the ratio
for both of the inequalities by defining a corresponding ratio
R′ for inequality II. The case of additive white noise will
also be given special treatment.

3.1 Analysis of Inequality I under Noise of Unknown
Characteristic

The bounds on R are obtained by exploiting the monotone
decreasing nature of |H[k]| for 0 ≤ k ≤ N. Without loss of
generality, we can assume that the power of the signal x̂[n]
has been normalized to a constant value, i.e.,

2N−1∑
n=0

|x̂[n]|2 = 2
N−1∑
n=0

|x[n]|2 = 1
2N

2N−1∑
k=0

|X̂[k]|2 = μ
2

N

(29)

for some positive and real μ. The real signal x̄[n] constitutes
an extreme case where the entire energy of x̂[n] is allocated
to X̂[1] and its symmetric pair X̂[2N − 1]. Under the same
constraint on the total power, one can disperse it to the other
non-vanishing bins of X̂[k]. Suppose that of the total signal
power μ

2

N , r μ
2

N (0 < r < 1) has been allocated evenly to ˆX[1]
and X̂[2N − 1] to satisfy the symmetric constraints, while
(1−r) μ

2

N has been distributed among the other non-vanishing
DFT bins. For a fixed r, this is expressed by the following
equivalence

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2 = 1
2N

⎛⎜⎜⎜⎜⎜⎜⎝2rμ2|H[1]|2

+2
N−1∑
k=3

|X̂[k]|2|H[k]|2 + |H[N]|2|X̂[N]|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (30)

In light of (15), the above relation yields the inequality

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2 ≤ 1
2N

(
2rμ2|H[1]|2

+ |H[3]|2
(
2

N−1∑
k=3

|X̂[k]|2 + |X̂[N]|2
))

(31)
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which, in turn, leads to

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≤ 1
2N

(
2rμ2|H[1]|2 + 2|H[3]|2(1 − r)μ2

)
. (32)

Henceforth, whenever we wish to stress the dependence of
R on the weights and energy distribution parameter r, we
use the notation R(a, b, r). Thus, combining (12), (13), (16),
(27), (29), we can write (32) as

R(a, b, r) ≤ r + (1 − r)
|H[3]|2
|H[1]|2 , ab > 0. (33)

In the same vein, it can be established that

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2N

(
2rμ2|H[1]|2 + 2|H[N]|2(1 − r)μ2

)
,

Nodd,

1
2N

(
2rμ2|H[1]|2 + 2|H[N − 1]|2(1 − r)μ2

)
,

Neven.

(34)

Unifying both the cases into a parity-free expression, it fol-
lows that

R(a, b, r) ≥ r + (1 − r)
|H[N − (N + 1) mod 2]|2

|H[1]|2 ,

ab > 0. (35)

The SNR, used to measure the power of the target sinusoidal
component x̄[n] in the observed signal x[n], is defined as the
ratio of the sinusoid power to the total noise power contained
in the bins X̂[2], . . . , X̂[2N − 2] and becomes

S NR = 10 log10
r

1 − r
, (36)

which can be solved for r to give

r =
10

S NR
10

1 + 10
S NR

10

. (37)

The two bounds derived in (33) and (35) are plotted versus
the SNR in Fig. 1(a) for the case a = b = 1, and N = 7.

Now that we have obtained sharp lower and upper
bounds on R(a, b, r), we are in a position to consider the
inverse problem of relating the value of R(a, b, r) to that of
r. In other words, suppose that, for a given signal, we have
calculated the numerical value of the ratio R; we are inter-
ested in obtaining an interval that contains all possible val-
ues of r or, equivalently, the SNR, that could have resulted

in our calculated ratio. Since for very low SNR values (neg-
ative values with large magnitudes), the value of r is close
to zero, it can be shown, by solving the inequalities (33) and
(35) for r, that the ratio R is bounded as

R ∈
( |H[N − (N + 1) mod 2]|2

|H[1]|2 ,
|H[3]|2
|H[1]|2

]
(38)

Whenever the calculated value of R lies in the above half-
open interval, we can show that

r ∈
⎛⎜⎜⎜⎜⎜⎜⎜⎝0,
R − |H[N−(N+1 mod 2)]|2

|H[1]|2

1 − |H[N−(N+1 mod 2)]|2
|H[1]|2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (39)

Otherwise, if

R ∈
( |H[3]|2
|H[1]|2 , 1

)
, (40)

the exact value of r lies in the closed interval

r ∈
⎡⎢⎢⎢⎢⎢⎢⎢⎣
R − |H[3]|2

|H[1]|2

1 − |H[3]|2
|H[1]|2

,
R − |H[N−(N+1 mod 2)]|2

|H[1]|2

1 − |H[N−(N+1 mod 2)]|2
|H[1]|2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (41)

The region in the SNR-R plane specified by the above two
pairs of intervals is shown in grey for a = 1, b = 1,N = 7
in Fig. 1(a). It can be seen that, for a given signal, if the
calculated ratio is greater than |H[3]|2

|H[1]|2 ≈ 0.64, possible SNR
values lie in a narrow range. The grey region specifies the
corresponding SNR interval even when there is no informa-
tion about the stochastic nature of the noise. However, for
R < 0.64, the inequality loses its sensitivity to the target
sinusoid and the ratio cannot be used to provide a useful es-
timate for the SNR range.

3.2 Analysis of Inequality II under Noise of Unknown
Characteristic

Under the same assumption on the distribution of the total
signal power, a ratio for the inequality II can be defined by

R′ def
=

(a2 + b2 + 2ab cos πN )
N−1∑
n=0

|x[n]|2

N−2∑
n=0

(ax[n] + bx[n + 1])2 + (ax[N − 1] − bx[0])2

,

ab < 0, (42)

which assumes a positive value that can never exceed unity.
To obtain lower and upper bounds on R′, it is not difficult to
see that

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≥ 1
2N

(
2rμ2|H[1]|2 + 2|H[3]|2(1 − r)μ2

)
(43)
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Fig. 1 Upper and lower bounds on R and R′ for a range of SNR values are the boundary curves
surrounding the grey regions. The curves correspond to the cases where a = b = 1, N = 7 in inequality
I, Fig. 1(a), and a = 1, b = −1, N = 7 in inequality II, Fig. 1(b). Performance regions are shown in grey.

while

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≤ 1
2N

(
2rμ2|H[1]|2+2|H[N−(N+1) mod 2]|2(1−r)μ2

)
.

(44)

We conclude that

1

r + (1 − r)
|H[N − (N + 1) mod 2]|2

|H[1]|2
≤ R′(a, b, r) ≤ 1

r + (1 − r)
|H[3]|2
|H[1]|2

, ab < 0. (45)

As an example, the bounds corresponding to a = 1, b =
−1,N = 7, are shown in 1(b).

Suppose that the value of R′ has been determined for a
given signal x[n]. It is of interest then to deduce the range
of possible values of r based on this information. It can be
verified that whenever

R′ ∈
( |H[1]|2
|H[N − (N + 1 mod 2)]|2 ,

|H[1]|2
|H[3]|2

]
, (46)

the range for the ratio is given by

r ∈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0,
R′ |H[N − (N + 1 mod 2)]|2

|H[1]|2 − 1

R′ |H[N − (N + 1 mod 2)]|2
|H[1]|2 − R′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (47)

and whenever

R′ ∈
( |H[1]|2
|H[3]|2 , 1

)
, (48)

the ratio lies in the closed interval

r ∈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
R′ |H[3]|2
|H[1]|2 − 1

R′ |H[3]|2
|H[1]|2 − R

′
,

R′ |H[N − (N + 1 mod 2)]|2
|H[1]|2 − 1

R′ |H[N − (N + 1 mod 2)]|2
|H[1]|2 − R′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (49)

The region in the SNR-R′ plane specified by the above two
pairs of intervals is shown in grey for a = 1, b = −1,N = 7
in Fig. 1(b). Note that if the calculated value of R′ is greater
than |H[1]|2

|H[3]|2 ≈ 0.13, the signal can have SNR values in a
narrow interval, depicted in grey, even when there is no in-
formation about the stochastic nature of the noise. But for
R′ < 0.13, the ratio cannot be used to provide a useful es-
timate for the SNR. In comparison to Fig. 1(a), we observe
that the dynamic range of the values of the ratio is higher
when we use R′, but at low SNR’s the sensitivity of R′ is
lost faster than that of R.

3.3 Analysis of Inequalities I and II for Sinusoid Embed-
ded in White Noise

If x̄[n] is buried in additive zero-mean white noise and we
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desire to make an estimate of the ratio RWN, defined in the
same way as (27), we can utilize the flatness property of
the power spectrum of the noise. The goal is to derive a
relation between RWN and SNR to be used for gauging the
power of the sinusoid. In the DFT domain, the additive noise
model (28), when extended to a 2N-point signal according
to (3), can be written as

X̂[k] = ˆ̄X[k] + Ê[k], (50)

where Ê[k] is the kth DFT coefficient of the extended noise
signal produced by a zero-mean white noise process. Note
that the coefficients Ê[1] and Ê[2N − 1], which have equal
moduli, sit in the equalizing signal’s bin in the DFT domain.
They may even contribute positively to the strength of that
signal. Following the same signal and noise power assump-
tions as those used in the previous subsection, we estimate
that of the total measured power, (1 − r) μ

2

N has been evenly
distributed among the moduli of the remaining (N − 2) non-
vanishing coefficients of Ê[k]. Therefore, following (6), we
can write

|Ê[k]|2 = 4 sin2

(
kπ
2

) ∣∣∣∣∣∣E
(

k
2

)∣∣∣∣∣∣
2

≈
⎧⎪⎪⎨⎪⎪⎩

2(1−r)μ2

N−2 , k odd,

0, k even.
(51)

The total power in the DFT coefficients H[k]X̂[k] then
becomes

1
2N

2N−1∑
k=0

|X̂[k]|2|H[k]|2

≈ 1
2N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝rμ
2|H[1]|2 + rμ2|H[2N − 1]|2

+
2(1 − r)μ2

N − 2

2N−2∑
k=3
k odd

|H[k]|2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (52)

and thus the ratio is approximated as

RWN ≈
1

2N

⎛⎜⎜⎜⎜⎜⎜⎝2rμ2|H[1]|2 + 2(1−r)μ2

N−2

N−2∑
k=1

|H[2k + 1]|2
⎞⎟⎟⎟⎟⎟⎟⎠

|H[1]|2 μ2

N

.

(53)

It follows that

RWN ≈ r +
(1 − r)
N − 2

(
a2 + b2

)
(N − 2) − 4ab cos

(
π
N

)
a2 + b2 + 2ab cos

(
π
N

) ,

ab > 0. (54)

The ratio is plotted in Fig. 2 versus SNR for a = b = 1 and
two values of N. It is interesting to note that for very low
SNR values in very long signals, the horizontal asymptote
of the curve is given by

RWN =
a2 + b2

(a + b)2
. (55)

For white noise, the ratio can be used to provide an estimate
to the SNR even when the noise is strong. There is little de-
pendence between the signal length N and the performance
of the ratio for different SNR values.

For inequality II, under the same white noise condition,
the ratio R′WN is the reciprocal of RWN and thus

R′WN ≈ 1

r + (1−r)
N−2

(a2+b2)(N−2)−4ab cos( πN )
a2+b2+2ab cos( πN )

,

ab < 0. (56)

The ratio is plotted in Fig. 3 versus SNR for two values of
N and the weights a = 1, b = −1. From these examples,
it can be seen that for white noise, the dynamic range in
inequality II is still higher than inequality I but for larger
values of N, inequality II loses its sensitivity for SNR values
of less than 10 dB. In contrast to that, inequality I has a lower
dynamic range but can provide a meaningful measure of the
target sinusoid’s power even for SNR values of less than
0 dB without losing its sensitivity.

Fig. 2 Power ratio RWN versus SNR for a sinusoid buried in white noise based on inequality I for
a = b = 1, N = 7 (a), and N = 47 (b).
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Fig. 3 Power ratio R′WN versus SNR for a sinusoid buried in white noise based on inequality II for
a = 1, b = −1, N = 7 (a), and N = 47 (b).

4. Adaptation to Sinusoids of Higher Frequencies

A question concerning the generalized inequalities of the
previous section is in regard to their applicability to the tar-
get sinusoids whose angular frequencies are not equal to π

N .
In general, if a sinusoid of the form

C cos(nω + γ), (57)

where ω is a real number in the interval (0, π), is the tar-
get signal in x[n], it is always possible to obtain a rational
approximation to ω

π
by using the covergents of its contin-

ued fraction expansion. Such rational approximations to ω
π

are optimal in the sense that there does not exist any other
fraction with a denominator less that of the convergent ren-
dering a smaller approximation error. Let us assume that
the convergent is given by M

N where M and N (N > M) are
positive integers. If M � 1, then such sinusoids can not
be the equalizing signals for the inequalities derived in the
previous section. In this section, a method based on permu-
tation and subsequent sign modulation of x[n] is developed
to circumvent this problem.

If a sinusoidal signal of the form

C cos
( M

N
πn + γ

)
(58)

is the target signal, the assumption henceforth is that the
fraction M

N has been reduced to the simplest form so that M
and N are mutually prime. Euclid’s algorithm can be used
to generate two integers, p and q, that satisfy the relation

Mp + Nq = 1. (59)

It can be shown that the sequence

(x[0], x[p mod N], x[2p mod N], . . . ,

x[(N − 1)p mod N]) (60)

contains the same samples as x[n], n = 0, 1, . . . ,N − 1, but
in different order [9]. The goal is to find a simple sequence
f [n] to modulate the permuted version of x[n] and obtain
the signal

x′[n] = f [n]x[pn mod N] (61)

in a way that the original target sinusoid of angular fre-
quency M

N π contained in x[n] is down-converted to a sinu-
soid of frequency π

N . After the down-conversion, the signal
x′[n] can be used in the inequalities and the power ratios will
indicate the SNR for a sinusoid of frequency π

N which has a
power identical to the original sinusoid. If such f [n] exists,
then the above argument leads us to the requirement that the
relation

f [n] cos

(
M(pn mod N)

N
π + γ

)
= cos

( n
N
π + γ

)
. (62)

must hold as an identity for all integers n. Writing

pn mod N = pn − QN, (63)

where Q, the quotient in division of pn by N, is an integer,
and using (59) we get

M(pn mod N)
N

=
Mp
N

n − MQ

=
1 − Nq

N
n − MQ =

n
N
− qn − MQ. (64)

Consequently, by setting

f [n] = (−1)qn+MQ (65)

the relation (62) becomes an identity. To summerize, the
signal given in (61) should be used instead of x[n] in the
calculation of R or R′ if the target sinusoid has a frequency
M times higher than that of the fundamental sinusoid.

5. Core Inequality

The generalized inequalities proposed in this paper are pa-
rameterized by two real weights whose relative magnitude
a
b governs the performance ratios R and R′. Examining the
inequalities with greater care, one notices that there are a
number of terms on the two sides of the expanded form of
the inequalities that can be canceled. Specifically, expansion
of the left side of (21) gives
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(a2 + b2)
N−1∑
n=0

x[n]2

+ 2ab

⎛⎜⎜⎜⎜⎜⎜⎝
N−2∑
n=0

x[n]x[n + 1] − x[0]x[N − 1]

⎞⎟⎟⎟⎟⎟⎟⎠ . (66)

Substituting the above expression into the inequality, after
cancelation of the identical terms on the left and right, we
obtain

N−2∑
n=0

x[n]x[n+1]− x[0]x[N −1] ≤ cos
π

N

N−1∑
n=0

x[n]2. (67)

In the same fashion, we can cancel the identical terms from
both sides of (25). Taking into account that ab < 0 in
this case, the result is again the same inequality as above.
Clearly, the equality holds for the same equalizing signal
x[n] = x̄[n] = C cos( πN + γ) as before. We call the above
inequality the core inequality for x̄[n]. The left side of the
core inequality involves the sample autocorrelation of lag 1
while the right side involves the sample autocorrelation of
lag 0.

There is a subtle difference in the behaviour of the core
inequality compared to those that contain the weights a and
b. In the latter, the two sides of the inequality are guaranteed
to be positive while in the former there is no such constraint
on the value of the left side. As a result, when the signal x[n]
deviates largely from x̄[n], for instance in the case where

x[0] > 0, x[N − 1] > 0,

x[1] = x[2] = . . . = x[N − 2] = 0, (68)

the left side becomes negative.

6. Inequalities of Higher Orders

One may develop other double-weight inequalities by relax-
ing the constraint on the nonzero coefficients in h[n], spec-
ified in (8), and allowing them to occur at arbitrary relative
gaps with respect to each other. Further generalization of
the two inequalities (21) and (25) is possible by replacing
the sequence h[n] with one that has three or more nonzero
weights. To facilitate the generalization process, the selec-
tion of the weights can be carried out in a fashion that the
moduli of the DFT coefficients H[k] behave analogous to
the two-weight cases proposed earlier in this paper. The
derivation process and analysis results of inequalities I and
II can then be applied with only slight modification. Specif-
ically, for the generalization of (21) in a manner that is con-
sistent with the analysis results, the requirement is that the
new weights be chosen so that

|H[1]| > |H[2]| > · · · > |H[N]|, (69)

while, if inequality II is to be generalized, any real sequence
with the property

|H[1]| < |H[2]| < · · · < |H[N]| (70)

Fig. 4 Discrete values of |H[k]|2 =
(
a2 + b2 + c2 + 2(a + c)b cos( πN ) +

2ac cos
(

2π
N

) )
for a = c = 1, b = 2, and N = 17.

can be used. When the above conditions are satisfied, it is
not difficult to see that the only steps in the derivation pro-
cess of the inequalities that require modification are the cal-
culation of the cyclic convolution in the time domain and the
subsequent calculation of the signal power.

As an example, consider the sequence

h[n] = aδ[n] + bδ[n − 2N + 1] + cδ[n − 2N + 2],

n = 0, 1, . . . , 2N − 1, (71)

whose cyclic convolution with x̂[n] is given by

y[n] = ax̂[n] + bx̂[(n + 1) mod 2N]+

cx̂[(n + 2) mod 2N], n = 0, 1, . . . , 2N − 1. (72)

If the monotonicity requirements are met, the inequality as-
sociated with (71) and (72) becomes

N−3∑
n=0

(ax[n] + bx[n + 1] + cx[n + 2])2

+ (ax[N − 2] + bx[N − 1] − cx[0])2

+ (ax[N − 1] − bx[0] − cx[1])2

≤
(
a2 + b2 + c2 + 2(a + c)b cos

(
π

N

)

+ 2ac cos

(
2π
N

) ) N−1∑
n=0

|x[n]|2. (73)

The simplest choice for the weights so that the conditions
in (69) are satisfied is furnished by the coefficients of the
powers of z−1 in the expansion of (1 + z−1)2, i.e.,

a = c = 1, b = 2. (74)

See Fig. 4 for a discrete plot of all the moduli |H[k]|2 for
k = 0, 1, . . . , 8, and N = 17 in the above case. A rich source
of weights for derivation of higher order inequalities is fur-
nished by the monotone maximally flat lowpass and high-
pass filters.

Another possible scheme for generalization to higher
order inequalities is to select the weights so that
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max
1≤k≤N

|H[k]| = |H[1]| (75)

for the generalization of (21), and

min
1≤k≤N

|H[k]| = |H[1]| (76)

for the generalization of (25). It is obvious that the analy-
sis results with respect to additive noise signal of unknown
characteristic do not hold for the weaker conditions above
and should be modified accordingly.

7. Conclusion

The main contributions of this paper are as follows. First,
two Wirtinger-type inequalities relating the power of a
finite-length signal to that of its circularly-convolved ver-
sion have been proposed. The inequalities are free from the
boundary conditions that restrict the applicability of the ex-
isting discrete Wirtinger inequalities and become equalities
when the signal is a pure sinusoid of fixed frequency but ar-
bitrary phase and amplitude. Another distinction of the pro-
posed inequalities is the freedom in the selection of the un-
derlying convolution weights. Specifically, unlike the exist-
ing discrete Wirtinger inequalities, which are formed using
simple differences, they are valid for arbitrary real-valued
weights.

Second, for signal processing applications, a simple ra-
tio for gauging the power of the equalizing sinusoid con-
tained in an observed signal has been proposed. It has
been shown that the ratio can provide a viable solution to
the problem of gauging the power of a target sinusoid of
frequency π

N . The application of the proposed ratio in the
evaluation of the power of the target sinusoid using N sam-
ples of the observed signal has been analyzed under addi-
tive noise of arbitrary statistical characteristic. The case of
additive white noise has been studied as well and the abil-
ity of the proposed ratio to gauge the power of the target
sinusoids in low SNR’s with a small amount of computa-
tion has been confirmed. Formulas for plotting performance
curves useful for finding the SNR range of the applicabil-
ity of the inequalities have been derived. To enlarge the
class of equalizing sinusoids to frequencies Mπ

N , a simple
permutation scheme, followed by sign modulation, has been
proposed. Tandem application of the proposed permutation
and modulation with the subsequent calculation of one of
the two proposed ratios offers a simple method to gauge the
power of a wide range of sinusoids buried in additive white
noise.

Finally, the generalization of the inequalities to higher
orders involving three terms of the signal as well as simpli-
fication of the proposed inequalities have been examined.

Compared to the simple but popular periodogram tech-
nique [6] for sinusoid estimation which is based on the
discrete Fourier transform, the proposed ratio has numer-
ous advantages. Unlike the DFT coefficients, there is no
need to update the weights when the length of the signal
changes. As a result, the method can be implemented adap-
tively by changing the value of |H[1]|2 which is the only

length-dependent factor in the inequality. Only real arith-
metic operations are needed in the calculation of the pro-
posed ratio. The performance of the inequalities can be
enhanced by introducing higher order filtering coefficients
whereas the DFT has a fixed resolution. This provides a
trade-off between accuracy and computational complexity.
The ratio can be calculated directly for any integer length,
whether it is a prime, composite, power of two, or any other
special integer, with no requirement for zero-padding which
is still a common practice in order to fit a given signal into
non-flexible FFT-based routines. While calculating the ra-
tio, we are performing a filtering operation that can have
noise reduction or signal enhancement effects. Accordingly,
the calculation of the ratio may be regarded as a minor extra
computational load if simultaneous signal filtering is also of
interest.
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