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Abstract

Many learning machines that have hierarchical structure or hidden variables are now being

used in information science, artificial intelligence, and bioinformatics. However, several learning

machines used in such fields are not regular but singular statistical models, hence their general-

ization performance is still left unknown. To overcome these problems, in the previous papers, we

proved new equations in statistical learning, by which we can estimate the Bayes generalization

loss from the Bayes training loss and the functional variance, on the condition that the true dis-

tribution is a singularity contained in a learning machine. In this paper, we prove that the same

equations hold even if a true distribution is not contained in a parametric model. Also we prove

that, the proposed equations in a regular case are asymptotically equivalent to the Takeuchi infor-

mation criterion. Therefore, the proposed equations are always applicable without any condition

on the unknown true distribution.

1 Introduction

Nowadays, a lot of learning machines are being used in information science, artificial

intelligence, and bioinformatics. However, several learning machines used in such fields,

for example, three-layer neural networks, hidden Markov models, normal mixtures, bi-

nomial mixtures, Boltzmann machines, and reduced rank regressions have hierarchical

structure or hidden variables, with the result that the mapping from the parameter to

the probability distribution is not one-to-one. In such learning machines, it was pointed

out that the maximum likelihood estimator is not subject to the normal distribution

[5, 4, 6, 2], and that the a posteriori distribution can not be approximated by any

gaussian distribution [11, 13, 14, 15]. Hence the conventional statistical methods for

model selection, hypothesis test, and hyperparameter optimization are not applicable

to such learning machines. In other words, we have not yet established the theoret-

ical foundation for learning machines which extract hidden structures from random

samples.

In statistical learning theory, we study the problem of learning and generalization

based on several assumptions. Let q(x) be a true probability density function and

p(x|w) be a learning machine, which is represented by a probability density function
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of x for a parameter w. In this paper, we examine the following two assumptions.

(1) The first is the parametrizability condition. A true distribution q(x) is said to be

parametrizable by a learning machine p(x|w), if there is a parameter w0 which satisfies

q(x) = p(x|w0). If otherwise, it is called nonparametrizable.

(2) The second is the regularity condition. A true distribution q(x) is said to be regular

for a learning machine p(x|w), if the parameter w0 that minimizes the log loss function

L(w) = −
∫

q(x) log p(x|w)dx (1)

is unique and if the Hessian matrix ∇2L(w0) is positive definite. If a true distribution

is not regular for a learning machine, then it is said to be singular.

In study of layered neural networks and normal mixtures, both conditions are impor-

tant. In fact, if a learning machine is redundant compared to a true distribution, then

the true distribution is parametrizable and singular. Or if a learning machine is too

simple to approximate a true distribution, then the true distribution is nonparametriz-

able and regular. In practical applications, we need a method to determine the optimal

learning machine, therefore, a general formula is desirable by which the generalization

loss can be estimated from the training loss without regard to such conditions.

In the previous papers [18, 19, 20, 21, 22], we studied a case when a true distribution

is parametrizable and singular, and proved new formulas which enable us to estimate

the generalization loss from the training loss and the functional variance. Since the

new formulas hold for an arbitrary set of a true distribution, a learning machine, and

an a priori distribution, they are called equations of states in statistical estimation.

However, it has not been clarified whether they hold or not in a nonparametrizable

case.

In this paper, we study the case when a true distribution is nonparametrizable and

regular, and prove that the same equations of states also hold. Moreover, we show that,

in a nonparametrizable and regular case, the equations of states are asymptotically

equivalent to the Takeuchi information criterion (TIC) for the maximum likelihood

method. Here TIC was derived for the model selection criterion in the case when the

true distribution is not contained in a statistical model [10]. The network information

criterion [7] was devised by generalizing it to an arbitrary loss function in the regular

case.

If a true distribution is singular for a learning machine, TIC is ill-defined, whereas

the equations of states are well-defined and equal to the average generalization losses.

Therefore, equations of states can be understood as the generalized version of TIC

from the maximum likelihood method in a regular case to Bayes method for regular

and singular cases.

This paper consists of six sections. In Section 2, we summarized the framework of
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Bayes learning and the results of previous papers. In Section 3, we show the main

results of this paper. In Section 4, some lemmas are prepared which are used in the

proofs of the main results. The proofs of lemmas are given in the Appendix. In Section

5, we prove the main theorems. In Section 5 and 6, we discuss and conclude this paper.

2 Background

In this section, we summarize the background of the paper.

2.1 Bayes learning

Firstly we introduce the framework of Bayes and Gibbs estimations, which is well

known in statistics and learning theory.

Let N be a natural number and RN be the N -dimensional Euclidean space. Assume

that an information source is given by a probability density function q(x) on RN

and that random samples X1, X2, ..., Xn are independently subject to the probability

distribution q(x)dx. Sometimes X1, X2, .., Xn are said to be training samples and the

information source q(x) is called a true probability density function. In this paper we

use notations for a given function g(x),

EX [g(X)] =
∫

g(x)q(x)dx,

E
(n)
j [g(Xj)] =

1

n

n
∑

j=1

g(Xj).

Note that the expectation EX [g(X)] is given by the integration by the true distribution,

but that the empirical expectation E
(n)
j [g(Xj)] can be calculated using random samples.

We study a learning machine p(x|w) of x ∈ RN for a given parameter w ∈ Rd.

Let ϕ(w) be an a priori probability density function on Rd. The expectation operator

Ew[ ] by the a posteriori probability distribution with the inverse temperature β > 0

for a given function g(w) is defined by

Ew[g(w)] =
1

Z(β)

∫

g(w)ϕ(w)
n
∏

i=1

p(Xi|w)β dw,

where Z(β) is the normalizing constant. The Bayes generalization loss Bg, the Bayes

training loss Bt, the Gibbs generalization loss Gg, and the Gibbs training loss Gt are

respectively defined by

Bg = −EX [ logEw[p(X|w)] ],
Bt = −E

(n)
j [ logEw[p(Xj |w)] ],

Gg = −EX [ Ew[log p(X|w)] ],
Gt = −E

(n)
j [ Ew[log p(Xj |w)] ].
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The functional variance V is defined by

V = n× E
(n)
j {Ew[ (log p(Xj|w))2 ]− Ew[log p(Xj|w)]2}.

The concept of the functional variance was firstly proposed in the papers [18, 19, 20, 21].

In this paper, we show that the functional variance plays an important role in learning

theory. Remark that Bg, Bt, Gg, Gt, and V are random variables because Ew[ ]

depends on random samples. Let E[ ] denote the expectation value overall sets of

training samples. Then E[Bg] and E[Bt] are respectively called the average Bayes

generalization and training error, and E[Gg] and E[Gt] the average Gibbs ones.

In theoretical analysis, we assume some conditions on a true distribution and a

learning machine. If there exists a parameter w0 such that q(x) = p(x|w0), then the

true distribution is said to be parametrizable. If otherwise, nonparametrizable. In

both cases, we define w0 as the parameter that minimizes the log loss function L(w)

in eq.(1). Note that w0 is equal to the parameter that minimizes the Kullback-Leibler

distance from the true distribution to the parametric model. If w0 is unique and if the

Hessian matrix
∂2

∂wj∂wk
L(w0)

is positive definite, then the true distribution is said to be regular for a learning ma-

chine.

Remark. Several learning machines such as a layered neural network or a normal

mixture have natural nonidentifiability by the symmetry of a parameter. For example,

in a normal mixture,

p(x|a, b, c) = a√
2π

e−|x−b|2/2 +
1− a√
2π

e−|x−c|2/2,

two probability distributions p(x|a, b, c) and p(1 − a, c, b) give the same probability

distribution, hence the parameter w0 that minimizes L(w) is not unique for any true

distribution. In a parametrizable and singular case, such nonidentifiability strongly

affects learning [11, 13]. However, in a nonparametrizable and regular case, the a

posteriori distribution in the neighborhood of each optimal parameter has the same

form, resulting that we can assume w0 is unique without loss of generality.

2.2 Notations

Secondly, we explain some notations.

For given scalar functions f(w) and g(w), the vector ∇f(w) and two matrices
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∇f(w)∇g(w) and ∇2f(w) are respectively defined by

(∇f(w))j =
∂f(w)

∂wj
,

(∇f(w)∇g(w))jk =
∂f(w)

∂wj

∂g(w)

∂wk
,

(∇2f(w))jk =
∂2f(w)

∂wj∂wk
.

Let n be the number of training samples. For a given constant α, we use the following

notations.

(1) Yn = Op(n
α) shows that a random variable Yn satisfies |Yn| ≤ Cnα with some

random variable C ≥ 0.

(2) Yn = op(n
α) shows that a random variable Yn satisfies the convergence in probability

|Yn|/nα → 0.

(3) yn = O(nα) shows that a sequence yn satisfies |yn| ≤ Cnα with some constant

C ≥ 0.

(4) yn = o(nα) shows that a sequence yn satisfies the convergence |yn|/nα → 0.

Remark. For a sequence of random variables, it needs mathematically technical pro-

cedure to prove convergence in probability or convergence in law. If we adopt the

completely mathematical procedure in the proof, a lot of readers in information sci-

ence may not find the essential points in the theorems. For example, see [18, 21, 22].

Therefore, in this paper, we adopt the natural and appropriate level of mathematical

rigorousness, from the viewpoint of mathematical sciences. The notations Op and op

are very useful and understandable for such a purpose.

2.3 Parametrizable and singular case

Thirdly, we introduce the results of the previous researches [18, 19, 20, 21]. We do not

prove these results in this paper.

Assume that a true distribution is parametrizable. Even if the true distribution is

singular for a learning machine,

E[Bg] = S0 +
λ0 − ν0
nβ

+
ν0
n

+ o(
1

n
), (2)

E[Bt] = S0 +
λ0 − ν0
nβ

− ν0
n

+ o(
1

n
), (3)

E[Gg] = S0 +
λ0

nβ
+

ν0
n

+ o(
1

n
), (4)

E[Gt] = S0 +
λ0

nβ
− ν0

n
+ o(

1

n
), (5)

E[V ] =
2ν0
β

+ o(1), (6)
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where S0 is the entropy of the true probability density function q(x),

S0 = −
∫

q(x) log q(x)dx.

The constants λ0 and ν0 are respectively the generalized log canonical threshold and the

singular fluctuation, which are birational invariants. The concrete values of them can be

derived by using algebraic geometrical transformation called resolution of singularities.

By elliminating λ0 and ν0 from eq.(2)-eq.(6),

E[Bg] = E[Bt] + (β/n)E[V ] + o(
1

n
), (7)

E[Gg] = E[Gt] + (β/n)E[V ] + o(
1

n
), (8)

hold, which are called equations of states in learning, because these relations hold for

an arbitrary set of a true distribution, a learning machine, and an a priori distribution.

By this relation, we can estimate the generalization loss using the training loss and

the functional variance. However, it has been left unknown whether the equations of

states, eq.(7) and eq.(8), hold or not in nonparametrizable cases.

3 Main Results

In this section, we describe the main results of this paper. The proofs of theorems are

given in Section 5.

3.1 Equations of states

In this paper, study the case when a true distribution is nonparametrizable and regular.

Three constants S, λ, and ν are respectively defined by the following equations. Let

w0 be the unique parameter that minimizes L(w). Three constants are defined by

S = L(w0), (9)

λ =
d

2
, (10)

ν =
1

2
tr(IJ−1), (11)

where d is the dimension of the parameter, and I and J are d× d matrices defined by

I =
∫

∇ log p(x|w0)∇ log p(x|w0)q(x)dx, (12)

J = −
∫

∇2 log p(x|w0)q(x)dx. (13)
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Theorem 1 Assume that a true distribution q(x) is nonparametrizable and regular for

a learning machine p(x|w). Then

E[Bg] = S +
λ− ν

nβ
+

ν

n
+ o(

1

n
), (14)

E[Bt] = S +
λ− ν

nβ
− ν

n
+ o(

1

n
), (15)

E[Gg] = S +
λ

nβ
+

ν

n
+ o(

1

n
), (16)

E[Gt] = S +
λ

nβ
− ν

n
+ o(

1

n
), (17)

E[V ] =
2ν

β
+ o(1). (18)

Therefore, equations of states hold,

E[Bg] = E[Bt] + (β/n)E[V ] + o(
1

n
), (19)

E[Gg] = E[Gt] + (β/n)E[V ] + o(
1

n
). (20)

Proof of this theorem is given in Section 5. Note that constants are different between

the parametrizable and nonparametrizable cases, that is to say, S 6= S0, λ 6= λ0, and

ν 6= ν0. However, the same equations of states still hold. In fact, eq.(19) and eq.(20)

are completely equal to as eq.(7) and eq.(8), respectively.

By combining the results of the previous papers with the new result in Theorem

1, it is ensured that the equations of states are applicable to arbitrary set of a true

distribution, a learning machine, and an a priori distribution, without regard to the

condition on the unknown true distribution.

Remark. If a true distribution is parametrizable and regular, then I = J , hence

λ = ν = d/2. If otherwise, I 6= J in general. Note that J is positive definite by the

assumption, but that I may not be positive definite in general.

3.2 Comparison TIC with equations of states

If the maximum likelihood method is employed, or equivalently if β = ∞, then Bg

and Bt are respectively equal to the generalization and training losses of the maximum

likelihood method. It was proved in [10] that

E[Bg] = E[Bt] +
TIC

n
+ o(

1

n
) (β = ∞), (21)

where

TIC = tr(I(w0)J(w0)
−1).

On the other hand, the equations of states, eq.(19) in Theorem 1 show that,

E[Bg] = E[Bt] +
E[βV ]

n
+ o(

1

n
). (0 < β < ∞), (22)
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Therefore, in this subsection, let us compare βV with TIC in the nonparametrizable

and regular case.

Let Ln(w) be the empirical log loss function

Ln(w) = −E
(n)
j [log p(Xj|w)]−

1

nβ
logϕ(w).

Three matrices are defined by

In(w) = E
(n)
j [∇ log p(Xj|w)∇ log p(Xj|w)], (23)

Jn(w) = −E
(n)
j [∇2 log p(Xj|w)], (24)

Kn(w) = ∇2Ln(w). (25)

In practical applications, instead of TIC, the empirical TIC is employed,

TICn = tr(In(wMLE)Jn(wMLE)
−1),

where wMLE is the maximum likelihood estimator. Then by using the convergence in

probability wMLE → w0,

E[TICn] = TIC + o(1).

On the other hand, we have shown in Theorem 1,

E[βV ] = TIC + o(1).

Hence let us compare βV with TICn as random variables.

Theorem 2 Assume that q(x) is nonparametrizable and regular for a learning machine

p(x|w). Then

TICn = TIC +Op(
1√
n
),

βV = TIC +Op(
1√
n
),

βV = TICn +Op(
1

n
).

Proof of this theorem is given in Section 5. Theorem 2 shows that the difference

between βV and TICn is in the smaller order than the variance of them. Therefore,

if a true distribution is nonparametrizable and regular for a learning machine, then

the equations of states are asymptotically equivalent to the empirical TIC. If a true

distribution is singular or if the number of training samples are not so large, then the

empirical TIC and the equations of states are not equivalent, in general. Hence the

equations of states are applicable more widely than TIC. Experimental analysis for the

equations of states was reported in [18, 19, 20]. The main purpose of this paper is to

prove Theorems 1 and 2. Its application to practical problems is a topic for the future

study.
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4 Preparation of Proof

In this section, we summarize the basic properties which are used in the proofs of main

theorems.

4.1 Maximum a posteriori estimator

Firstly, we study the asymptotic behavior of the maximum a posteriori estimator. By

the definition, for each w,

Kn(w) = Jn(w) +O(
1

n
).

By the central limit theorem, for each w,

In(w) = I(w) +Op(
1√
n
), (26)

Jn(w) = J(w) +Op(
1√
n
), (27)

Kn(w) = J(w) +Op(
1√
n
). (28)

The parameter that minimizes Ln(w) is denoted by ŵ, which is called the maximum a

posteriori estimator (MAP). If β = 1, then it is equal to the conventional maximum a

posteriori estimator (MAP). If β = ∞, or equivalently 1/β = 0, then it is the maximum

likelihood estimator (MLE), which is denoted by wMLE.

Let us summarize the basic properties of the maximum a posteriori estimator. Be-

caue w0 and ŵ minimizes L(w) and Ln(w) respectively,

∇L(w0) = 0, (29)

∇Ln(ŵ) = 0. (30)

By the assumption, w0 is unique and the matrix J is positive definite, the consistency

of ŵ holds under the natural condition, in other words, the convergences in probability

ŵ → w0 (n → ∞) hold for 0 < β ≤ ∞. In this paper, we assume such consistency

condition.

From eq.(30), there exists w∗
β which satisfies

∇Ln(w0) +∇2Ln(w
∗
β)(ŵ − w0) = 0 (31)

and

|w∗
β − w0| ≤ |ŵ − w0|,

where | · | denotes the norm of Rd. By using the definition Kn(w
∗
β) = ∇2Ln(w

∗
β),

ŵ − w0 = −Kn(w
∗
β)

−1∇Ln(w0). (32)
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By using the law of large numbers and the central limit theorem, Kn(w
∗
β) converges

to J in probability and
√
n ∇Ln(w0) converges in law to the normal distribution with

average 0 and covariance matrix I. Therefore

√
n (ŵ − w0)

converges in law to the normal distribution with average 0 and covariance matrix

J−1IJ−1, resulting that

E[(ŵ − w0)(ŵ − w0)
T ] =

J−1IJ−1

n
+ o(

1

n
), (33)

for 0 < β ≤ ∞, where ( )T denotes the transposed vector. In other words,

ŵ = w0 +Op(
1√
n
). (34)

Hence,

Kn(w
∗
β) = J(w0) +Op(

1√
n
).

By using eq.(32),

ŵ − wMLE =
(

Kn(w
∗
∞)−1 −Kn(w

∗
β)

−1
)

∇Ln(w0).

Since ∇Ln(w0) = Op(1/
√
n) and J(w0) is positive definite, we have

wMLE = ŵ +Op(
1

n
). (35)

4.2 Expectations by a posteriori distribution

Secondly, the behavior of the a posteriori distribution is described as follows.

For a given function g(w), the average by the a posteriori distribution is defined by

Ew[g(w)] =

∫

g(w) exp(−nβLn(w))dw
∫

exp(−nβLn(w))dw
.

Then we can prove the following relations.

Lemma 1

Ew[(w − ŵ)] = Op(
1

n
), (36)

Ew[(w − ŵ)(w − ŵ)T ] =
Kn(ŵ)

−1

nβ
+Op(

1

n2
), (37)

Ew[(w − ŵ)i(w − ŵ)j(w − ŵ)k] = Op(
1

n2
), (38)

Ew[|w − ŵ|m] = Op(
1

nm/2
) (m ≥ 1). (39)
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Moreover,

EEw[(w − w0)(w − w0)
T ] =

J−1IJ−1

n
+

J−1

nβ
+ o(

1

n
). (40)

EEw[|w − w0|3] = o(
1

n
). (41)

For the proof of this lemma, see Appendix.

Let us introduce a log density ratio function f(x, w) by

f(x, w) = log
p(x|w0)

p(x|w) .

Then f(x, w0) ≡ 0 and

∇f(x, w) = −∇ log p(x|w),
∇2f(x, w) = −∇2 log p(x|w).

In the proof of Theorems 1, we need the following six expectation values,

D1 = EEX [Ew[f(X,w)]],

D2 = (1/2)EEX[Ew[ f(X,w)2 ]],

D3 = (1/2)EEX[ Ew[f(X,w)]2 ],

D4 = EE
(n)
j [Ew[f(Xj , w)]],

D5 = (1/2)EE
(n)
j [Ew[ f(Xj, w)

2 ]],

D6 = (1/2)EE
(n)
j [ Ew[f(Xj, w)]

2 ].

The constant µ is defined by

µ =
1

2
tr(IJ−1IJ−1). (42)

Then we can prove the following relations.

Lemma 2 Let ν and µ be constants which are respectively defined by eq.(11) and

eq.(42). Then

D1 =
d

2nβ
+

ν

n
+ o(

1

n
),

D2 =
ν

nβ
+

µ

n
+ o(

1

n
),

D3 =
µ

n
+ o(

1

n
),

D4 =
d

2nβ
− ν

n
+ o(

1

n
),

D5 =
ν

nβ
+

µ

n
+ o(

1

n
),

D6 =
µ

n
+ o(

1

n
).

For the proof of this lemma, see Appendix.
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5 Proofs

In this section, we prove theorems.

5.1 Proof of Theorem 1

Firstly, by using the definitions

S = L(w0) = −EX [log p(X|w0)],

p(x|w) = p(x|w0) exp(−f(x, w)),

the Bayes generalization loss is given by

E[Bg] = −EEX logEw[p(X|w)]
= S − EEX [logEw[exp(−f(X,w))]]

= S − EEX [logEw(1− f(X,w) +
f(X,w)2

2
)] + o(

1

n
)

= S + EEXEw[f(X,w)]− 1

2
EEXEw[f(X,w)2]

+
1

2
EEX [ Ew[f(X,w)]2 ] + o(

1

n
)

= S +D1 −D2 +D3 + o(
1

n
)

= S +
d

2nβ
− ν

nβ
+

ν

n
+ o(

1

n
).

Secondly, the Bayes training loss is

E[Bt] = −EE
(n)
j logEw[p(Xj |w)]

= S − EE
(n)
j [logEw[exp(−f(Xj , w))]]

= S − EE
(n)
j [logEw(1− f(Xj, w) +

f(Xj, w)
2

2
)] + o(

1

n
)

= S + EE
(n)
j Ew[f(Xj, w)]−

1

2
EE

(n)
j Ew[f(Xj , w)

2]

+
1

2
EE

(n)
j [ Ew[f(Xj, w)]

2 ] + o(
1

n
)

= S +D4 −D5 +D6 + o(
1

n
)

= S +
d

2nβ
− ν

nβ
− ν

n
+ o(

1

n
).

Thirdly, the Gibbs generalization loss is

E[Gg] = −EEXEw[log p(X|w)]
= S + EEXEw[f(X,w)]

= S +D1

= S +
d

2nβ
+

ν

n
+ o(

1

n
).
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Forthly, the Gibbs training loss is

E[Gt] = −EE
(n)
X Ew[log p(X|w)]

= S + EE
(n)
X Ew[f(X,w)]

= S +D4

= S +
d

2nβ
− ν

n
+ o(

1

n
).

Lastly, the functional variance is given by

E[V ] = 2n(D5 −D6)

= 2n(D2 −D3) + o(1)

=
2ν

β
+ o(1).

Therefore, we obtained Theorem 1.

5.2 Proof of Theorem 2

Let Vw[f(X,w)] be the variance of f(X,w) in the a posteriori distribution,

Vw[f(X,w)] ≡ Ew[f(X,w)2]− Ew[f(X,w)]2.

Then

Vw[f(X,w)] = Vw[f(X,w)− f(X, ŵ)]

holds because f(X, ŵ) is a constant function of w. By the Taylor expansion at w = ŵ,

f(X,w)− f(X, ŵ) = ∇f(X, ŵ) · (w − ŵ)

+
1

2
(w − ŵ) · ∇2f(X, ŵ)(w − ŵ) +O(|w − ŵ|3).

Using this expansion, and eq.(36), eq.(37), eq.(38), and eq.(39),

Vw[f(X,w)] = Vw[(∇f(X, ŵ)) · (w − ŵ)] +Op(
1

n2
).

Hence

βV ≡ nβE
(n)
j [Vw[f(Xj, w)]]

= nβE
(n)
j {Ew[(∇f(Xj, ŵ) · (w − ŵ))2]

−Ew[∇f(Xj, ŵ) · (w − ŵ)]2}+Op(
1

n
).

The second term is Op(1/n) by eq.(36). Therefore, by applying eq.(37) to the first

term,

βV = nβ tr
(

E
(n)
j [(∇f(Xj, ŵ))(∇f(Xj, ŵ))

T ]

×Ew[(w − ŵ)(w − ŵ)T ]
)

+Op(
1

n
)

= tr(In(ŵ)K
−1
n (ŵ)) +Op(

1

n
).
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Therefore, by using eq.(35), proof of Theorem 2 is completed.

6 Discussion

Let us discuss the results of this paper from the three different points of view.

Firstly, we discuss the method how to numerically calculate the equations of states.

The widely applicable information criterion (WAIC) [18, 22] is defined by

WAIC = −
n
∑

i=1

logEw[p(Xi|w)]

+β
n
∑

i=1

{

Ew[(log p(Xi|w))2]−Ew[log p(Xi|w)]2
}

.

Then by Theorem 1,

E[WAIC] = E[nBg] + o(1)

holds. Hence by minimization of WAIC, we can optimize the model and the hyper-

parameter for the minimum Bayes generalization loss. In Bayes estimation, a set of

parameters {wk} is prepared so that it approximates the a posteriori distribution.

Sometimes it is done by the Markov chain Monte Carlo method, and we can approxi-

mate the average by the a posteriori distribution by

Ew[f(w)] ∼=
1

K

K
∑

k=1

f(wk).

Therefore the WAIC can numerically calculate by such a set {wk}.
Secondly, we study the fluctuation of the Bayes generalization error. In Theorem 1,

we proved that, as the number of training samples tends to infinity, two expectation

values converge to the same value,

E[n(Bg − Bt)] → tr(IJ−1),

E[βV ] → tr(IJ−1).

Moreover, in Theorem 2, we proved the convergence in probability,

βV → tr(IJ−1).

On the other hand, by the same way as Theorem 1, we can prove

n(Bg − Bt) = n× tr(I(ŵ − w0)(ŵ − w0)
T ) + op(1).

Since
√
n(ŵ − w0) converges in law to the gaussian random variable whose average

is zero and variance is J−1IJ−1, the random variable n(Bg − Bt) converges to not a

constant in probability but to a random variable in law. In other words, the relation

between expectation values

E[Bg] = E[Bt] +
βE[V ]

n
+ o(

1

n
) (43)

14



holds, whereas they are not equal to each other as random variables,

Bg 6= Bt +
βV

n
+ op(

1

n
). (44)

Note that, even if the true distribution is paramertrizable and regular, the generaliza-

tion and training losses have same properties, therefore both AIC and TIC have same

properties as eq.(43) and eq.(44).

Lastly, let us compare the generalization loss by the Bayes estimation with that by

the maximum likelihood estimation. In a regular and parametrizable case, they are

equal to each other asymptotically. In a parametrizable and singular case, the Bayes

generalization error is smaller than that of the maximum likelihood method. Let us

compare them in a nonparametrizable and regular case.

E[Bg] = S +
tr(IJ−1)

2n
+

d− tr(IJ−1)

2nβ
+ o(

1

n
).

When β = ∞, this is the generalization error of the maximum likelihood method. If

d > tr(IJ−1), then E[Bg] is a decreasing function of 1/β. Or if d < tr(IJ−1), then

E[Bg] is an increasing function of 1/β. If I < J , then tr(IJ−1) < d. By the definition

of I and J ,

I =
∫

∇p(x|w0)∇p(x|w0)
q(x)

p(x|w0)2
dx

and

J = I −Q,

where

Q =
∫

(∇2p(x|w0))
q(x)

p(x|w0)
dx.

If Q < 0, then tr(IJ−1) < d, resulting that the generalization loss of Bayes estimation

is smaller than that by the maximum likelihood method.

Example. For w ∈ R,

p(x|w) = 1√
2π

exp(−(x− w)2

2
),

Then

L(w) =
1

2

∫

(x− w)2q(x)dx+
1

2
log(2π).

Hence w0 = EX [X ] and

L(w0) = V (X) +
1

2
log(2π),

where V (X) = EX [X
2]− EX [X ]2. The value Q is

Q = V (X)− 1.
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If V (X) > 1, then the generalization error is a decreasing function of 1/β, in other

words, the Bayes estimation makes the generalization loss is smaller than that by the

maximum likelihood method. Hence, in a nonparametrizable case, it depends on the

case which estimation makes the generalization loss smaller.

7 Conclusion

In this paper, we theoretically proved that equations of states in statistical estimation

hold even if a true distribution is nonparametrizable and regular for a learning machine.

In the previous paper, we proved that the equations of states hold even if a true

distribution is parametrizable and singular. By combining these results, the equations

of states are applicable without regard to the condition of the true distribution and

the learning machine. Moreover, the equations of states contains AIC and TIC in the

special cases.
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8 Appendix

8.1 Proof of Lemma 1

By using eq.(30), ∇Ln(ŵ) = 0, in a neighborhood of ŵ,

Ln(w) = Ln(ŵ) +
1

2
(w − ŵ) ·Kn(ŵ)(w − ŵ) + r(w),

where r(w) is given by

r(w) =
1

6

d
∑

i,j,k=1

(∇3Ln(ŵ))ijk(w − ŵ)i(w − ŵ)j(w − ŵ)k +O(|w − ŵ|4).

Hence, for a given function g(w), the average by the a posteriori distribution is given

by

Ew[g(w)] =

∫

g(w) exp
(

−nβ
2
(w − ŵ) ·Kn(ŵ)(w − ŵ)− nβr(w)

)

dw

∫

exp
(

−nβ
2
(w − ŵ) ·Kn(ŵ)(w − ŵ)− nβr(w)

)

dw
.

The main region of the integration is a neighborhood of ŵ, |w − ŵ| < ǫ, hence by

putting w′ =
√
n(w − ŵ),

Ew[g(w)] =

∫

g(ŵ + w′√
n
) exp(−β

2
w′ ·Kn(ŵ)w

′ − βδ(w′)√
n

+Op(
1
n
))dw′

∫

exp(−β
2
w′ ·Kn(ŵ)w′ − βδ(w′)√

n
+Op(

1
n
))dw′

,
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where δ(w′) is the third-order polynomial,

δ(w′) =
1

6

d
∑

i,j,k=1

(∇3Ln(ŵ))ijkw
′
iw

′
jw

′
k.

By using

exp
(

−βδ(w′)√
n

+Op(
1

n
)
)

= 1− βδ(w′)√
n

+Op(
1

n
),

it follows that

Ew[g(w)] =

∫

g(ŵ + w′√
n
) (1− βδ(w′)√

n
) exp(−β

2
w′ ·Kn(ŵ)w

′)dw′

∫

exp(−β
2
w′ ·Kn(ŵ)w′)dw′ +Op(

1

n
).

Hence by putting g(w) = w− ŵ, we obtain eq.(36) and by putting g(w) = (w− ŵ)(w−
ŵ)T , eq.(37). By the same way, eq.(38) and eq.(39) are proved. Let us prove eq.(40).

By using eq.(37),

Ew[(w − w0)(w − w0)
T ]

= Ew[(ŵ − w0 +
w′
√
n
)(ŵ − w0 +

w′
√
n
)T ]

= (ŵ − w0)(ŵ − w0)
T +

1

n
Ew[w

′w′T ] +Op(
1

n3/2
)

= (ŵ − w0)(ŵ − w0)
T +

Kn(ŵ)
−1

nβ
+Op(

1

n3/2
). (45)

Then by applying eq.(33), eq.(40) is obtained. Lastly, in general,

|w − w0|3 ≤ 3(|w − ŵ|3 + |ŵ − w0|3).

Then, by eq.(34) and eq.(39), eq.(41) is derived. Therefore we have obtained Lemma

1.

8.2 Proof of Lemma 2

By the Taylor expansion of f(X,w) at w0,

f(X,w) = ∇f(X,w0) · (w − w0)

+
1

2
(w − w0) · ∇2f(X|w0)(w − w0)

+f3(X,w), (46)

where f3(X,w) satisfies

|f3(X,w)| ≤ C(X,w)|w − w0|3

in a neighborhood of w0 with a function C(X,w) ≥ 0. Let us estimate D1, ..., D6.

Firstly, by using eq.(29) and eq.(41),

D1 =
1

2
EEwEX [(w − w0) · ∇2f(X,w0)(w − w0)] + o(

1

n
)

=
1

2
EEw[(w − w0) · J(w − w0)] + o(

1

n
).

17



Then by using the identity

(∀u, v ∈ Rd, A ∈ Rd×d) u · Av = tr(AvuT ),

and eq.(40),

D1 =
1

2
EEw[tr((J(w − w0))(w − w0)

T )] + o(
1

n
)

=
d

2nβ
+

tr(IJ−1)

2n
+ o(

1

n
).

Secondly, by using the identity

(∀u, v ∈ Rd) (u · v)2 = tr((uuT )(vvT )),

the definition of I, and eq.(40),

D2 = (1/2)EEw[ EX [(∇f(X,w0) · (w − w0))
2] ] + o(

1

n
)

= (1/2)EEw[tr(I(w − w0)(w − w0)
T )] + o(

1

n
)

=
tr(IJ−1)

2nβ
+

tr(IJ−1IJ−1)

2n
+ o(

1

n
).

Thirdly, by the definition of I, eq.(36), and eq.(33),

D3 = (1/2)EEX [Ew[∇f(X,w0) · (w − w0)]
2] + o(

1

n
)

= (1/2)EEX [(∇f(X,w0) · (ŵ − w0))
2] + o(

1

n
)

= (1/2)E[tr(I(ŵ − w0)(ŵ − w0)
T )] + o(

1

n
)

=
tr(IJ−1IJ−1)

2n
+ o(

1

n
).

Fourthly, by the Taylor expansion eq.(46)

D4 = EEw[E
(n)
j [∇f(Xj, w0) · (w − w0)]]

+
1

2
EEw[E

(n)
j [(w − w0) · ∇2f(Xj, w0)(w − w0)]] + o(

1

n
)

= E[ E
(n)
j [∇f(Xj, w0)] · Ew[w − w0] ]

+
1

2
EEw[(w − w0) · Jn(w0)(w − w0)]] + o(

1

n
).

Then by using E[Jn(w0)] = J , the second term is equal to D1. To the first term, we

apply eq.(36) and

E
(n)
j [∇f(Xj, w0)] = ∇Ln(w0) +Op(

1

n
),

we obtain

D4 = E[(∇Ln(w0)) · (ŵ − w0)] +D1 + o(
1

n
).
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Then applying eq.(31), Kn(w0) → J , and w∗
β → w0,

D4 = −E[(Kn(w
∗
β)(ŵ − w0)) · (ŵ − w0)] +D1 + o(

1

n
)

=
d

2nβ
− tr(IJ−1)

2n
+ o(

1

n
).

And lastly, by the definitions,

D5 = (1/2)EEw[ E
n
j [(∇f(Xj, w0) · (w − w0))

2] ] + o(
1

n
),

D6 = (1/2)EEn
j [Ew[∇f(Xj, w0) · (w − w0)]

2] + o(
1

n
).

By using the convergences in probability, In(w0) → I and Jn(w0) → J , it follows that

D5 = D2 + o(
1

n
),

D6 = D3 + o(
1

n
),

which completes Lemma 2.
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