IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Discrete Mathematics and Its Applications
New Concrete Relation between Trace, Definition Field, and Embedding Degree
Shoujiro HIRASAWAAtsuko MIYAJI
Author information
JOURNAL RESTRICTED ACCESS

2011 Volume E94.A Issue 6 Pages 1368-1374

Details
Abstract

A pairing over an elliptic curve E/Fpm to an extension field of Fpmk has begun to be attractive in cryptosystems, from the practical and theoretical point of view. From the practical point of view, many cryptosystems using a pairing, called the pairing-based cryptosystems, have been proposed and, thus, a pairing is a necessary tool for cryptosystems. From the theoretical point of view, the so-called embedding degree k is an indicator of a relationship between the elliptic curve Discrete Logarithm Problem (ECDLP) and the Discrete Logarithm Problem (DLP), where ECDLP over E(Fpm) is reduced to DLP over Fpmk by using the pairing. An elliptic curve is determined by mathematical parameters such as the j-invariant or order of an elliptic curve, however, explicit conditions between these mathematical parameters and an embedding degree have been described only in a few degrees. In this paper, we focus on the theoretical view of a pairing and investigate a new condition of the existence of elliptic curves with pre-determined embedding degrees. We also present some examples of elliptic curves over 160-bit, 192-bit and 224-bit Fpm with embedding degrees k < (log p)2 such as k = 10,12,14,20,22,24,28.

Content from these authors
© 2011 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top