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A Phenomenological Study on Threshold Improvement via Spatial
Coupling∗

Keigo TAKEUCHI †a), Toshiyuki TANAKA ††b), and Tsutomu KAWABATA †c), Members

SUMMARY Kudekar et al. proved an interesting result in low-density
parity-check (LDPC) convolutional codes: The belief-propagation (BP)
threshold is boosted to the maximum-a-posteriori (MAP) threshold by spa-
tial coupling. Furthermore, the authors showed that the BP threshold for
code-division multiple-access (CDMA) systems is improvedup to the op-
timal one via spatial coupling. In this letter, a phenomenological model for
elucidating the essence of these phenomenon, called threshold improve-
ment, is proposed. The main result implies that threshold improvement
occurs for spatially-coupledgeneral graphical models.
key words: spatial coupling, threshold saturation, belief propagation (BP),
dynamical systems.

1. Introduction

Low-density parity-check (LDPC) convolutional codes have
been shown to outperform conventional LDPC block codes
when iterative decoders based on belief propagation (BP)
are used [1,2]. An LDPC convolutional code is constructed
as a one-dimensionally coupled chain of LDPC block codes.
As an explanation of this interesting result, it has been
shown theoretically [3, 4] and numerically [5] that the BP
threshold of an LDPC convolutional code is boosted to
the maximum-a-posteriori (MAP) one of the corresponding
LDPC block code. This phenomenon is called “threshold
saturation” via spatial coupling [3,4].

Recently, we showed that the threshold saturation also
occurs in spatially-coupled code-division multiple-access
(CDMA) systems: The BP threshold for sparsely-spread
CDMA systems is boosted to the optimal one via spatial
coupling [6, 7]. Since it is unclear whether the BP thresh-
old for any graphical model can be improved to the optimal
one, the term “threshold improvement” via spatial coupling
is used in this letter, instead of threshold saturation. It is be-
lieved that threshold improvement is universal, i.e., the per-
formance of the BP algorithm can be improved by coupling
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general graphical models spatially. This conjecture has been
verified for several graphical models [8, 9]. The purpose of
this letter is to present a phenomenological study that sup-
ports the universality of threshold improvement.

Threshold improvement is a static property of spatially-
coupled graphical models, rather than dynamical properties.
It is well-known that BP can calculate the MAP solution
exactly if the factor graph defining the BP is a tree [10].
Furthermore, if the BP algorithm for a general factor graph
converges, the BP fixed-points correspond to the station-
ary points of the so-called Bethe free energy for the fac-
tor graph [11], while the MAP solution corresponds to the
global minimizer of the true free energy. Roughly speaking,
the Bethe free energy is obtained by locally approximating
the original factor graph by trees. These results allow us
to characterize the static properties of the BP algorithm by
stationary solutions to a dynamical system that has a poten-
tial energy function whose fixed-points coincide with those
for the Bethe free energy, which is analogous to the density
evolution (DE) equation for LDPC codes. In this letter, we
restrict graphical models to such a class of graphical models
that BP algorithms converge asymptotically.

As a phenomenological model for elucidating thresh-
old improvement, we propose a spatially-coupled dynami-
cal system with multiple stable solutions. This letter is or-
ganized as follows: In Section 2 the BP algorithm is char-
acterized via a dynamical system with multiple stable so-
lutions after presenting a motivating example for regular
LDPC codes. In Section 3 a spatially-coupled dynamical
system with multiple stable solutions is defined. Further-
more, an intuitive understanding of threshold improvement
is presented. Section 4 presents the main result of this letter.

2. Systems without Spatial Coupling

2.1 Density Evolution for regular LDPC Codes

The explicit formula of the Bethe free energy for LDPC
codes is unknown. We shall construct potential energy as-
sociated with the Bethe free energy from DE. Let us con-
sider the DE equation for regular LDPC codes over binary
erasure channel (BEC) with erasure probabilityǫ [12, The-
orem 3.50]

yt+1 − yt = −
dU
dy

(yt; ǫ), y0 = 1, (1)

where the potential energy associated with the Bethe free
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energy is given by

U(y; ǫ) =
∫ y

0
{z − ǫλ(c(z))} dz, (2)

with c(y) = 1 − ρ(1 − y). In these expressions,yt denotes
the bit error rate (BER) for the BP decoder in iterationt.
Furthermore,λ(y) andρ(y) are given byλ(y) = ydv−1 and
ρ(y) = ydc−1, respectively, withdv anddc denoting the de-
grees of variable and check nodes. Note that the BP fixed-
point y∞ corresponds to a stationary point of the potential
energy (2). Whenǫ is smaller than the BP thresholdǫBP, the
potential (2) has the unique stable solutionyl = 0. This ob-
servation implies that the BER converges to zero int → ∞
for ǫ < ǫBP. When ǫ > ǫBP, on the other hand, the po-
tential (2) has two stable solutionsyl = 0 andyr > 0, and
one unstable solutionyu > 0, satisfyingyl < yu < yr. The
BER in this case converges to the strictly positive valueyr
in t → ∞. Threshold saturation [4] implies thatyt can ap-
proach the smaller stable solutionyl = 0 for ǫ ∈ [ǫBP, ǫMAP)
by spatial coupling, withǫMAP denoting the MAP threshold.

2.2 Dynamical System with Multiple Stable Solutions

In order to investigate the universality of threshold improve-
ment, we consider a continuous-time dynamical system with
a general potential energy functionU(y)

dy
dt
= −

dU
dy

(y), y(0) = y0 ∈ R. (3)

As a simple example, let us consider a bistable potential en-
ergy functionU(y), shown in Fig. 1. The potential energy
U(y) has two stable solutions and one unstable solutionyu.
Let y− andy+ denote the smaller and larger stable solutions,
respectively, i.e.,y− < y+. If the initial valuey0 is larger than
the unstable solutionyu, the statey(t) converges to the larger
stable solutiony+ in t→ ∞. Otherwise,y(t)→ y−. Without
loss of generality, we assume that largery(t) implies better
performance. The larger stable solutiony+ corresponds to
the optimal solution. Note that the term “optimal solution”
is used to represent not theglobal stable solution but the
largest stable solution in this letter. The typical BP solution
corresponds to the smaller stable solutiony−, because the
initial value for the BP algorithm is commonly smaller than
the unstable solutionyu, e.g., see [6,13] for CDMA systems.
Thus, the inability of BP to get across the unstable solution
makes the BP performance worse than the optimal perfor-
mance when the potential energyU(y) is not monostable.

In this letter, the potential energyU(y) is assumed to
have multiple stable solutions. We hereafter refer to the
largest stable solution, denoted byy+, and the other stable
solution(s) as the optimal solution and the BP solution(s),
respectively.

3. Spatially-Coupled Dynamical System

In order to obtain functionality of escaping from the BP so-
lution(s), we consider a collection of identical systems cou-
pled in a one-dimensional manner. Letx ∈ (−xmax, xmax)

U(y)

y=y+

y=y-

y=yu

y

Fig. 1 Bistable potential energyU(y).

denote the position of a system in the spatially coupling di-
mension, withxmax > 0 defining the size of the whole sys-
tem, and lety(x, t) be the state of the system at positionx
and at timet. The spatially-coupled system we consider is
governed by the equation

∂y

∂t
= −

dU
dy

(y) −
1
2

D′(y)

(

∂y

∂x

)2

+
∂

∂x

(

D(y)
∂y

∂x

)

, (4)

whereD(y) > 0 is a positive coupling function. We study
the system (4) with the initial and boundary conditions

y(x, 0) = y0 ∈ R for x ∈ (−xmax, xmax), (5)

y(±xmax, t) = y+. (6)

Let (2N + 1) denote the number of coupled systems.
Threshold improvement occurs when the number of coupled
systems, or equivalentlyN, tends to infinity and when the
coupling strength‖D(y)‖ tends to zero [4,7]. The system (4)
can be regarded as a space-continuum limit of (2N + 1)
space-discrete coupled systems inN → ∞, or an approx-
imation of finite differences in the coupled systems. These
interpretations are justifiable by letting∆ = xmax/N and con-
sidering (2N + 1) copies of the original system at positions
x = i∆ for i = −N,−N+1, . . . ,N−1,N. As N gets large, the
differencey((i+1)∆, t)−y(i∆, t) is expected to be sufficiently
small, so that one can approximate the difference by

y((i + 1)∆, t) − y(i∆, t) ≈ ∆
∂y

∂x
+
∆2

2
∂2y

∂x2
. (7)

The difference (7) is commonly included into a nonlinear
function. Expanding the nonlinear function with respect to
∆ yields a coupling functionD(y) depending on the state
y(x, t). See [7] for spatially-coupled CDMA systems. The
last two terms on the right-hand side of (4) come from such
approximations of space-discrete coupled systems.

Threshold improvement for spatially-coupled CDMA
systems can be understood from (4) [7]. Unfortunately, the
phenomenological model (4) does not include LDPC con-
volutional codes. This is because a higher-order approxima-
tion is needed near the boundaries for an ensemble of LDPC
convolutional codes [4], while the DE equation can be ap-
proximated by (4) in the bulk region far from the boundaries.

The system (4) can be regarded as a dynamical sys-
tem with the so-called Ginzburg-Landau free energy func-
tional H(y) [14] as its potential energy
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∂y

∂t
= −
δH
δy

(y), (8)

with

H(y) =
∫ xmax

−xmax















U(y(x, t)) +
D(y(x, t))

2

(

∂y

∂x

)2












dx. (9)

In (8), δ/δy denotes the functional derivative with respect to
y. The energy functional (9) implies that we impose spatial
coupling that smooths the statey(x, t) spatially. The point
of spatial coupling is that the boundaries are fixed to the
optimal solutiony+. A “stretched rubber rope,” both ends
of which are fixed to the optimal solutiony+, is utilized to
“climb” the potential barriers between the BP solution(s)
and the optimal solution. The tension of the rubber rope
lifts the statey(x, t) toward the optimal solution. In LDPC
convolutional codes, such a boundary condition results from
termination of convolutional codes [4].

4. Main Result

For simplicity, we hereafter assume that the coupling func-
tion does not depend ony, i.e., D(y) = D > 0. We believe
that the main result holds for state-dependent coupling func-
tions. We focus on stationary solutionsy(x) to (4), satisfying

0 = −
dU
dy

(y) + D
d2y

dx2
, y(±xmax) = y+. (10)

Figure 2 shows examples of the stationary solutiony(x) for
the double-well potentialU(y) = y4/4 − y2/2 − hy with
the parameterh ∈ R. The double-well potential has a
metastable solutiony− < 0 (resp.y+ > 0) and a stable
solutiony+ > 0 (resp.y− < 0) for h > 0 (resp.h < 0).
Whenh = 0.01, the state approaches the uniform solution
y(x) = y+. Whenh = −0.01, on the other hand, the station-
ary solutiony(x) is a pot-shaped solution. Note that this so-
lution is a natural solution for the case where the statey(x, t)
cannot climb potential barriers. Pot-shaped stationary solu-
tions also appear in LDPC convolutional codes. See [4] for
the details.

The main result of this letter is that there are no pot-
shaped stationary solutions if the boundaries are fixed to the
global stable solution.

Definition 1: A stationary solutiony(x) is called a pot-
shaped solution if the following conditions are satisfied:

• y(0) < y(±xmax).
• dy/dx ≥ 0 for x > 0.

Note that any solution to (10) is an even function ofx,
because the differential equation (10) is invariant under the
transformationx′ = −x. Thus, the second condition implies
dy/dx ≤ 0 for x < 0.

Theorem 1: Suppose that the coupling functionD(y) > 0
does not depend ony. If the largest stable solutiony+ of
U(y) is the unique global stable solution, then, there are no
pot-shaped stationary solutions.
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x
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pot-shaped solution

Fig. 2 Stationary solutions to (4) forD = 0.01 andxmax =

1. The initial valuey0 is equal toy−.

Before proving Theorem 1, we shall present the sig-
nificance of Theorem 1. Obviously, the uniform solution
y(x) = y+ is a stationary solution to the spatially-coupled
dynamical system (4). Intuitively, non-monotonic solutions
on x ∈ [0, xmax] (or x ∈ [−xmax, 0]) cannot become sta-
tionary solutions to (4) with the uniform initial condition
y(x, 0) = y0, because the statey(x, t) should move closer to
y+ as the positionx gets closer to the boundary. Thus, The-
orem 1 implies that the statey(x, t) converges to the uniform
solutiony(x) = y+ in t → ∞ for any initial value, i.e., the
state can approach the optimal solution for general potential
energyU(y) such that the largest stable solutiony+ is the
unique global stable solution.

Remark 1: Suppose that the continuum approximation of
the DE equation(s) for a spatially-coupled graphical model
is given by (4). We assume that the potential energyU(y)
is bistable and that it contains a parameterǫ, which corre-
sponds to the erasure probability for LDPC codes over BEC
or to the system load for CDMA systems. We rewrite the
potential energy asU(y; ǫ). The potentialU(y−; ǫ) at the
smaller stable solutiony− is assumed to be higher than that
at the larger stable solutiony+ for smallǫ, as shown in Fig. 1.
As ǫ increases, the potentialU(y−; ǫ) at the smaller stable
solution is assumed to get lower, while the potential at the
larger stable solution gets higher. Eventually, the potential
energyU(y; ǫ) may have the same height at the two stable
solutions atǫ = ǫ(SC)

BP . Theorem 1 allows us to define the
BP threshold for the spatially-coupled graphical model as
the pointǫ(SC)

BP at which U(y−; ǫ
(SC)
BP ) = U(y+; ǫ

(SC)
BP ). The

BP thresholdǫ(SC)
BP coincides with the optimal threshold for

spatially-coupled CDMA systems [7]. It is unclear whether
the BP thresholdǫ(SC)

BP coincides with the optimal one forany
spatially-coupled graphical model.

Proof of Theorem 1: We shall prove Theorem 1 by con-
tradiction. Suppose that there is a pot-shaped stationary so-
lution y(x). Integrating (10) after multiplying both sides by
dy/dx, we obtain
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Fig. 3 Bifurcation diagram forxmax = 1, obtained by nu-
merical simulations of (4). The initial valuey0 is equal to
the smaller stable solution.

D
2

(

dy
dx

(x)

)2

= U(y) +C, (11)

with a constantC. We use the boundary condition
y(±xmax) = y+ and the positivity of the left-hand side of
(11) to findC ≥ −U(y+), where we have used the assump-
tion thaty+ is the unique minimizer ofU(y). If y+ was a
local minimizer, the inequality would have to be replaced
by C ≥ −U(y+)+∆U, with ∆U > 0 denoting the energy gap
betweeny+ and the global minimizer.

Since we have assumed that there is a stationary solu-
tion satisfyingdy/dx ≥ 0 (resp.dy/dx ≤ 0) for x > 0 (resp.
x < 0), integrating (11) after taking the square root of both
sides yields

F(y) = x − x̄ for x > 0, (12)

with

F(y) =

√

D
2

∫ y

ȳ

dy′
√

U(y′) +C
, (13)

whereȳ denotes a value betweeny(0) andy+ that does not
minimize the potential energy, i.e.,U(ȳ) > U(y+). In (12),
we have selected a constant of integration such thaty(x̄) = ȳ.
Repeating the same argument forx < 0, we obtain

y = F−1(|x| − x̄) for x ∈ (−xmax, xmax), (14)

whereF−1 denotes the inverse function of (13).
Any stationary solution must be differentiable since it

is a solution to the second-order differential equation (10).
However, the solution (14) is not differentiable at the origin
unlessdF−1/dy|y=y(0) = 0 or dF/dy|y=y(0) = ∞, in which the
valuey(0) at the origin is given byy(0) = F−1(−x̄). The
uniqueness of the global stable solution implies that the in-
tegrand in (13) can diverge only aty = y+. Thus, a necessary
condition fordF/dy|y=y(0) = ∞ is y(0) = y+, which contra-
dictsy(0) < y(±xmax). ✷

What occurs when the boundaries are fixed to a
metastable solution? Figure 3 shows a bifurcation dia-
gram of stationary solutions for the double-well potential
U(y) = y4/4 − y2/2 − hy with the parameterh. The larger
stable solutiony+ for h < 0 corresponds to the metastable
solution, i.e., the boundaries are fixed to the metastable solu-
tion. The state converges to a pot-shaped stationary solution
in t → ∞ when (D,−h) is located above the curve shown in
Fig. 3. Otherwise, the state converges to the uniform solu-
tiony = y+. As long asD is finite, the state may be conveyed
to the uniform solutiony = y+ for smallh. However, such
a solution seems to disappear inD → 0, which corresponds
to the limit in which threshold improvement occurs [4,7].
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