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PAPER Special Section on Information Theory and Its Applications

A General Formula of the Capacity Region for Multiple-Access
Channels with Deterministic Feedback

Tetsunao MATSUTA†a), Student Member and Tomohiko UYEMATSU†b), Senior Member

SUMMARY The multiple-access channel (MAC) becomes very popu-
lar in various communication systems, because multi-terminal communi-
cation systems have been widely used in practical systems, e.g., mobile
phones and P2P, etc. For some MACs, it is known that feedback can en-
large the capacity region, where the capacity region is the set of rate pairs
such that the error probability can be made arbitrarily small for sufficiently
large block length. The capacity region for general MACs, which are not
required to satisfy ergodicity and stationarity with perfect feedback was
first shown by Tatikonda and Mitter without the proof, where perfect feed-
back means that the channel output is perfectly fed back to senders. In this
paper, we generalize Tatikonda and Mitter’s result to the case of determin-
istic feedback, where the values of deterministic functions of past channel
outputs is fed back to senders. We show that the capacity region for general
MACs with deterministic feedback can be represented by the information-
spectrum formula introduced by Han and Verdú, and directed information
introduced by Massey. We also investigate the compound MAC problem,
the ε-coding problem, the strong converse property and the cost constraint
problem for general MACs with deterministic feedback.
key words: capacity region, directed information, feedback, information
spectrum, multiple-access channel

1. Introduction

Multi-terminal communication systems have been widely
used in practical systems, e.g., mobile phones, P2P, etc., and
this makes the multi-terminal information theory more im-
portant than ever. The multiple-access channel (MAC) is
one of basic models in the multi-terminal information the-
ory. For some MACs, it is known that feedback can enlarge
the capacity region, where the capacity region is the set of
rate pairs such that the error probability can be made arbi-
trarily small for sufficiently large block length. This result
was first shown by Gaarder and Wolf [1]. They showed an
example of a stationary memoryless MAC of which capacity
region is enlarged by using perfect feedback, where perfect
feedback means that the channel output is perfectly fed back
to the senders. Later, Cover and Leung [2] derived an single-
letterized inner region of the capacity region for stationary
memoryless MACs with perfect feedback. Although this in-
ner region is optimal for some MACs, it is not optimal in
general.

The single-letterized capacity region for stationary
memoryless MACs with feedback has not yet been clarified,
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although the single-letterized inner region and outer region
have been clarified. On the other hand, Kramer [3] showed
a multi-letterized capacity region for stationary memoryless
MACs with perfect feedback by using directed information.
Directed information is a causal version of mutual informa-
tion, and was introduced by Massey [4]. In general, the
multi-letterized capacity region is not computable. How-
ever, by using the multi-letterized capacity region, we can
find the point which lies outside of the Cover-Leung inner
region for some stationary memoryless MACs [5]. Recently,
by using directed information, Permuter et al. [6] derived
the capacity region for some finite-state MACs with time-
invariant deterministic feedback, where time-invariant de-
terministic feedback means that the values of time-invariant
deterministic functions of the channel output is fed back to
the senders.

The capacity region for general MACs, which are not
required to satisfy ergodicity and stationarity, without feed-
back was shown by Han [7], and the capacity region for gen-
eral MACs with perfect feedback was shown by Tatikonda
and Mitter [8] although they did not show the proof. In
this paper, we generalize the result of Tatikonda and Mitter
to the case of deterministic feedback, where deterministic
feedback means that the values of deterministic functions
of past channel outputs is fed back to the senders. The de-
terministic feedback includes the case of perfect feedback,
time-invariant deterministic feedback, quantized feedback,
arbitrarily delayed feedback, etc. Hence, the case we con-
sider may be reviewed as a generalization of Permuter et
al.’s case [6] we mentioned earlier.

One of contributions of this paper is clarifying the ca-
pacity region for general MACs with deterministic feed-
back. Then, we show that the information-spectrum formula
introduced by Han and Verdú [9] and directed-information
play an important role to characterize the capacity region.
The proof of this result is based on Tatikonda and Mitter’s
method [8], [10], [11] which was used to clarify the chan-
nel capacity for general one-to-one channels with feedback.
The key idea of their method is to consider a channel from
code-functions to a receiver instead of a channel from code-
words to a receiver, where the code-function is a function
that maps a message and feedback into codewords. In or-
der to demonstrate the availability of our capacity region
for general MACs with deterministic feedback, we investi-
gate some important classes of MACs, and clarify the capac-
ity regions for these MACs when there exists deterministic
feedback. For the class of binary additive noise MACs, we
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Fig. 1 MAC with deterministic feedback.

show that the capacity region cannot be enlarged by using
deterministic feedback. For the class of stationary memo-
ryless MACs, our capacity region is equal to the region ob-
tained by Kramer [3], [5] when perfect feedback is available
at the senders. For classes of mixed MACs and compound
MACs, we clarify a relation between these two capacity re-
gions. We also clarify the capacity region for the ε-coding
problem and the cost constraint problem of general MACs
with deterministic feedback. Furthermore, we investigate
the strong converse property for general MACs with deter-
ministic feedback, and show the relation between the strong
converse property and directed information.

This paper is organized as follows. In Sect. 2, we pro-
vide a precise formulation of the deterministic feedback
MAC problem. In Sect. 3, we define directed information
and information-spectrum formula of directed information.
In Sect. 4, we show the capacity region for general MACs
with deterministic feedback. In Sect. 5, we give the proof
of the capacity region for general MACs with determinis-
tic feedback. In Sect. 6, we show the capacity region for
some important classes of MACs with deterministic feed-
back. In Sect. 7, we investigate some coding problems re-
lated to MACs with deterministic feedback. In Sect. 8, we
conclude the paper.

2. General MACs with Deterministic Feedback

In this chapter, we provide some notations and a precise for-
mulation of the deterministic feedback MAC coding prob-
lem.

We will denote random variables by capital letters
X ,Y,Z, · · · , the values they can take by lowercase letters
x,y,z, · · · , and the set of these values by calligraphic let-
ters X ,Y ,Z , · · · . The probability distribution of a random
variable X taking values in X will be denoted by PX . In
a similar manner, the probability distribution of a pair of
random variables (X ,Y ) taking values in X ×Y will be
denoted by PXY . The conditional distribution for X given Y
will be denoted by PX |Y . In what follows, all logarithms and
exponentials are taken to the base of natural logarithm.

Let X1, X2, Y , Z1 and Z2 be arbitrary finite sets.
Let F1i and F2i be a set of all maps f1i : Z i−1

1 → X1

and f2i : Z i−1
2 → X2, respectively. We call these maps

code functions. Let F n
1 � ��

n
i=1 F1i and F n

2 � ��
n
i=1 F2i

denote the Cartesian product of F1i and F2i, respec-

tively, where F11 � X1 and F21 � X2. We will use
notations f i

1(z
i−1
1 ) = ( f11, f12(z11), f13(z2

1), · · · , f1i(zi−1
1 ))

and f i
2(z

i−1
2 ) = ( f21, f22(z21), f23(z2

2), · · · , f2i(zi−1
2 )), where

zi−1
1 = (z11,z12, · · · ,z1,i−1), zi−1

2 = (z21,z22, · · · ,z2,i−1), and
f11 and f21 are fixed elements of X1 and X2, respectively.

Now, we formulate the MAC with deterministic feed-
back. We illustrate the MAC with deterministic feedback
in Fig. 1. We are given a pair of deterministic functions
Ψ = {(ψn

1 ,ψn
2 )}∞n=1, where ψn

1 = (ψ11,ψ12, · · · ,ψ1n), ψn
2 =

(ψ21,ψ22, · · · ,ψ2n), ψ1i : Y i → Z1 and ψ2i : Y i → Z2.
We consider the situation that sender 1 and sender 2 in-
dependently send a message m1 ∈ M

(1)
n and a message

m2 ∈ M
(2)
n to a receiver, where the massage sets are de-

fined as M
(1)
n � {1, · · · ,M(1)

n } and M
(2)
n � {1, · · · ,M(2)

n }.
Sender 1 has encoder 1 and sender 2 has encoder 2. Encoder
1 outputs an n-length codeword X11,X12, · · · ,X1n (X1i ∈X1)
corresponding to the message m1 to the MAC. Similarly,
encoder 2 outputs an n-length codeword X21,X22, · · · ,X2n

(X2i ∈ X2) corresponding to the message m2 to the MAC.
Then, for each time i (1 ≤ i ≤ n), the MAC outputs Yi ∈ Y ,
and the value of a deterministic function of channel outputs
Z1i = ψ1i(Y i) is fed back to encoder 1 with unit delay. Sim-
ilarly, Z2i = ψ2i(Y i) is fed back to encoder 2 with unit de-
lay. Hence, past values of deterministic functions Zi−1

1 =
(Z11,Z12, · · · ,Z1,i−1) and Zi−1

2 = (Z21,Z22, · · · ,Z2,i−1) are
available at encoders. Thus, encoder 1 is defined by a

set of M(1)
n code functions { f n

1 [m1] ∈ F n
1 }m1∈M

(1)
n

, and en-

coder 2 is defined by a set of M(2)
n code functions { f n

2 [m2] ∈
F n

2 }m2∈M
(2)
n

. We define their rates as

R(1)
n � 1

n
logM(1)

n and R(2)
n � 1

n
logM(2)

n .

When the receiver observes all the channel outputs Y n,
one reconstructs the messages by using a decoder. The de-

coder decides that (m1,m2) ∈ M
(1)
n ×M

(2)
n is transmitted

from senders 1 and 2 if Y n ∈ Dm1,m2 , where Dm1,m2 is a
disjoint partition of Y n determined in advance. Thus, the

decoder is defined by a map ϕn : Y n → M
(1)
n ×M

(2)
n .

Next, we provide a precise formulation of general
MACs. When there is feedback, the time ordering of chan-
nel inputs and channel outputs is

X11,X21,Y1,X12,X22,Y2, · · · ,X1n,X2n,Yn.
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This is because encoders must wait till values of determinis-
tic functions are fed back. Hence, at time i, the channel out-
put Yi only depends on past channel inputs Xi−1

1 and Xi−1
2 ,

past channel outputs Y i−1, and current channel inputs X1i

and X2i. Thus, a MAC at each time i is characterized by a
conditional distribution WYi|Xi

1Xi
2Y i−1 : X i

1 ×X i
2 ×Y i−1 →

Y . Then, a MAC until the time n is characterized by
WY n‖Xn

1 Xn
2

� ∏n
i=1 WYi|Xi

1Xi
2Y i−1 , where WY n‖Xn

1 Xn
2

is called the
causally conditioned distribution of which we will give a
precise definition in the next chapter. This represents the
conditional distribution for channel outputs Y n given chan-
nel inputs Xn

1 and Xn
2 when there exists feedback. Thus,

we define a sequence {WY n‖Xn
1 Xn

2
}∞n=1 as a general MAC

W. Note that when a MAC is stationary memoryless, we
can simply express a MAC W as a conditional distribution
W : X1 ×X2 → Y .

We define an (n,M(1)
n ,M(2)

n ,εn)-code as sets of M(1)
n

and M(2)
n code functions, a decoder ϕn, and the error proba-

bility

εn =
1

M(1)
n M(2)

n
∑

m1∈M
(1)
n

∑
m2∈M

(2)
n

·Pr((m1,m2) �= ϕn(Y n)|m1,m2) .

According to the definition of a MAC W, we have

Pr((m1,m2) �= ϕn(Y n)|m1,m2) = ∑
yn∈Dc

m1,m2

·WY n‖Xn
1 Xn

2
(yn‖ f n

1 [m1](ψn−1
1 (yn−1)), f n

2 [m2](ψn−1
2 (yn−1))),

(1)

where Dc
m1,m2

denotes the complement of Dm1,m2 . Se-
quences f n

1 [m1](ψn−1
1 (yn−1)) and f n

2 [m2](ψn−1
2 (yn−1)) rep-

resent n-length codewords determined by massages m1
and m2, and deterministic feedbacks ψn−1

1 (yn−1) and
ψn−1

2 (yn−1).
Now, define achievability and capacity region for a

MAC W with deterministic feedback as follows:

Definition 1. A pair (R1,R2) is called achievable if there

exists a sequence of (n,M(1)
n ,M(2)

n ,εn)-codes such that
limn→∞ εn = 0,

liminf
n→∞

R(1)
n ≥ R1 and liminf

n→∞
R(2)

n ≥ R2.

The set of all achievable rates is called the capacity region
for a pair of deterministic functions Ψ and a MAC W with
deterministic feedback, and denoted by CΨ(W).

3. Causality and Directed Information

To represent the capacity region for general MACs with
deterministic feedback, we use directed information in-
troduced by Massey [4]. Here, we generalize Massey’s
notion [4] of directed information, and Kramer’s notion

[3], [5] of causally conditional directed information to the
information-spectrum formula.

First, we introduce the causally conditioned distribu-
tion (cf. [3], [6], [12]).

Definition 2 (Causally conditioned distribution). For a non-
negative integer dY ∈ {0,1,2, · · · }, we denote the causally
conditioned distribution for Xn given Y n−dY as PXn‖Y n−dY

which is defined as

PXn‖Y n−dY (xn‖yn−dY ) �
n

∏
i=1

PXi|Xi−1Y i−dY (xi|xi−1,yi−dY )

(∀xn ∈ X n and ∀yn−dY ∈ Y n−dY ),
(2)

where we use the convention PXi|Xi−1Y i−dY = PXi|Xi−1 when
i−dY ≤ 0.

According to this definition, we have

PXnY n(xn,yn) = PXn‖Y n−1(xn‖yn−1)PY n‖Xn(yn‖xn). (3)

Since we define the causally conditioned distribution as a
product of conditional distributions, whenever we use the
notation PXn‖Y n−dY , we implicitly assume that there exists a
sequence of conditional distribution {PXi|Xi−1Y i−dY }n

i=1 that
satisfies (2). Note that a causally conditioned distribution
PXn‖Y n−dY determines a sequence of conditional distributions
{PXi|Xi−1Y i−dY }n

i=1 such that PXn‖Y n−dY = ∏n
i=1 PXi|Xi−1Y i−dY

(see [12, Lemma 3]). Thus, we can identify a causally con-
ditioned distribution PXn‖Y n−dY as a sequence of conditional
distributions {PXi|Xi−1Y i−dY }n

i=1.
By using the notion of causally conditioning, we can

define directed information and causally conditioned di-
rected information as follows:

Definition 3 (Directed information).

I(Xn → Y n) � E

[
log

PY n‖Xn(Y n‖Xn)
PY n(Y n)

]
=

n

∑
i=1

I(Xi;Yi|Y i−1).

Definition 4 (Causally conditioned directed information).

I(Xn → Y n‖Zn) � E

[
log

PY n‖XnZn(Y n‖Xn,Zn)
PY n‖Zn(Y n‖Zn)

]

=
n

∑
i=1

I(Xi;Yi|Y i−1Zi).

Next, we introduce the limit superior in probability and
limit inferior in probability [13]. For an arbitrary sequence
of real-valued random variables {Zn}∞n=1, we define the fol-
lowing notion.

Definition 5 (Limit superior in probability).

p- limsup
n→∞

Zn � inf
{
α : lim

n→∞
Pr{Zn > α} = 0

}
.

Definition 6 (Limit inferior in probability).
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p- liminf
n→∞

Zn � sup
{
β : lim

n→∞
Pr{Zn < β} = 0

}
.

Now, we define the information-spectrum formula of
directed information and causally conditioned directed in-
formation [8].

Definition 7. For a given sequence of random variables
(X,Y,Z) = {(Xn,Y n,Zn)}∞n=1, we define

I(X → Y) � p- limsup
n→∞

1
n

log
PY n‖Xn(Y n‖Xn)

PY n(Y n)
,

I(X → Y) � p- liminf
n→∞

1
n

log
PY n‖Xn(Y n‖Xn)

PY n(Y n)
,

I(X → Y‖Z) � p- limsup
n→∞

1
n

log
PY n‖XnZn(Y n‖Xn,Zn)

PY n‖Zn(Y n‖Zn)
,

I(X → Y‖Z) � p- liminf
n→∞

1
n

log
PY n‖XnZn(Y n‖Xn,Zn)

PY n‖Zn(Y n‖Zn)
.

4. The Capacity Region for General MACs with Deter-
ministic Feedback

In this chapter, we show a general formula of the capacity
region for general MACs with deterministic feedback.

Let PX1‖Y � {PXn
1 ‖Y n−1}∞n=1 and PX2‖Y � {PXn

2 ‖Y n−1}∞n=1
be a sequence of causally conditioned distributions. These
represent channel input distributions. The set of all pairs
(PX1‖Y,PX2‖Y) is denoted by S . Let S Ψ ⊆ S be the set
of all pairs (PX1‖Y,PX2‖Y) such that

PXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)) (k = 1,2),

(4)

where ψn−1
k (yn−1) = (ψk1(y1),ψk2(y2), · · · ,ψk,n−1(yn−1)).

The condition (4) means, for a given zn−1
k ∈ Z n−1

k , all
channel input probabilities causally conditioned on yn−1 ∈
{yn−1 ∈ Y n−1 : ψn−1(yn−1) = zn−1

k } are the same probabil-
ity. Then, we have the next theorem.

Theorem 1. For a general MAC W and a pair of determin-
istic functions Ψ, we have

CΨ(W) =
⋃

(PX1‖Y,PX2‖Y)∈SΨ

RW(PX1‖Y,PX2‖Y), (5)

where

RW(PX1‖Y,PX2‖Y) � {(R1,R2) : 0 ≤ R1 ≤ I(X1 → Y‖X2),

0 ≤ R2 ≤ I(X2 → Y‖X1), R1 +R2 ≤ I(X1,X2 → Y)}.
Here, I(X1 → Y‖X2), I(X2 → Y‖X1) and I(X1,X2 → Y)
are calculated by (X1,X2,Y) = {(Xn

1 ,Xn
2 ,Y n)}∞n=1 subject

to the joint probability distribution {PXn
1 Xn

2 Y n}∞n=1 such that,
for all n = 1,2, · · · ,
PXn

1 Xn
2 Y n(xn

1,x
n
2,y

n) = PXn
1 ‖Y n−1(xn

1‖yn−1)PXn
2 ‖Y n−1(xn

2‖yn−1)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2). (6)

Note that the right-hand side of (5) is a closed set (see
[13, Remark 7.7.1]).

When a pair of deterministic functions Ψ satisfies
ψ1i(yi) = yi−d1+1 and ψ2i(yi) = yi−d2+1 for all i = 1,2, · · · ,
we call this case (d1,d2)-delayed feedback, where d1 and
d2 are positive integers which represent delays. We use
the convention that ψki(yi) = y0 for some y0 ∈ Y when
i−dk +1 ≤ 0 (k = 1,2). Then, we have the next corollary.

Corollary 1. For a general MAC W with (d1,d2)-delayed
feedback, we have

CΨ(W) =
⋃

(P
X1‖Y−d1

,P
X2‖Y−d2

)∈S d1,d2

RW(PX1‖Y−d1 ,PX2‖Y−d2 ),

where PX1‖Y−d1 � {PXn
1 ‖Y n−d1 }, PX2‖Y−d2 � {PXn

2 ‖Y n−d2 } and

S d1,d2 is the set of all pairs (PX1‖Y−d1 ,PX2‖Y−d2 ).

Note that when d1 = d2 = 1, i.e., perfect feedback is
available at encoders, S d1,d2 = S . Hence, in the case of
perfect feedback, we denote CΨ(W) by C (W) for the sake
of convenience. We also note that the capacity region for
the perfect feedback case is shown by Tatikonda and Mitter
without the proof [8].

5. Proof of Theorem 1

In this chapter, we prove Theorem 1. To this end, we follow
the Tatikonda and Mitter’s [8], [10], [11] method which was
used to clarify the channel capacity for general one-to-one
channels with feedback.

5.1 Interconnection of Code Functions to the MAC

In a general MAC with deterministic feedback, the chan-
nel from F n

1 and F n
2 to Y n can be considered as a gen-

eral MAC without deterministic feedback (this channel is
framed by a dotted line in Fig. 1). Hence, any coding prob-
lem for the general MAC with deterministic feedback can be
reduced to the coding problem for the general MAC without
deterministic feedback. This is a key idea to prove The-
orem 1, because this idea allows us to use Han’s method
[7] which was used to clarify the capacity region for gen-
eral MACs without feedback. This key idea is an extension
of Tatikonda and Mitter’s idea [11]. In order to clarify the
capacity region for general MACs without feedback, Han
used the random-coding method, and introduced a probabil-
ity distribution on the set of channel inputs. For the channel
from F n

1 and F n
2 to Y n, i.e., the channel framed by the

dotted line in Fig. 1, the channel inputs are code functions.
Hence, to apply the random-coding method for the system of
the MAC with deterministic feedback, we have to introduce
the code-function distribution, i.e., a probability distribution
on the set of code functions. We will denote this distribu-
tions on F n

1 and F n
2 as PFn

1
and PFn

2
, respectively. Then, we

consider the following situation. Code functions Fn
1 and Fn

2
are independently selected with the code-function distribu-
tions PFn

1
and PFn

2
. For each time i, X1i and X2i, which are
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determined by functions Fn
1 and Fn

2 , and past values of de-
terministic functions of channel outputs Zi−1

1 = ψ i−1
1 (Y i−1)

and Zi−1
2 = ψ i−1

2 (Y i−1), are fed into a MAC W. Under this
situation, let QFn

1 Fn
2 Xn

1 Xn
2 Y nZn

1 Zn
2

be a joint probability distribu-
tion of code functions Fn

1 and Fn
2 , channel inputs Xn

1 and Xn
2 ,

channel outputs Y n, and values of deterministic functions Zn
1

and Zn
2 , i.e., QFn

1 Fn
2 Xn

1 Xn
2 Y nZn

1 Zn
2

is the probability distribution
of the overall system of the MAC with deterministic feed-
back when we use the random code. Then, the distribution
QFn

1 Fn
2 Xn

1 Xn
2 Y nZn

1 Zn
2

can be represented by

QFn
1 Fn

2 Xn
1 Xn

2 Y nZn
1 Zn

2
( f n

1 , f n
2 ,xn

1,x
n
2,y

n,zn
1,z

n
2)

= PFn
1
( f n

1 )PFn
2
( f n

2 )1{ f n
1 (zn−1

1 )}(x
n
1)1{ f n

2 (zn−1
2 )}(x

n
2)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)1{ψn

1 (yn)}(zn
1)1{ψn

2 (yn)}(zn
2), (7)

where 1X (x) denotes the indicator function defined as

1X (x) �
{

1 if x ∈ X ,

0 if x /∈ X .

We call QFn
1 Fn

2 Xn
1 Xn

2 Y nZn
1 Zn

2
the consistent distribution. When

there is no confusion, we shall simply write Qn for
QFn

1 Fn
2 Xn

1 Xn
2 Y nZn

1 Zn
2
.

The consistent distribution Qn is useful to deal with
input-output relations in the system of the MAC with de-
terministic feedback. By using consistent distribution Qn,
the channel from F n

1 and F n
2 to Y n in the system of the

general MAC with deterministic feedback can be denoted
as {QY n|Fn

1 Fn
2
}∞n=1, where QY n|Fn

1 Fn
2

is written as

QY n|Fn
1 Fn

2
(yn| f n

1 , f n
2 )

= WY n‖Xn
1 Xn

2
(yn‖ f n

1 (ψn−1
1 (yn−1)), f n

2 (ψn−1
2 (yn−1)))

(8)

according to (7). Since the channel from F n
1 and F n

2 to Y n

is independent of code-function distributions, it is natural
that QY n|Fn

1 Fn
2

is independent of code-function distributions.
Hence, we use Han’s random-coding method to the general
MAC {QY n|Fn

1 Fn
2
}∞n=1 without deterministic feedback, and

then prove Theorem 1. To this end, we use some proper-
ties of the consistent distribution which will be shown in the
next section.

5.2 Some Properties of Consistent Distribution

In this section, we show some useful properties of the con-
sistent distribution.

In order to apply the random-coding method, we use a
code-function distribution, and we assume that a codeword
is randomly selected depending on a code-function distri-
bution even if channel outputs are given. In other words,
a channel input is induced by a given code-function distri-
bution. By using the consistent distribution Qn, for given
channel outputs, the probability distribution of channel in-
puts can be represented by QXn

k ‖Y n−1 (k = 1,2). The reason

that this probability distribution has causality is that a chan-
nel input for each time depends on past channel outputs. In
what follows, we call QXn

k ‖Y n−1 (k = 1,2) induced channel
input distributions. In the following Lemma 1 - Lemma 4,
we discuss some properties of induced channel input distri-
bution. To this end, we introduce following definitions. For
each k = 1,2, define ϒki(zi−1

k ,xki) and ϒi
k(z

i−1
k ,xi

k) as

ϒki(zi−1
k ,xki) � { fki ∈ Fki : fki(zi−1

k ) = xki} (i ≥ 2),

ϒi
k(z

i−1
k ,xi

k) � ϒk1(xk1)
i

��
j=2

ϒk j(z
j−1
k ,xk j) ⊆ F i

k (i ≥ 2),

while ϒk1(xk1) � {xk1} and ϒ1
k(xk1) � ϒk1(xk1).

We show that induced channel input distributions only
depend on code-function distributions, and show a property
of the product of induced channel input distributions.

Lemma 1. For a given consistent distribution Qn, we have

QXn
k ‖Y n−1(xn

k‖yn−1) = PFn
k
(ϒn

k(ψ
n−1
k (yn−1),xn

k)) (k = 1,2),

QXn
1 Xn

2 ‖Y n−1(xn
1,x

n
2‖yn−1)

= QXn
1 ‖Y n−1(xn

1‖yn−1)QXn
2 ‖Y n−1(xn

2‖yn−1). (9)

Proof. By following the proof of [11, Lemma 5.1], for all
i = 1,2 · · · , the marginal distribution QXi

1Y i−1 is given by

QXi
1Y i−1(xi

1,y
i−1)

= PF1i|Fi−1
1

(ϒ1i(ψ i−1
1 (yi−1),x1i)|ϒi−1

1 (ψ i−2
1 (yi−2),xi−1

1 ))

·QXi−1
1 Y i−1(xi−1

1 ,yi−1).

Thus, according to the definition (2) of the causally condi-
tioned distribution, we have

QXn
1 ‖Y n−1(xn

1‖yn−1) =
n

∏
i=1

QXi
1Y i−1(xi

1,y
i−1)

QXi−1
1 Y i−1(xi−1

1 ,yi−1)

= PFn
1
(ϒn

1(ψ
n−1
1 (yn−1),xn

1)).

Similarly, we also have

QXn
2 ‖Y n−1(xn

2‖yn−1) = PFn
2
(ϒn

2(ψ
n−1
2 (yn−1),xn

2)),

and

QXn
1 Xn

2 ‖Y n−1(xn
1,x

n
2‖yn−1) = PFn

1
(ϒn

1(ψ
n−1
1 (yn−1),xn

1))

·PFn
2
(ϒn

2(ψ
n−1
2 (yn−1),xn

2)).

These identities imply the lemma.

The following lemma shows that induced channel in-
put distributions always satisfy the condition (4). Hence, in
Theorem 1, we can restrict a channel input distribution to an
element of S Ψ.

Lemma 2. For a given consistent distribution Qn, we have

QXn
k ‖Y n−1(xn

k‖yn−1) = QXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)) (k = 1,2).
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Proof. The proof can be done in a similar manner to the
proof of Lemma 1. For all i = 1,2, · · · , we have

QXi
1Zi−1

1
(xi

1,ψ
i−1
1 (yi−1))

= PF1i|Fi−1
1

(ϒ1i(ψ i−1
1 (yi−1),x1i)|ϒi−1

1 (ψ i−2
1 (yi−2),xi−1

1 ))

·QXi−1
1 Zi−1

1
(xi−1

1 ,ψ i−1
1 (yi−1)).

Thus, we have

QXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)) = PFn

k
(ϒn

k(ψ
n−1
k (yn−1),xn

k))

= QXn
k ‖Y n−1(xn

k‖yn),

where the last equality comes from Lemma 1.

Now, we introduce the following notion. This notion
was first introduced by Tatikonda [10].

Definition 8. For each k = 1,2, we call a code-function dis-
tribution PFn

k
good with respect to the channel input distri-

bution PXn
k ‖Y n−1 if

PFn
k
(ϒn

k(ψ
n−1
k (yn−1),xn

k)) = PXn
k ‖Y n−1(xn

k‖yn−1)

for all xn
k ∈ X n

k and yn−1 ∈ Y n−1.

Then, we have the following two lemmas similar to
[11, Lemma 5.3 and 5.4]. Note that our lemmas use a
causally conditioned distribution instead of a sequence of
conditional distributions used in [11, Lemma 5.3 and 5.4].
However, since a causally conditioned distribution can be
identified as a sequence of conditional distributions as we
mentioned in Chapter 3, we can prove following lemmas in
a similar way to the proofs of [11, Lemma 5.3 and 5.4].

Lemma 3. For each k = 1,2, and a given channel input
distribution PXn

k ‖Y n−1 , the induced channel input distribution
satisfies

QXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Y n−1(xn

k‖yn−1) (10)

if and only if the code-function distribution PFn
k

is good with
respect to PXn

k ‖Y n−1 .

Lemma 4. For each k = 1,2, given a deterministic function
ψn−1

k , and any channel input distribution PXn
k ‖Y n−1 such that

PXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)), (11)

there exists a code-function distribution PFn
k

that is good
with respect to PXn

k ‖Y n−1 .

According to Lemma 3 and Lemma 4, for any channel
input distribution PXn

k ‖Y n−1 satisfying the condition (4), we
have an induced channel input distribution QXn

k ‖Y n−1 which
is equal to PXn

k ‖Y n−1 by a proper choice of a code-function
distribution PFn

k
. This result of the induced channel input

distribution plays an important role in order to prove the di-
rect part of Theorem 1.

The next lemma is fundamental in this paper.

Lemma 5. For any ( f n
1 , f n

2 ,xn
1,x

n
2,y

n,zn
1,z

n
2) satisfying

Qn( f n
1 , f n

2 ,xn
1,x

n
2,y

n,zn
1,z

n
2) > 0, we have

QY n|Fn
1 Fn

2
(yn| f n

1 , f n
2 )

QY n|Fn
2
(yn| f n

2 )
=

QY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)

QY n‖Xn
2
(yn‖xn

2)
, (12)

QY n|Fn
1 Fn

2
(yn| f n

2 , f n
1 )

QY n|Fn
1
(yn| f n

1 )
=

QY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)

QY n‖Xn
1
(yn‖xn

1)
, (13)

and

QY n|Fn
1 Fn

2
(yn| f n

1 , f n
2 )

QY n(yn)
=

QY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)

QY n(yn)
. (14)

The relation (14) in this lemma is analogous to [11,
Lemma 5.2], and can be proved in a similar way to the proof
of [11, Lemma 5.2]. However, relations (12) and (13) do
not appear in the one-to-one channel, and hence we give the
proof of these relations. To this end, we use the next lemma.

Lemma 6. For a given consistent distribution Qn, we have

QY n‖Xn
1
(yn‖xn

1) =∑
f n
2

∑
xn

2

PFn
2
( f n

2 )1{ f n
2 (ψn−1

2 (yn−1))}(x
n
2)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2),

QY n‖Xn
2
(yn‖xn

2) =∑
f n
1

∑
xn

1

PFn
1
( f n

1 )1{ f n
1 (ψn−1

1 (yn−1))}(x
n
1)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2),

and

QY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2) =WY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2). (15)

Proof. We have

QXn
1 Y n(xn

1,y
n)

= ∑
f n
1

∑
f n
2

∑
xn

2

PFn
1
( f n

1 )PFn
2
( f n

2 )1{ f n
1 (ψn−1

1 (yn−1))}(x
n
1)

·1{ f n
2 (ψn−1

2 (yn−1))}(x
n
2)WY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

= PFn
1
(ϒn

1(ψ
n−1
1 (yn−1),xn

1))

·∑
f n
2

∑
xn

2

PFn
2
( f n

2 )1{ f n
2 (ψn−1

2 (yn−1))}(x
n
2)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2), (16)

QXn
2 Y n(xn

2,y
n)

= PFn
2
(ϒn

2(ψ
n−1
2 (yn−1),xn

2))

·∑
f n
1

∑
xn

1

PFn
1
( f n

1 )1{ f n
1 (ψn−1

1 (yn−1))}(x
n
1)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2), (17)

and

QXn
1 Xn

2 Y n(xn
1,x

n
2,y

n)

= ∑
f n
1

∑
f n
2

PFn
1
( f n

1 )PFn
2
( f n

2 )1{ f n
1 (ψn−1

1 (yn−1))}(x
n
1)
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·1{ f n
2 (ψn−1

2 (yn−1))}(x
n
2)WY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

= PFn
1
(ϒn

1(ψ
n−1
1 (yn−1),xn

1))PFn
2
(ϒn

2(ψ
n−1
2 (yn−1),xn

2))

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2). (18)

Thus, by combining (3), Lemma 1 and (16)–(18), we have
the lemma.

According to (3), (9) and (15), we have

QXn
1 Xn

2 Y n(xn
1,x

n
2,y

n)

= QXn
1 Xn

2 ‖Y n−1(xn
1,x

n
2‖yn−1)QY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

= QXn
1 ‖Y n−1(xn

1‖yn−1)QXn
2 ‖Y n−1(xn

2‖yn−1)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2). (19)

This justifies that the joint probability distribution of chan-
nel inputs and outputs can be denoted as (6) in Theorem 1.

Now, we prove Lemma 5.

Proof of Lemma 5. Qn( f n
1 , f n

2 ,xn
1,x

n
2,y

n,zn
1,z

n
2) > 0 implies

f n
1 (ψn−1

1 (yn−1)) = xn
1 and f n

2 (ψn−1
2 (yn−1)) = xn

2. (20)

Hence, we have

QY n|Fn
1 Fn

2
(yn| f n

1 , f n
2 )

(a)
= WY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

(b)
= QY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2), (21)

where (a) comes from (8), and (b) comes from Lemma 6.
On the other hand, we have

QFn
2 Y n( f n

2 ,yn)

= ∑̃
f n
1

∑
x̃n

1

∑
x̃n

2

∑
z̃n
1

∑
z̃n
2

PFn
1
( f̃ n

1 )PFn
2
( f n

2 )1{ f̃ n
1 (z̃n−1

1 )}(x̃
n
1)

·1{ f n
2 (z̃n−1)}(x̃

n
2)WY n‖Xn

1 Xn
2
(yn‖x̃n

1, x̃
n
2)

·1{ψn
1 (yn)}(z̃n

1)1{ψn
2 (yn)}(z̃n

2)

= PFn
2
( f n

2 )∑̃
f n
1

∑
x̃n

1

PFn
1
( f̃ n

1 )1{ f̃ n
1 (ψn−1

1 (yn−1))}(x̃
n
1)

·∑
x̃n

2

1{ f n
2 (ψn−1

2 (yn−1))}(x̃
n
2)WY n‖Xn

1 Xn
2
(yn‖x̃n

1, x̃
n
2)

(c)
= PFn

2
( f n

2 )∑̃
f n
1

∑
x̃n

1

PFn
1
( f̃ n

1 )1{ f̃ n
1 (ψn−1

1 (yn−1))}(x̃
n
1)

·WY n‖Xn
1 Xn

2
(yn‖x̃n

1,x
n
2),

where (c) follows from (20). Hence, we obtain

QY n|Fn
2
(yn| f n

2 )
(d)
= ∑̃

f n
1

∑
x̃n

1

PFn
1
( f̃ n

1 )1{ f̃ n
1 (ψn−1(yn−1))}(x̃

n
1)

·WY n‖Xn
1 Xn

2
(yn‖x̃n

1,x
n
2)

(e)
=QY n‖Xn

2
(yn‖xn

2), (22)

where (d) comes from the fact that QFn
2

= PFn
2

which can be
obtained by (7), and (e) comes from Lemma 6. Similarly,
we also have

QY n|Fn
1
(yn| f n

1 ) = QY n‖Xn
1
(yn‖xn

1). (23)

By combining (21), (22) and (23), we obtain the lemma.

5.3 The Proof of Theorem 1

First, we prove the direct part. To this end, we employ the
following lemma.

Lemma 7. We are given a pair of deterministic functions
Ψ. For each k = 1,2, let PXn

k ‖Y n−1 satisfy

PXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)),

for some PXn
k ‖Zn−1

k
. Then, for a general MAC W, any γ > 0,

n = 1,2, · · · and any positive integers M(1)
n and M(2)

n , there

exists an (n,M(1)
n ,M(2)

n ,εn)-code satisfying

εn ≤PXn
1 Xn

2 Y n

(
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
2
(Y n‖Xn

2 )
≤ R(1)

n + γ

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
1
(Y n‖Xn

1 )
≤ R(2)

n + γ

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n(Y n)
≤ R(1)

n +R(2)
n + γ

)

+3e−nγ ,

where PXn
1 Xn

2 Y n = PXn
1 ‖Y n−1 ·PXn

2 ‖Y n−1 ·WY n‖Xn
1 Xn

2
.

Proof. Let PFn
1

and PFn
2

be code-function distributions good
with respect to the channel input distribution PXn

1 ‖Y n−1 and
PXn

2 ‖Y n−1 , respectively. The existence of such code-function
distributions PFn

1
and PFn

2
are guaranteed by Lemma 4. Let

Qn be the consistent distribution determined by PFn
1

, PFn
2

and
the MAC W. As we mentioned in Sect. 5.1, the sequence of
conditional distributions of code functions to channel out-
puts {QY n|Fn

1 Fn
2
}∞n=1 can be considered as a MAC without

feedback. Then, by following the proof of [7, Lemma 3], for
the MAC without feedback {QY n|Fn

1 Fn
2
}∞n=1 and any γ > 0,

we can show the existence of an (n,M(1)
n ,M(2)

n ,εn)-code that
satisfies

εn ≤QFn
1 Fn

2 Y n

(
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n|Fn
2
(Y n|Fn

2 )
≤ R(1)

n + γ

or
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n|Fn
1
(Y n|Fn

1 )
≤ R(2)

n + γ

or
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n(Y n)
≤ R(1)

n +R(2)
n + γ

)

+3e−nγ . (24)

According to Lemma 5, (24) implies

εn ≤QXn
1 Xn

2 Y n

(
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n‖Xn
2
(Y n‖Xn

2 )
≤ R(1)

n + γ
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or
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n‖Xn
1
(Y n‖Xn

1 )
≤ R(2)

n + γ

or
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n(Y n)
≤ R(1)

n +R(2)
n + γ

)

+3e−nγ .

On the other hand, according to the assumption of
the lemma, Lemma 3 shows QXn

1 ‖Y n−1 = PXn
1 ‖Y n−1 and

QXn
2 ‖Y n−1 = PXn

2 ‖Y n−1 . Hence, by noting (19), we have
Qn

1Xn
2 Y n = PXn

1 Xn
2 Y n . This completes the proof.

Theorem 2.

CΨ(W) ⊇
⋃

(PX1‖Y,PX2‖Y)∈SΨ

RW(PX1‖Y,PX2‖Y).

Proof. By using Lemma 7, we can prove the theorem in a
similar way to the proof of the direct part of [7, Theorem
1].

Next, we prove the converse part.

Lemma 8. For any γ > 0 and all n = 1,2, · · · , every

(n,M(1)
n ,M(2)

n ,εn)-code satisfies

εn ≥QXn
1 Xn

2 Y n

(
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n‖Xn
2
(Y n‖Xn

2 )
≤ R(1)

n − γ

or
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n‖Xn
1
(Y n‖Xn

1 )
≤ R(2)

n − γ

or
1
n

log
QY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

QY n(Y n)
≤ R(1)

n +R(2)
n − γ

)

−3e−nγ , (25)

where Qn is the consistent distribution defined by a gen-
eral MAC W, and uniform distributions PFn

1
and PFn

2
over

M(1)
n code functions { f n

1 [m1]}m1∈M
(1)
n

and M(2)
n code func-

tions { f n
2 [m2]}m2∈M

(2)
n

, respectively.

Proof. By following the proof of [7, Lemma 4], for the
MAC without feedback {QY n|Fn

1 Fn
2
}∞n=1, we can show that

any (n,M(1)
n ,M(2)

n ,εn)-code satisfies

εn ≥QFn
1 Fn

2 Y n

(
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n|Fn
2
(Y n|Fn

2 )
≤ R(1)

n − γ

or
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n|Fn
1
(Y n|Fn

1 )
≤ R(2)

n − γ

or
1
n

log
QY n|Fn

1 Fn
2
(Y n|Fn

1 ,Fn
2 )

QY n(Y n)
≤ R(1)

n +R(2)
n − γ

)

−3e−nγ .

Thus, by using Lemma 5, we have (25).

Theorem 3.

CΨ(W) ⊆
⋃

(PX1‖Y,PX2‖Y)∈SΨ

RW(PX1‖Y,PX2‖Y).

Proof. Suppose that a rate pair (R1,R2) is achievable. Ac-
cording to the definition of the achievability, there exists a

sequence of (n,M(1)
n ,M(2)

n ,εn)-codes such that limn→∞ εn =
0, liminfn→∞ R(1)

n ≥ R1 and liminfn→∞ R(2)
n ≥ R2. For all

n = 1,2, · · · , and the sequence of (n,M(1)
n ,M(2)

n ,εn)-codes,
let Qn be the consistent distribution defined by W and uni-

form distributions PFn
1

and PFn
2

over M(1)
n code functions

{ f n
1 [m1]}m1∈M

(1)
n

and M(2)
n code functions { f n

2 [m2]}m2∈M
(2)
n

,

respectively. Then, by using Lemma 8, we can show that
R1 ≤ I(X1 → Y‖X2), R2 ≤ I(X2 → Y‖X1), and R1 + R2 ≤
I(X1,X2 → Y), in a similar way to the proof of the con-
verse part of [7, Theorem 1], where I(X1 → Y‖X2), I(X2 →
Y‖X1) and I(X1,X2 → Y) are calculated by (X1,X2,Y) =
{(Xn

1 ,Xn
2 ,Y n)}∞n=1 subject to the sequence of consistent dis-

tributions {QXn
1 Xn

2 Y n}∞n=1. Note that

QXn
1 Xn

2 Y n(xn
1,x

n
2,y

n)

= QXn
1 ‖Y n−1(xn

1‖yn−1)QXn
1 ‖Y n−1(xn

2‖yn−1)

·WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2),

where the equality comes from Lemma 1 and Lemma 6.
Since, according to Lemma 2,

QXn
k ‖Y n−1(xn

k‖yn−1) = QXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1)),

we have ({QXn
1 ‖Y n−1}∞n=1,{QXn

2 ‖Y n−1}∞n=1) ∈ S Ψ. Thus, the
achievable rate pair (R1,R2) must satisfies

(R1,R2) ∈ RW({QXn
1 ‖Y n−1}∞n=1,{QXn

2 ‖Y n−1}∞n=1)

⊆
⋃

(PX1‖Y,PX2‖Y)∈S Ψ

RW(PX1‖Y,PX2‖Y).

6. Some Examples of Capacity Regions for Some
MACs

In this chapter, we show the capacity regions for some inter-
esting MACs.

6.1 Binary Additive Noise MACs

In this section, we show a special case of general MACs
for which the capacity region cannot be enlarged by using
deterministic feedback.

Let X1 = X2 = Y = {0,1}, and let V = {V n =
(V (n)

1 ,V (n)
2 , · · · ,V (n)

n )}∞n=1 be an arbitrary nonstationary and
nonergodic noise, where V n is subject to the probability dis-
tribution PV n over V n = {0,1}n. For each time i, the output

of the MAC Y (n)
i is given by Y (n)

i = X (n)
1i ⊕X (n)

2i ⊕V (n)
i , where

X (n)
1i and X (n)

2i are channel inputs and V (n)
i is independent

from X (n)
1i and X (n)

2i . Then, the MAC W can be represented
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by {WY n‖Xn
1 Xn

2
= ∏n

i=1 WYi|Xi
1Xi

2Y i−1}∞n=1 such that

WYi|Xi
1Xi

2Y i−1(yi|xi
1,x

i
2,y

i−1)

= PVi|V i−1(x1i ⊕ x2i ⊕ yi|xi−1
1 ⊕ xi−1

2 ⊕ yi−1), (26)

for each i = 1,2, · · · ,n and n = 1,2, · · · , where

xi−1
1 ⊕ xi−1

2 ⊕ yi−1 = (x11 ⊕ x21 ⊕ y1,x12 ⊕ x22 ⊕ y2, · · · ,
x1,i−1 ⊕ x2,i−1 ⊕ yi−1).

We call this type of MAC the binary additive noise MAC.
We can show the following result in a similar way to the
proof of [7, Example 1].

CΨ(W) = {(R1,R2) : 0 ≤ R1,0 ≤ R2,

R1 +R2 ≤ log2−H(V)}. (27)

where H(V) = p- limsup
n→∞

1
n log 1

PV n (V n) .

Note that the capacity region for the binary additive
noise MAC without feedback is equal to (27) (see [7, Exam-
ple 1]). Thus, this example shows that the feedback cannot
enlarge the capacity region for binary additive noise MACs.
We also mention that the capacity region for the additive
noise MAC with time-invariant feedback was shown in [6,
p.2462] with the entropy rate of the noise V. Their result
relies on the time-sharing principle. However, since the
time-sharing may not always work when the noise V is non-
stationary, their argument cannot directly be applied to the
general noise V.

6.2 Stationary Memoryless MACs

In this section, we show that for stationary memoryless
MACs with perfect feedback, the capacity region in The-
orem 1 is equal to the region derived by Kramer [3], [5].

We begin with giving some definitions and notations
for the capacity region of stationary memoryless MACs
with deterministic feedback. We denote a pair of deter-
ministic function (ψn

1 ,ψn
2 ) by ψn. The set of all pairs

(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1) is denoted by Sn. Let S ψn ⊆ Sn be
the set of all pairs (PXn

1 ‖Y n−1 ,PXn
2 ‖Y n−1) such that

PXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Zn−1

k
(xn

k‖ψn−1
k (yn−1))

(k = 1,2).

For a stationary memoryless MAC W and a deterministic
function ψn, we define the set Rψn

n (W ) by

Rψn

n (W ) �
⋃

(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1 )∈S ψn

RW,n(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1),

where

RW,n(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1) � {(R1,R2) :

0 ≤ R1 ≤ 1
n

I(Xn
1 → Y n‖Xn

2 ),

0 ≤ R2 ≤ 1
n

I(Xn
2 → Y n‖Xn

1 ),

R1 +R2 ≤ 1
n

I(Xn
1 ,Xn

2 → Y n)},

and the triple of random variable (Xn
1 ,Xn

2 ,Y n) is drawn ac-
cording to the probability distribution

PXn
1 Xn

2 Y n(xn
1,x

n
2,y

n) =PXn
1 ‖Y n−1(xn

1‖yn−1)PXn
2 ‖Y n−1(xn

2‖yn−1)

·W n(yn|xn
1,x

n
2).

Here, W n(yn|xn
1,x

n
2) = ∏n

i=1 W (yi|x1i,x2i). For the sake of
convenience, in the case of perfect feedback, we denote
Rψn

n (W) by Rn(W ), where

Rn(W ) =
⋃

(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1 )∈Sn

RW,n(PXn
1 ‖Y n−1 ,PXn

2 ‖Y n−1).

We now show the Kramer’s capacity region.

Theorem 4 ([3, Theorem 3],[5, Theorem 5.1]). We are
given a memoryless MAC W and a pair of determinis-
tic functions Ψ such that ψki(yi) = yi (k = 1,2) for all
i = 1,2, · · · , i.e., perfect feedback is available at encoders.
Let lim

n→∞
conv

(
Rn(W )

)
be the set of limit points of conver-

gent sequences whose n-th term is in conv
(
Rn(W )

)
, where

conv(·) denotes the convex hull of the region. Then, we have

C (W ) = lim
n→∞

conv
(
Rn(W )

)
.

The next lemma implies another expression of the
channel capacity.

Lemma 9. For a stationary memoryless MAC W , we have

lim
n→∞

conv
(
Rn(W )

)
= cl

( ⋃
n∈N

Rn(W )
)

, (28)

where N denotes the set of all natural numbers and cl(·) de-
notes closure of the region.

Proof. The proof appeared in the proof of [3, Theorem
3]. This lemma can also be proved by the sup-additivity
of conv

(
Rn(W)

)
and Rn(W) (see the proof of [6, Lemma

27]).

We show that for stationary memoryless MACs with
perfect feedback, the region in Theorem 1 is equal to the
right-hand side of (28). First, the next theorem shows the
region in Theorem 1 includes the right-hand side of (28).

Theorem 5. For any stationary memoryless channel W and
any pair of deterministic functions Ψ,

⋃
(PX1‖Y,PX2‖Y)∈S Ψ

RW (PX1‖Y,PX2‖Y) ⊇ cl

( ⋃
n∈N

Rψn

n (W )
)

.
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Proof. For any fixed m ∈ N and causally conditioned distri-
butions PXm

1 ‖Y m−1 and PXm
2 ‖Y m−1 such that

PXm
1 ‖Y m−1(xm

1 ‖ym−1) = PXm
1 ‖Zm−1

1
(xm

1 ‖ψm−1
1 (ym−1)),

(29)

PXm
2 ‖Y m−1(xm

2 ‖ym−1) = PXm
2 ‖Zm−1

2
(xm

2 ‖ψm−1
2 (ym−1)),

(30)

we define the channel input distribution PX1‖Y =
{PXn

1 ‖Y n−1}∞n=1 as

PXn
1 ‖Y n−1(xn

1‖yn−1) =
 n

m �
∏
i=1

PXm
1 ‖Y m−1(xim

1,(i−1)m+1‖yim−1
(i−1)m+1)

·P
Xm′

1 ‖Y m′−1(x
n
1, n

m �m+1‖yn−1
 n

m �m+1),

(31)

where x j
1i = (x1i,x1,i+1, · · · ,x1 j) and m′ � n −  n

m�m.
PX2‖Y = {PXn

2 ‖Y n−1}∞n=1 is defined in a similar way. Accord-
ing to (29), (30) and (31), we have

PXn
k ‖Y n−1(xn

k‖yn−1)

=
 n

m �
∏
i=1

PXm
k ‖Zm−1

k
(xim

k,(i−1)m+1‖ψ im−1
k,(i−1)m+1(y

im−1
(i−1)m+1))

·P
Xm′

k ‖Zm′−1
k

(xn
k, n

m �m+1‖ψn−1
k, n

m �m+1(y
n−1
 n

m �m+1)),

for each k = 1,2. This implies (PX1‖Y,PX2‖Y) ∈ S Ψ. By
using this pair of channel input distributions (PX1‖Y,PX2‖Y),
(X1,X2,Y) in Theorem 1 can be represented as the sequence
of random variables {(Xn

1 ,Xn
2 ,Y n)}∞n=1 subject to

PXn
1 Xn

2 Y n(xn
1,x

n
2,y

n)

= PX1‖Y n−1(xn
1‖yn−1)PX2‖Y n−1(xn

2‖yn−1)W n(yn|xn
1,x

n
2)

=
 n

m �
∏
i=1

(
PXm

1 ‖Y m−1(xim
1,(i−1)m+1‖yim−1

(i−1)m+1)

·PXm
2 ‖Y m−1(xim

2,(i−1)m+1‖yim−1
(i−1)m+1)

·W m(yim
(i−1)m+1|xim

1,(i−1)m+1,x
im
2,(i−1)m+1)

)
·P

Xm′
1 ‖Y m′−1(x

n
1, n

m �m+1‖yn−1
 n

m �m+1)

·P
Xm′

2 ‖Y m′−1(x
n
2, n

m �m+1‖yn−1
 n

m �m+1)

·W m′
(yn

 n
m �m+1|xn

1, n
m �m+1,x

n
2, n

m �m+1).

This implies that {(Xim
1,(i−1)m+1,X

im
2,(i−1)m+1,Y

im
(i−1)m+1)}

 n
m �

i=1
are mutually independent, and are subject to the identical
distribution. Thus, by noting that PXn

1 Xn
2 ‖Y n−1 = PXn

1 ‖Y n−1 ·
PXn

2 ‖Y n−1 , we have

PY n(yn) =
 n

m �
∏
i=1

PY m(yim
(i−1)m+1)PY m′ (yn

 n
m �m+1), (32)

PY n‖Xn
1
(yn‖xn

1) =
 n

m �
∏
i=1

PY m‖Xm
1
(yim

(i−1)m+1‖xim
1,(i−1)m+1)

·P
Y m′ ‖Xm′

1
(yn

 n
m �m+1‖xn

1, n
m �m+1), (33)

PY n‖Xn
2
(yn‖xn

1) =
 n

m �
∏
i=1

PY m‖Xm
2
(yim

(i−1)m+1‖xim
2,(i−1)m+1)

·P
Y m′ ‖Xm′

2
(yn

 n
m �m+1‖xn

2, n
m �m+1). (34)

We define

in(xn
1,x

n
2 → yn) � log

PY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)

PY n(yn)
,

in(xn
1 → yn‖xn

2) � log
PY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

PY n‖Xn
2
(yn‖xn

2)
,

in(xn
2 → yn‖xn

1) � log
PY n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

PY n‖Xn
1
(yn‖xn

1)
.

Then, according to (32)-(34), we have

E[in(Xn
1 ,Xn

2 → Y n)] =
⌊ n

m

⌋
I(Xm

1 ,Xm
2 → Y m)

+ I(Xm′
1 ,Xm′

2 → Y m′
), (35)

E[in(Xn
1 → Y n‖Xn

2 )] =
⌊ n

m

⌋
I(Xm

1 → Y m‖Xm
2 )

+ I(Xm′
1 → Y m′‖Xm′

2 ), (36)

E[in(Xn
2 → Y n‖Xn

1 )] =
⌊ n

m

⌋
I(Xm

2 → Y m‖Xm
1 )

+ I(Xm′
2 → Y m′‖Xm′

1 ). (37)

On the other hand, according to Chebyshev’s inequality, for
any ε > 0, we have

Pr

{∣∣∣∣1n in(Xn
1 ,Xn

2 → Y n)− 1
n

E[in(Xn
1 ,Xn

2 → Y n)]
∣∣∣∣≥ ε

}

≤ 1
ε2 V

[
1
n

in(Xn
1 ,Xn

2 → Y n)
]

=
1

ε2n2

(  n
m �
∑
i=1

V

[
im(Xm

1 ,Xm
2 → Y m)

]

+V

[
im′(Xm′

1 ,Xm′
2 → Y m′

)
])

=
1

ε2n2

(⌊ n
m

⌋
σ2

m +σ2
m′
)
, (38)

where σ2
m and σ2

m′ is the variance of im(Xm
1 ,Xm

2 → Y m)
and im′(Xm′

1 ,Xm′
2 → Y m′

), respectively, and we have σ2
m,

σ2
m′ < 8|Y |m/e2 in the similar way to [13, Remark 3.1.1].

Similarly, we also obtain

Pr

{∣∣∣∣1nin(Xn
1 → Y n‖Xn

2 )− 1
n

E[in(Xn
1 → Y n‖Xn

2 )]
∣∣∣∣≥ ε

}

≤ 1
ε2n2

(⌊ n
m

⌋8|Y |m
e2 +

8|Y |m′

e2

)
, (39)
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Pr

{∣∣∣∣1n in(Xn
2 → Y n‖Xn

1 )− 1
n

E[in(Xn
2 → Y n‖Xn

1 )]
∣∣∣∣≥ ε

}

≤ 1
ε2n2

(⌊ n
m

⌋8|Y |m
e2 +

8|Y |m′

e2

)
. (40)

According to (35)-(37), we have

lim
n→∞

1
n

E[in(Xn
1 ,Xn

2 → Y n)] =
1
m

I(Xm
1 ,Xm

2 → Y m),

lim
n→∞

1
n

E[in(Xn
1 → Y n‖Xn

2 )] =
1
m

I(Xm
1 → Y m‖Xm

2 ),

lim
n→∞

1
n

E[in(Xn
2 → Y n‖Xn

1 )] =
1
m

I(Xm
2 → Y m‖Xm

1 ),

and by using (38)-(40), sequences { 1
n in(Xn

1 ,Xn
2 → Y n)}∞n=1,

{ 1
n in(Xn

1 → Y n‖Xn
2 )}∞n=1 and { 1

n in(Xn
2 → Y n‖Xn

1 )}∞n=1 con-
verge to 1

m I(Xm
1 ,Xm

2 → Y m), 1
m I(Xm

1 → Y m‖Xm
2 ) and

1
m I(Xm

2 → Y m‖Xm
1 ) in probability, respectively. Conse-

quently, we have I(X1,X2 → Y) = 1
m I(Xm

1 ,Xm
2 → Y m),

I(X1 → Y‖X2) = 1
m I(Xm

1 →Y m‖Xm
2 ) and I(X2 → Y‖X1) =

1
m I(Xm

2 → Y m‖Xm
1 ). This implies that for any m ∈

N and (PXm
1 ‖Y m−1 ,PXm

2 ‖Y m−1) ∈ S ψm
, there exists a pair

(PX1‖Y,PX2‖Y) ∈ S Ψ satisfying

RW (PX1‖Y,PX2‖Y) = RW,m(PXm
1 ‖Y m−1 ,PXm

2 ‖Y m−1).

By noting that the right-hand side of (5) is closed set, we
have the lemma.

In order to show the opposite relation, we need the next
lemma which can be proved in a similar way to [7, Lemma
1].

Lemma 10. For any sequence of random variables
(X1,X2,Y) = {(Xn

1 ,Xn
2 ,Y n)}∞n=1, we have

I(X1,X2 → Y) ≤ liminf
n→∞

1
n

I(Xn
1 ,Xn

2 → Y n),

I(X1 → Y‖X2) ≤ liminf
n→∞

1
n

I(Xn
1 → Y n‖Xn

2 ),

I(X2 → Y‖X1) ≤ liminf
n→∞

1
n

I(Xn
2 → Y n‖Xn

1 ).

By using this lemma, we have the next theorem.

Theorem 6. For any stationary memoryless MAC W and
any pair of deterministic functions Ψ,

⋃
(PX1‖Y,PX2‖Y)∈S Ψ

RW(PX1‖Y,PX2‖Y) ⊆ cl

( ⋃
n∈N

Rψn

n (W )
)

.

Proof. According to Lemma 10, for any triple of ran-
dom variables (X1,X2,Y) defined by a stationary mem-
oryless MAC W and a pair of channel input distribution
(PX1‖Y,PX2‖Y) ∈ S Ψ, we have

I(X1,X2 → Y) ≤ liminf
n→∞

1
n

I(Xn
1 ,Xn

2 → Y n),

I(X1 → Y‖X2) ≤ liminf
n→∞

1
n

I(Xn
1 → Y n‖Xn

2 ),

I(X2 → Y‖X1) ≤ liminf
n→∞

1
n

I(Xn
2 → Y n‖Xn

1 ).

Thus, for any γ > 0 and all sufficiently large n, we obtain

I(X1,X2 → Y) ≤ 1
n

I(Xn
1 ,Xn

2 → Y n)+ γ,

I(X1 → Y‖X2) ≤ 1
n

I(Xn
1 → Y n‖Xn

2 )+ γ,

I(X2 → Y‖X1) ≤ 1
n

I(Xn
2 → Y n‖Xn

1 )+ γ.

Since γ > 0 can be arbitrary small and

PXn
k ‖Y n−1(xn

k‖yn−1) = PXn
k ‖Zn−1(xn

k‖ψn−1(yn−1)) (k = 1,2),

we have

RW(PX1‖Y,PX2‖Y) ⊆ cl

( ⋃
n∈N

RW,n

)

for any (PX1‖Y,PX2‖Y) ∈ S Ψ.

By combining the Theorem 5 and Theorem 6, we have
the following theorem and corollary.

Theorem 7. For any stationary memoryless channel W and
any pair of deterministic functions Ψ,

⋃
(PX1‖Y,PX2‖Y)∈S Ψ

RW (PX1‖Y,PX2‖Y) = cl

( ⋃
n∈N

Rψn

n (W )
)

.

Corollary 2. For any stationary memoryless channel W
with perfect feedback, we have

⋃
(PX1‖Y,PX2‖Y)∈S

RW (PX1‖Y,PX2‖Y) = cl

( ⋃
n∈N

Rn(W )
)

.

6.3 Mixed MACs

In this section, we characterize the capacity region for mixed
MACs with deterministic feedback.

For a given m MACs (m may be infinite) W(i) =
{W (i)

Y n‖Xn
1 Xn

2
}∞n=1 (i = 1,2, · · · ,m), we define a MAC W =

{WY n‖Xn
1 Xn

2
}∞n=1 as

WY n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2) =

m

∑
i=1

αiW
(i)

Y n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2), (41)

where α1,α2, · · · are nonnegative constants satisfying
∑m

i=1αi = 1. We call this MAC as the mixed MAC of a
MAC family {αi,W(i)}m

i=1. We can verify that WY n‖Xn
1 Xn

2
is causally conditioned distribution by using a sequence of
conditional distributions {W

Yl |X j
1 X j

2Y j−1}n
j=1 such that

W
Yj |X j

1 X j
2Y j−1(y j|x j

1,x
j
2,y

j−1)



2116
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

=
∑yn

j+1∈Y n− j ∑m
i=1αiW

(i)
Y n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)

∑yn
j∈Y n− j+1 ∑m

i=1αiW
(i)

Y n‖Xn
1 Xn

2
(yn‖xn

1,x
n
2)

.

This type of MAC is useful to characterize the capacity re-
gion of the compound MAC problem which we will discuss
in the next section. To characterize the channel capacity re-
gion for mixed MACs, we use the following lemma.

Lemma 11. Let W be the mixed MAC of a MAC family
{αi,W(i)}m

i=1. Then, for any pair of deterministic function Ψ
and any pair of channel input distribution (PX1‖Y,PX1‖Y) ∈
S Ψ, we have

I(X1,X2 → Y) = inf
i:αi>0

I(X1,X2 → Y(i)),

I(X1 → Y‖X2) = inf
i:αi>0

I(X1 → Y(i)‖X2),

I(X2 → Y‖X1) = inf
i:αi>0

I(X2 → Y(i)‖X1).

where (X1,X2,Y) = {(Xn
1 ,Xn

2 ,Y n)}∞n=1 and (X1,X2,Y(i)) =
{(Xn

1 ,Xn
2 ,Y (i)n)}∞n=1 are defined by a random variables sub-

ject to the probability distribution PXn
1 Xn

2 Y n = PXn
1 ‖Y n−1 ·

PXn
2 ‖Y n−1 · WY n‖Xn

1 Xn
2

and PXn
1 Xn

2 Y (i)n = PXn
1 ‖Y n−1 · PXn

2 ‖Y n−1 ·
W (i)

Y n‖Xn
1 Xn

2
, respectively.

Proof. We use some properties of the consistent distribu-
tion. Let PFn

1
and PFn

2
be a code-function distribution good

with respect to the channel input distribution PXn
1 ‖Y n−1 and

PXn
2 ‖Y n−1 , respectively. Let Qn be the consistent distribution

determined by PFn
1

, PFn
2

and the mixed MAC W. Then, for
all n = 1,2, · · · , we have

Qn( f n
1 , f n

2 ,xn
1,x

n
2,y

n,zn
1,z

n
2)

=
m

∑
i=1

αiQ
(i)
n ( f n

1 , f n
2 ,xn

1,x
n
2,y

n,zn
1,z

n
2). (42)

where

Q(i)
n ( f n

1 , f n
2 ,xn

1,x
n
2,y

n,zn
1,z

n
2)

� PFn
1
( f n

1 )PFn
2
( f n

2 )1{ f n
1 (yn−1)}(x

n
1)1{ f n

2 (yn−1)}(x
n
2)

·W (i)
Y n‖Xn

1 Xn
2
(yn‖xn

1,x
n
2)1{ψn

1 (yn)}(zn
1)1{ψn

2 (yn)}(zn
2).

Thus, Q(i)
n is consistent distribution for PFn

1
, PFn

2
and W(i).

According to (42), for each n,

QFn
1 Fn

2 Y n( f n
1 , f n

2 ,yn) =
m

∑
i=1

αiQ
(i)
Fn

1 Fn
2 Y n( f n

1 , f n
2 ,yn). (43)

We define (F1,F2,Y) and (F1,F2,Y(i)) as a sequence of ran-
dom variables subject to the sequence of probability dis-
tributions {QFn

1 Fn
2 Y n}∞n=1 and {QFn

1 Fn
2 Y (i)n}∞n=1, respectively.

Then, according to (43) and [13, Lemma 7.9.2], we have

I(F1,F2;Y) = inf
i:αi>0

I(F1,F2;Y(i)),

I(F1;Y|F2) = inf
i:αi>0

I(F1;Y(i)|F2),

I(F2;Y|F1) = inf
i:αi>0

I(F2;Y(i)|F1),

where I(F1,F2;Y), I(F1;Y|F2) and I(F2;Y|F1) are spec-
tral (conditional) inf-mutual information rates [13, (7.7.1)-
(7.7.3)] of (F1,F2,Y), and I(F1,F2;Y(i)), I(F1;Y(i)|F2)
and I(F2;Y(i)|F1) are spectral (conditional) inf-mutual in-
formation rates of (F1,F2,Y(i)). On the other hand, ac-
cording to Lemma 5, we have I(F1,F2;Y) = I(X1,X2 →
Y), I(F1;Y|F2) = I(X1 → Y‖X2), I(F2;Y|F1) = I(X2 →
Y‖X1), I(F1,F2;Y(i)) = I(X1,X2 → Y(i)), I(F1;Y(i)|F2) =
I(X1 → Y(i)‖X2) and I(F2;Y(i)|F1) = I(X2 → Y(i)‖X1).
Hence, we obtain

I(X1,X2 → Y) = inf
i:αi>0

I(X1,X2 → Y(i)),

I(X1 → Y‖X2) = inf
i:αi>0

I(X1 → Y(i)‖X2),

I(X2 → Y‖X1) = inf
i:αi>0

I(X2 → Y(i)‖X1).

Since PFn
1

and PFn
2

is good with respect to the channel in-
put distribution PXn

1 ‖Y n−1 and PXn
2 ‖Y n−1 , respectively, we have

QXn
1 Xn

2 Y n = PXn
1 Xn

2 Y n and QXn
1 Xn

2 Y (i)n = PXn
1 Xn

2 Y (i) . This com-
pletes the proof.

The next theorem shows the capacity region for mixed
MACs.

Theorem 8. For the mixed MAC W of a MAC family
{αi,W(i)}m

i=1 and a pair of deterministic functions Ψ, we
have

CΨ(W) =
⋃

(PX1‖Y,PX2‖Y)∈SΨ

R{W(i)}m
i=1

(PX1‖Y,PX2‖Y),

where

R{W(i)}m
i=1

(PX1‖Y,PX2‖Y)

�
{
(R1,R2) : 0 ≤ R1 ≤ inf

i:αi>0
I(X1 → Y(i)‖X2),

0 ≤ R2 ≤ inf
i:αi>0

I(X2 → Y(i)‖X1),

R1 +R2 ≤ inf
i:αi>0

I(X1,X2 → Y(i))
}
.

Proof. We can easily prove the theorem by combining The-
orem 1 and Lemma 11.

6.4 Compound MACs with Deterministic Feedback

In this section, we characterize the capacity region for the
compound MAC problem when there exists deterministic
feedback.

First, we formulate the compound MAC problem.

Suppose that general MACs W(i) = {W (i)
Y n‖Xn

1 Xn
2
} (i =

1,2, · · · ,m) are given. Let M
(1)
n = {1,2, · · · ,M(1)

n } and
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M
(2)
n = {1,2, · · · ,M(2)

n } be a message set and fix encoders

{ f (1)
n [m1]}m1∈M

(1)
n

and { f (2)
n [m2]}m2∈M

(2)
n

, and a decoder

ϕn : Y n → M n
1 ×M n

2 . Note that encoders may use feed-
back. For each MAC W(i) the error probability is repre-
sented by

ε(i)
n =

1

M(1)
n M(2)

n
∑

m1∈M
(1)
n

∑
m2∈M

(2)
n

∑
yn∈Dc

m1,m2

·W (i)
Y n‖Xn

1 Xn
2
(yn‖ f n

1 [m1](ψn−1
1

· (yn−1)), f n
2 [m2](ψn−1

2 (yn−1))). (44)

We define an (n,M(1)
n ,M(2)

n ,(ε(i)
n )m

i=1)-code as sets of M(1)
n

and M(2)
n code functions, a decoder ϕn and the error prob-

abilities ε(i)
n (i = 1,2, · · · ,m). Now, we define achievability

and capacity region for the compound MAC problem.

Definition 9. A pair (R1,R2) is called achievable if there

exists a sequence of (n,M(1)
n ,M(2)

n ,(ε(i)
n )m

i=1)-codes such that

lim
n→∞

ε(i)
n = 0 (∀i = 1,2, · · · ,m)

liminf
n→∞

R(1)
n ≥ R1 and liminf

n→∞
R(2)

n ≥ R2.

The set of all achievable rates is called the capacity re-
gion of a pair of deterministic functions Ψ and a com-
pound MAC with deterministic feedback, and denoted by
CΨ({W(i)}m

i=1).

Our purpose in this section is to characterize the capac-
ity region for the compound MAC with deterministic feed-
back. To this end, we show a relation between the capacity
region for the compound MAC with deterministic feedback
and the capacity region for the mixed MAC with determin-
istic feedback.

Theorem 9. We are given a pair of deterministic functions
Ψ. Then, the capacity region CΨ(W) for a mixed MAC
W of a MAC family {αi,W(i)}m

i=1 is equal to the capacity
region CΨ({W(i)}m

i=1) for the compound MAC {W(i)}m
i=1.

Since the proof is very similar to the proof of [13, The-
orem 3.3.5], we omit the proof.

By combining Theorem 8 and Theorem 9, we have the
next corollary which clarifies the capacity region for com-
pound MACs with deterministic feedback.

Corollary 3. We are given a pair of deterministic functions
Ψ. Then, the capacity region CΨ({W(i)}m

i=1) for the com-
pound MAC {W(i)}m

i=1 is given by

CΨ({W(i)}m
i=1) =

⋃
(PX1‖Y,PX2‖Y)∈S Ψ

R{W(i)}m
i=1

(PX1‖Y,PX2‖Y).

7. Some Coding Problems Related to MACs with De-
terministic Feedback

In this chapter, we investigate the ε-coding problem, the

strong converse property, and the cost constraint problem
for general MACs with deterministic feedback.

7.1 ε-Coding for MACs with Deterministic Feedback

In this section, we show the capacity region for the ε-coding
problem of general MACs with deterministic feedback.

We first define the capacity region for the ε-coding
problem.

Definition 10. For a MAC W and a pair of deterministic
functions Ψ, a rate pair (R1,R2) is called ε-achievable if

there exists a sequence of (n,M(1)
n ,M(1)

n ,εn)-codes satisfy-
ing

limsup
n→∞

εn≤ε , liminf
n→∞

R(1)
n ≥ R1 and liminf

n→∞
R(2)

n ≥R2.

The set of all ε-achievable rates is called the ε-capacity re-
gion of a pair of deterministic functions Ψ and a MAC W
with deterministic feedback, and denoted by CΨ(ε |W).

We also define JW(R1,R2|PX1‖Y,PX2‖Y) by

JW(R1,R2|PX1‖Y,PX2‖Y)

� limsup
n→∞

PXn
1 Xn

2 Y n

(
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
2
(Y n‖Xn

2 )
≤ R1

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
1
(Y n‖Xn

1 )
≤ R2

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n(Y n)
≤ R1 +R2

)
,

where (Xn
1 ,Xn

2 ,Y n) is the random variable subject to the
joint probability distribution PXn

1 Xn
2 Y n such that PXn

1 Xn
2 Y n =

PXn
1 ‖Y n−1 ·PXn

2 ‖Y n−1 ·WY n‖Xn
1 Xn

2
. Then, we have the following

theorem.

Theorem 10. The ε-capacity region CΨ(ε |W) of a pair of
deterministic functions Ψ and a MAC W with deterministic
feedback is given by

CΨ(ε |W) =
⋃

(PX1‖Y,PX2‖Y)∈SΨ

cl
({(R1,R2) : R1 ≥ 0, R2 ≥ 0,

JW(R1,R2|PX1‖Y,PX2‖Y) ≤ ε}).
Proof. By using Lemma 2, 7 and 8, we can prove the the-
orem by following the similar argument in [13, Theorem
7.11.1].

7.2 Strong Converse Theorem for MACs with Determin-
istic Feedback

In this section, we discuss the strong converse property of
general MACs with deterministic feedback.

First, we define the strong converse property of MACs
with deterministic feedback.
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Definition 11. Let CΨ(W) be the capacity region of Ψ and
a MAC W with deterministic feedback. If for any (R1,R2)
satisfying (R1,R2) /∈ CΨ(W), all the (n,M(1)

n ,M(2)
n ,εn)-

codes with

liminf
n→∞

R(1)
n ≥ R1 and liminf

n→∞
R(2)

n ≥ R2

satisfy limn→∞ εn = 1, the MAC W is said to satisfy the
strong converse property.

Next, we define J∗W(R1,R2|PX1‖Y,PX2‖Y) by

J∗W(R1,R2|PX1‖Y,PX2‖Y)

� liminf
n→∞

PXn
1 Xn

2 Y n

(
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
2
(Y n‖Xn

2 )
≤ R1

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n‖Xn
1
(Y n‖Xn

1 )
≤ R2

or
1
n

log
PY n‖Xn

1 Xn
2
(Y n‖Xn

1 ,Xn
2 )

PY n(Y n)
≤ R1 +R2

)
. (45)

We also define the region R∗
W(PX1‖Y,PX2‖Y) by

R∗
W(PX1‖Y,PX2‖Y) �cl({(R1,R2) : R1 ≥ 0, R2 ≥ 0,

J∗W(R1,R2|PX1‖Y,PX2‖Y) < 1}).
(46)

Then, we have the following theorem and corollary on the
strong converse property by using Theorem 1, Lemma 2, 7
and 8, and following the proof of [13, Theorem 7.12.1 and
Corollary 7.12.1].

Theorem 11. We are given a pair of deterministic functions
Ψ. Then, a MAC W satisfies the strong converse property if
and only if ⋃

(PX1‖Y,PX2‖Y)∈SΨ

RW(PX1‖Y,PX2‖Y)

=
⋃

(PX1‖Y,PX2‖Y)∈S Ψ

R∗
W(PX1‖Y,PX2‖Y). (47)

The next corollary shows the relation between the
strong converse property and limit superior in probability
of directed information.

Corollary 4. If⋃
(PX1‖Y,PX2‖Y)∈SΨ

RW(PX1‖Y,PX2‖Y)

=
⋃

(PX1‖Y,PX2‖Y)∈S Ψ

RW(PX1‖Y,PX2‖Y) (48)

for a MAC W and Ψ, then W satisfies the strong converse
property, where RW(PX1‖Y,PX2‖Y) is the region defined in
Theorem 1 and

RW(PX1‖Y,PX2‖Y) � {(R1,R2) : 0 ≤ R1 ≤ I(X1 → Y‖X2),

0 ≤ R2 ≤ I(X2 → Y‖X1), R1 +R2 ≤ I(X1,X2 → Y)}.

7.3 MACs with Cost Constraint and Deterministic Feed-
back

In this section, we consider the coding of MACs with in-
put cost constraint when there exists deterministic feed-

back. First, we define cost functions c(n)
1 : X n

1 → R and

c(n)
2 : X n

2 → R for encoders 1 and 2, where R denotes the
set of all real numbers. If encoders { f n

1 [m1] ∈ F n
1 }m1∈M

(1)
n

and { f n
2 [m2]∈F n

2 }m2∈M
(2)
n

satisfy the input cost constraints

1
n

c(n)
1 ( f n

1 [m1](ψn−1
1 (yn−1))) ≤ Γ1, (49)

1
n

c(n)
2 ( f n

2 [m2](ψn−1
2 (yn−1))) ≤ Γ2 (50)

(∀m1 ∈ M
(1)
n , ∀m2 ∈ M

(2)
n , ∀yn−1 ∈ Y n−1),

then the pair of encoders is called the (Γ1,Γ2)-encoder
for the pair of deterministic functions Ψ. The set of all
rate pairs (R1,R2) that are achievable by a sequence of

(n,M(1)
n ,M(2)

n ,εn)-codes restricted to the class of (Γ1,Γ2)-
encoders for all n = 1,2 · · · is called the (Γ1,Γ2)-capacity
region of a pair of deterministic functions Ψ and a MAC W
with deterministic feedback, and denoted by CΨ

Γ1,Γ2
(W).

Let S Ψ
Γ1,Γ2

be the set of all pairs (PX1‖Y,PX2‖Y) ∈ S Ψ

satisfying

PXn
1 ‖Y n−1(X n

1 (Γ1)‖yn−1) = PXn
2 ‖Y n−1(X n

2 (Γ2)‖yn−1) = 1

(51)

for all n = 1,2, · · · , where

X n
1 (Γ1) �

{
xn

1 ∈ X n
1 :

1
n

c(n)
1 (xn

1) ≤ Γ1

}
,

X n
2 (Γ2) �

{
xn

2 ∈ X n
2 :

1
n

c(n)
2 (xn

2) ≤ Γ2

}
.

Then, we have the following theorem.

Theorem 12. The (Γ1,Γ2)-capacity region CΨ
Γ1,Γ2

(W) for a
pair of deterministic functions Ψ and a MAC W with deter-
ministic feedback is given by

CΨ
Γ1,Γ2

(W) =
⋃

(PX1‖Y,PX2‖Y)∈SΨ
Γ1,Γ2

RW(PX1‖Y,PX2‖Y).

Proof. When PFn
k

is good with respect to PXk‖Y n−1 such that

PXn
k ‖Y n−1(X n

k (Γk)‖yn−1) = 1 (k = 1,2),

we have

∑
f n
k ∈Fn

k :

1
n c

(n)
k ( f n

k (ψn−1
k (yn−1)))≤Γk

PFn
k
( f n

k )
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(a)
= ∑

xn
k∈X n

k (Γk)
PFn

k
(ϒn

k(ψ
n−1
k (yn−1),xn

k))

= ∑
xn

k∈X n
k (Γk)

PXn
k ‖Y n−1(xn

k‖yn−1) = 1 (k = 1,2),

where (a) follows because

F n
k =

⋃
xn

k∈X n
k

ϒn
k(ψ

n−1
k (yn−1),xn

k) and

ϒn
k(ψ

n−1
k (yn−1),xn

k)∩ϒn
k(ψ

n−1
k (yn−1), x̄n

k)= /0 (xn
k �= x̄n

k).

Thus, any f n
k such that PFn

k
( f n

k ) > 0 satisfies

1
n

c(n)
k ( f n

k (ψn−1
k (yn−1))) ≤ Γk (k = 1,2). (52)

By noting (52), the direct part is easily proved by fol-
lowing the proof of the direct part of Theorem 1 with
restricting channel input distributions (PX1‖Y,PX2‖Y) to
(PX1‖Y,PX2‖Y) ∈ S Ψ

Γ1,Γ2
.

To prove the converse part, we use Lemma 8. In
Lemma 8, let PFn

1
and PFn

2
be uniform distributions over

(Γ1,Γ2)-encoders { f n
1 [m1] ∈ F n

1 }m1∈M
(1)
n

and { f n
2 [m2] ∈

F n
2 }m2∈M

(2)
n

, respectively. Since (Γ1,Γ2)-encoders satisfy

(49) and (50), induced channel input distributions QXn
1 ‖Y n−1

and QXn
2 ‖Y n−1 satisfy

QXn
1 ‖Y n−1(X n

1 (Γ1)‖yn−1)
(a)
= ∑

xn
1∈X n

1 (Γ1)
PFn

1
(ϒn

1(ψ
n−1
1 (yn−1),xn

1))

= ∑
f n
1 ∈Fn

1 :

1
n c

(n)
1 ( f n

1 (ψn−1
1 (yn−1)))≤Γ1

PFn
1
( f n

1 ) = 1

and QXn
2 ‖Y n−1(X n

2 (Γ2)‖yn−1) = 1 for all n = 1,2 · · · , where
(a) comes from Lemma 1. Thus, by using Lemma 8 and
following the proof of the converse part of Theorem 1, we
can prove the converse part.

8. Conclusion

We have shown that the capacity region for general MACs
with deterministic feedback can be represented by the
information-spectrum formula of directed information. We
also have investigated the compound MAC problem, the ε-
coding problem, and the cost constraint problem for general
MACs with deterministic feedback, and showed the capac-
ity region for these problems. Furthermore, we have showed
the relation between the strong converse property and limit
superior in probability of directed information.

As directions of future works, it is important to inves-
tigate relations between a general MAC with deterministic
feedback and without deterministic feedback. For example,
it is important to find a general MAC of which capacity re-
gion is enlarged by using deterministic feedback, and to in-
vestigate a relation between the class of general MACs with

deterministic feedback and without deterministic feedback
which satisfy the strong converse property. We are going to
investigate some of these relations.
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