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Abstract. In this paper, we give a security proof for Abreast-DM in terms of colli-
sion resistance and preimage resistance. As old as Tandem-DM, the compression function
Abreast-DM is one of the most well-known constructions for double block length compres-
sion functions. The bounds on the number of queries for collision resistance and preimage
resistance are given by O (2n). Based on a novel technique using query-response cycles, our
security proof is simpler than those for MDC-2 and Tandem-DM. We also present a wide
class of Abreast-DM variants that enjoy a birthday-type security guarantee with a simple
proof.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a bit string of
fixed length. The most common way of hashing variable length messages is to iterate a fixed-size
compression function according to the Merkle-Damg̊ard paradigm. The underlying compression
function can either be constructed from scratch, or be built upon off-the-shelf cryptographic prim-
itives such as blockciphers. Recently, the blockcipher-based construction is attracting renewed in-
terest, as many dedicated hash functions, including those most common in practical applications,
exhibit serious security weaknesses [1, 6, 14, 15, 20, 24–26]. Conveniently choosing an extensively
studied blockcipher in the blockcipher-based construction, one can easily transfer the trust in the
existing algorithm to the hash function. This approach is particularly useful in highly constrained
environments such as RFID systems, since a single implementation of a blockcipher can be used
for both a blockcipher and a hash function. Compared to blockciphers, the most dedicated hash
functions require significant amounts of state and the operations in their designs are not hardware
friendly [3].

Compression functions based on blockciphers have been widely studied [2, 4, 8–11, 13, 16–19,
21–23]. The most common approach is to construct a 2n-to-n bit compression function using a
single call to an n-bit blockcipher. However, such a function, called a single block length (SBL)
compression function, might be vulnerable to collision attacks due to its short output length. For
example, one could successfully mount a birthday attack on a compression function based on AES-
128 using approximately 264 queries. This observation motivated substantial research on double
block length (DBL) compression functions, where the output length is twice the block length of
the underlying blockciphers.

Unfortunately, it turned out that a wide class of DBL compression functions of rate 1 are
not optimally secure in terms of collision resistance and preimage resistance [8, 9, 12]. The most
classical DBL compression functions of rate less than 1 include MDC-2, MDC-4, Tandem-DM
and Abreast-DM [5, 13]. In 2007, 20 years after its original proposal, Steinberger first proved the
collision resistance of MDC-2 in the ideal cipher model [23]. The author showed that an adversary
asking less than 23n/5 queries has only a negligible chance of finding a collision. Motivated by this
work, Fleischmann et. al. proved the security of Tandem-DM [7]. Similar to MDC-2, the security
of Tandem-DM is estimated in terms of a parameter, say, α. Optimizing the parameter, they
proved the collision resistance of Tandem-DM up to the birthday bound. Currently, Tandem-
DM and the Hirose’s scheme [11] are the only rate 1/2 DBL compression functions that are known
to have a birthday-type security guarantee.



Results We give a security proof for Abreast-DM in terms of collision resistance and preimage
resistance. As old as Tandem-DM, the compression function Abreast-DM is known to be more
advantageous than Tandem-DM in that two encryptions involved can be computed in parallel.
The bounds on the number of queries for collision resistance and preimage resistance are given
by O (2n). Our security proof using certain cyclic structures, called query-response cycles, is much
simpler than those for MDC-2 and Tandem-DM. The query-response cycle technique also allows
us to present a wide class of Abreast-DM variants that enjoy a birthday-type security guarantee
with a simple proof. It is shown that this class includes the Hirose’s scheme [11] as a special case.
We note, however, this technique does not apply directly to MDC-2 and Tandem-DM, since two
encryptions in these compression functions are computed in serial and hence it is infeasible to
define query-response cycles. The underlying blockcipher of Abreast-DM use 2n-bit keys, while
MDC-2 accepts n-bit keys. For this reason, it seems to be natural that the security proof of MDC-2
is more challenging.

2 Preliminaries

General Notations For a positive integer n, we let In = {0, 1}n denote the set of all bitstrings
of length n. For two bitstrings A and B, A|B and A denote the concatenation of A and B, and
the bitwise complement of A, respectively. For a set U , we write u

$← U to denote uniform random
sampling from the set U and assignment to u.

Ideal Cipher Model For positive integers n and k, let

BC(n, k) = {E : In × Ik → In : ∀K ∈ Ik, E(·,K) is a permutation on In}.

In the ideal cipher model, an (n, k)-blockcipher E is chosen from BC(n, k) uniformly at random.
It allows for two types of oracle queries E(X, K) and E−1(Y,K) for X,Y ∈ In and K ∈ Ik. Here,
X, Y and K are called a plaintext, a ciphertext and a key, respectively. The response to an inverse
query E−1(Y, K) is X ∈ In such that E(X, K) = Y .

The Abreast-DM Compression Function In the ideal cipher model, the Abreast-DM com-
pression function

FABR : I3
n −→ I2

n

has oracle access to an ideal cipher E ∈ BC(n, 2n), and computes FABR(A1, A2, A3), (A1, A2, A3) ∈
I3
n, by the algorithm described in Figure 1.

Algorithm F ABR(A1, A2, A3)

(X1, K1) ← (A1, A2|A3)
Y1 ← E(X1, K1)
(X2, K2) ← (A2, A3|A1)
Y2 ← E(X2, K2)
B1 ← A1 ⊕ Y1

B2 ← A2 ⊕ Y2

return (B1, B2)
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Fig. 1. The Abreast-DM compression function



Collision Resistance and Preimage Resistance Let F := FABR be the Abreast-DM com-
pression function based on an ideal blockcipher E ∈ BC(n, 2n), and let A be an information-
theoretic adversary with oracle access to E and E−1. Then we execute the experiment Expcoll

A
described in Figure 2(a), in order to quantify the collision resistance of F . The experiment records
the queries that the adversary A makes into a query history Q. A pair (X, K, Y ) is in the query
history if A asks for E(X, K) and gets back Y , or it asks for E−1(Y, K) and gets back X. For
A = (A1, A2, A3) ∈ I3

n and B = (B1, B2) ∈ I2
n, we write

A `Q B,

if there exist query-response pairs (X1,K1, Y1), (X2,K2, Y2) ∈ Q, satisfying the following equa-
tions.

(X1,K1) = (A1, A2|A3), (1)

(X2,K2) = (A2, A3|A1), (2)
B1 = A1 ⊕ Y1, (3)
B2 = A2 ⊕ Y2. (4)

Informally, A `Q B means that the query history Q determines the evaluation F : A 7→ B. Now
the collision-finding advantage of A is defined to be

Advcoll
F (A) = Pr

[
Expcoll

A = 1
]
. (5)

The probability is taken over the random blockcipher E and A’s coins (if any). For q > 0, we
define Advcoll

F (q) as the maximum of Advcoll
F (A) over all adversaries A making at most q queries.

The preimage resistance of F is quantified similarly using the experiment Exppre
A described in

Figure 2(b). The adversary A chooses a single target image B ∈ I2
n before it begins making queries

to E±1. The preimage-finding advantage of A is defined to be

Advpre
F (A) = Pr [Exppre

A = 1] . (6)

For q > 0, Advpre
F (q) is the maximum of Advpre

F (A) over all adversaries A making at most q
queries. The security definitions given in this section can be extended easily to any compression
function built upon ideal primitives by appropriately defining the relation “`Q”.

Experiment Expcoll
A

E
$← BC(n, 2n)

AE,E−1
updates Q

if ∃ A 6= A′, B s.t. A `Q B and A′ `Q B
then

output 1
else

output 0

(a) Collision resistance

Experiment Exppre
A

E
$← BC(n, 2n)

A chooses B ∈ I2
n

A(B)E,E−1
updates Q

if ∃ A s.t. A `Q B then
output 1

else
output 0

(b) Preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

3 Security of Abreast-DM

3.1 Query-response Cycle and Modified Adversary

Let F := FABR be the Abreast-DM compression function based on a blockcipher E ∈ BC(n, 2n),
and let Q be the query history obtained by oracle access to E and E−1. Now we associate the



query history Q with a direct graph G on Q, where
−−→
QQ′ ∈ G if and only if Q = (A1, A2|A3, Y1)

and Q′ = (A2, A3|A1, Y2) for some As’s and Yt’s. A (direct) cycle in G is called a query-response
cycle. The following properties can be easily proved.

Property 1. If query-response pairs Q and Q′ are obtained by the first blockcipher call and the
second blockcipher call, respectively, in an evaluation of F , then

−−→
QQ′ ∈ G. Conversely, each edge

in G represents a valid evaluation of F .

Property 2. Each query-response cycle in G is of length 2 or length 6. If ∆ = (Q1, . . . , Q6) ∈ G is
a cycle of length 6, then we have

Q1 = (A1, A2|A3, Y1), Q2 = (A2, A3|A1, Y2), Q3 = (A3, A1|A2, Y3),

Q4 = (A1, A2|A3, Y4), Q5 = (A2, A3|A1, Y5), Q6 = (A3, A1|A2, Y6),

for some As’s and Yt’s. If ∆ = (Q1, Q2) ∈ G is a cycle of length 2, then we have Q1 =
(A1, A1|A1, Y1) and Q2 = (A1, A1|A1, Y2) for some A1, Y1 and Y2. Here we see that the first
three blocks of the query-response pairs are moving cyclically under the permutation

π : I3
n −→ I3

n

(A1, A2, A3) 7−→ (A2, A3, A1).

Property 3. For query-response cycles ∆ and ∆′, either ∆ = ∆′ or ∆ ∩∆′ = ∅.
Given an adversary A with oracle access to E and E−1, one can transform A into an adversary

B that records its query history in terms of query-response cycles. The modified adversary B is
described in Figure 3. We can easily check the following properties of B.

Property 4. If A makes at most q queries, then the corresponding adversary B makes at most 6q
queries, and records at most q query-response cycles.

Property 5. Advsec
F (A) ≤ Advsec

F (B) for sec ∈ {coll, pre}.

3.2 Security Results

Given Property 5, we will analyze the security of the Abreast-DM compression function with
respect to the modified adversary B. We denote the query history of B by

Q∆ = {∆i : 1 ≤ i ≤ q},
where we write ∆i = (Qi

1, Q
i
2, Q

i
3, Q

i
4, Q

i
5, Q

i
6) or (Qi

1, Q
i
2) for 1 ≤ i ≤ q. Here we assume that

query-response pair Qi
j is obtained after Qi

j′ if j > j′.

Collision Resistance Let E denote the event that B makes a collision of F . Then, by definition,
Advcoll

F (B) = Pr [E ]. In order to estimate Pr [E ], we decompose E as follows.

E =
q⋃

i=1


E i ∪

i−1⋃

j=1

E i,j


 , (7)

where

E i ⇔ two evaluations from a single cycle ∆i determines a collision, (8)

E i,j ⇔ two evaluations from ∆i and ∆j determine a collision. (9)

Then it follows that

Pr [E ] =
q∑

i=1


Pr

[E i
]
+

i−1∑

j=1

Pr
[E i,j

]

 . (10)



Algorithm BE,E−1

Q∆ ← ∅
Run A
if A makes a fresh query for E(A1, A2|A3) then

Make queries for

Y1 = E(A1, A2|A3), Y2 = E(A2, A3|A1), Y3 = E(A3, A1|A2),

Y4 = E(A1, A2|A3), Y5 = E(A2, A3|A1), Y6 = E(A3, A1|A2),

Q∆ ← Q∆ ∪ {∆} (∆=the cycle defined by the above six queries)
Return Y1 to A

else if A makes a fresh query for E−1(Y1, A2|A3) then
Make queries for

A1 = E−1(Y1, A2|A3), Y2 = E(A2, A3|A1), Y3 = E(A3, A1|A2),

Y4 = E(A1, A2|A3), Y5 = E(A2, A3|A1), Y6 = E(A3, A1|A2),

Q∆ ← Q∆ ∪ {∆}
Return A1 to A

else
Return the response using query history Q∆

Fig. 3. Modified algorithm B. A query is called “fresh” if its response is not obtained from the query
history of B

Lemma 1. Let N ′ = 2n − 6q ≥ 15 and 1 ≤ i < j ≤ q. Then,

1. Pr
[E i

] ≤ 1/N ′,
2. Pr

[E i,j
] ≤ 36/ (N ′)2.

Proof. Inequality 1: First, assume that ∆i consists of two distinct query-response pairs. A collision
within this cycle implies that Qi

1 = (A1, A1|A1, Y1), Qi
2 = (A1, A1|A1, Y2) and (A1⊕Y1, A1⊕Y2) =

(A1 ⊕ Y2, A1 ⊕ Y1) for some A1, Y1 and Y2. Since the second query-response pair Qi
2 is obtained

by a forward query, and Y2 should be equal to Y1, the probability that this type of collision occurs
is not greater than 1/N ′.

Next, assume that ∆i consists of six distinct query-response pairs. Suppose that, say,
−−−→
Qi

1Q
i
2

and
−−−→
Qi

2Q
i
3 determines a collision. With the notations in Property 2, it should be the case that

(A1⊕Y1, A2⊕Y2) = (A2⊕Y2, A3⊕Y3). In this case, we have Y2 = A1⊕Y1⊕A2 and Y3 = A2⊕Y2⊕A3.
The probability that Y2 and Y3 satisfy these equations is not greater than (1/N ′)2. The same
argument applies to every pair of edges in ∆i. Since the number of such pairs is

(
6
2

)
= 15 and

15/ (N ′)2 ≤ 1/N ′ for N ′ ≥ 15, the first inequality is proved.

Inequality 2: Let
−−−−−→
Qi

hQi
h+1 and

−−−−−−→
Qj

h′Q
j
h′+1 be edges contained in ∆i and ∆j , respectively. Then

we can write

Qi
h = (A1, A2|A3, Y1), Qi

h+1 = (A2, A3|A1, Y2),

Qj
h′ = (A′1, A

′
2|A′3, Y ′

1), Qj
h′+1 = (A′2, A

′
3|A′1, Y ′

2),

for some As’s, A′s’s, Yt’s and Y ′
t ’s. If two edges

−−−−−→
Qi

hQi
h+1 and

−−−−−−→
Qj

h′Q
j
h′+1 determine a collision, then

it should be the case that (A1⊕Y1, A2⊕Y2) = (A′1⊕Y ′
1 , A′2⊕Y ′

2), or equivalently Y ′
1 = A1⊕Y1⊕A′1

and Y ′
2 = A2 ⊕ Y2 ⊕ A′2. The probability that such an event occurs is not greater than (1/N ′)2.

Since each cycle contains at most 6 edges, we obtain Pr
[E i,j

] ≤ 36/ (N ′)2. ut



By Lemma 1, equality (10) and Property 5, we obtain the following theorem.

Theorem 1. Let FABR be the compression function Abreast-DM and let q > 0. Then,

Advcoll
F ABR(q) ≤ q

(2n − 6q)
+

18q2

(2n − 6q)2
.

Preimage Resistance Suppose that a modified adversary B is given a target image B = (B1, B2).
Let E denote the event that B makes an evaluation F (A1, A2, A3) = (B1, B2) for some As’s. Then,
by definition, Advpre

F (B) = Pr [E ]. Define

E i ⇔∆i determines a preimage of B. (11)

Then it follows that

Pr [E ] =
q∑

i=1

Pr
[E i

]
. (12)

Let
−−−−−→
Qi

hQi
h+1 be an edge contained in ∆i. Then we can write Qi

h = (A1, A2|A3, Y1) and Qi
h+1 =

(A2, A3|A1, Y2) for some As’s and Yt’s. If
−−−−−→
Qi

hQi
h+1 determines a preimage of B = (B1, B2), then

it should be the case that (A1 ⊕ Y1, A2 ⊕ Y2) = (B1, B2), or equivalently Y1 = B1 ⊕ A1 and
Y2 = B2 ⊕ A2. The probability that such an event occurs is not greater than (1/N ′)2. Since each
cycle contains at most 6 edges, we obtain Pr

[E i
] ≤ 6/ (N ′)2 for 1 ≤ i ≤ q, and the following

theorem.

Theorem 2. Let FABR be the compression function Abreast-DM and let q > 0. Then,

Advpre
F ABR(q) ≤ 6q

(2n − 6q)2
.

4 Abreast-DM Variants

In this section, we present a wide class of Abreast-DM variants that enjoy a birthday-type
security guarantee. Let π be a permutation on I3

n(≡ In×I2
n) such that every cycle in π is of length

2 ≤ l ≤ L for a positive integer L. Then we can associate the permutation π with an Abreast-DM
variant FABR

π as follows.

FABR
π : I3

n −→ I2
n

(A1, A2, A3) 7−→ (E(X1,K1)⊕X1, E(X2, K2)⊕X2),
(13)

where (X1,K1) = (A1, A2|A3) and (X2,K2) = π(A1, A2, A3). An Abreast-DM variant is illus-
trated in Figure 4. By essentially the same argument as the previous section, we can prove the
following theorem.

Theorem 3. Let FABR
π be the compression function defined in (13), and let 2n ≥ q +

(
L
2

)
. Then,

Advcoll
F ABR

π
(q) ≤ q

(2n − Lq)
+

L2q2

2(2n − Lq)2
,

Advpre
F ABR

π
(q) ≤ Lq

(2n − Lq)2
.

If π contains no cycle of length 2, then

Advcoll
F ABR

π
(q) ≤ L2(q + q2)

2(2n − Lq)2
.
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Fig. 4. Abreast-DM variant

We conclude this section with some examples.

Example 1. Let π : (A1, A2, A3) 7→ (A1⊕C, A2, A3) for a constant C ∈ In. Then FABR
π is reduced

to the Hirose’s scheme [11].

Example 2. Let π : (A1, A2, A3) 7→ (A1, A3, A2). Then every cycle in π is of length 4. By Theo-
rem 3, we have

Advcoll
F ABR

π
(q) ≤ 8(q + q2)

(2n − 4q)2
.

In numerical terms with n = 128, any adversary asking less than 2125.0 queries cannot find a
collision with probability greater than 1/2.

5 Conclusion

In this paper, we analyzed collision resistance and preimage resistance of Abreast-DM with a
novel technique using query-response cycles. As a result, we have shown that Abreast-DM is
both collision resistant and preimage resistant up to O (2n) query complexity. With essentially the
same proof as Abreast-DM, we also presented a wide class of Abreast-DM variants that enjoy a
birthday-type security guarantee. We note that, however, our result for preimage resistance might
not be optimal, since a truly random function with a 2n-bit output would require O

(
22n

)
queries

to find any preimage. For this reason, it will be an interesting further research to improve the
security proof for premiage resistance.
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