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A Phenomenological Study on Threshold Improvement via Spadl

Coupling*

Keigo TAKEUCHI 7@, Toshiyuki TANAKA ) and Tsutomu KAWABATA 79, Members

SUMMARY  Kudekar et al. proved an interesting result in low-density
parity-check (LDPC) convolutional codes: The belief-mgation (BP)
threshold is boosted to the maximum-a-posteriori (MAPgshiold by spa-
tial coupling. Furthermore, the authors showed that the lB&shold for
code-division multiple-access (CDMA) systems is improvgdto the op-
timal one via spatial coupling. In this letter, a phenomegaal model for
elucidating the essence of these phenomenon, called thdeshprove-
ment, is proposed. The main result implies that thresholgravement
occurs for spatially-couplegdeneral graphical models.

keywords: spatial coupling, threshold saturation, belief propagation (BP),
dynamical systems.

1. Introduction

Low-density parity-check (LDPC) convolutional codes have
been shown to outperform conventional LDPC block codes

when iterative decoders based on belief propagation (BP)

are used[1,/2]. An LDPC convolutional code is constructed
as a one-dimensionally coupled chain of LDPC block codes.
As an explanation of this interesting result, it has been
shown theoretically [3,14] and numerically! [5] that the BP
threshold of an LDPC convolutional code is boosted to
the maximum-a-posteriori (MAP) one of the corresponding
LDPC block code. This phenomenon is called “threshold
saturation” via spatial couplin@][3, 4].

Recently, we showed that the threshold saturation also

occurs in spatially-coupled code-division multiple-agse
(CDMA) systems: The BP threshold for sparsely-spread
CDMA systems is boosted to the optimal one via spatial
coupling [6/7]. Since it is unclear whether the BP thresh-
old for any graphical model can be improved to the optimal
one, the term “threshold improvement” via spatial coupling
is used in this letter, instead of threshold saturatiors Iitd-
lieved that threshold improvement is universal, i.e., tae p
formance of the BP algorithm can be improved by coupling
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general graphical models spatially. This conjecture hasbe
verified for several graphical models [8, 9]. The purpose of
this letter is to present a phenomenological study that sup-
ports the universality of threshold improvement.

Threshold improvementis a static property of spatially-
coupled graphical models, rather than dynamical proggertie
It is well-known that BP can calculate the MAP solution
exactly if the factor graph defining the BP is a treel[10].
Furthermore, if the BP algorithm for a general factor graph
converges, the BP fixed-points correspond to the station-
ary points of the so-called Bethe free energy for the fac-
tor graph [11], while the MAP solution corresponds to the
global minimizer of the true free energy. Roughly speaking,
the Bethe free energy is obtained by locally approximating
the original factor graph by trees. These results allow us
to characterize the static properties of the BP algorithm by
stationary solutions to a dynamical system that has a poten-
tial energy function whose fixed-points coincide with those
for the Bethe free energy, which is analogous to the density
evolution (DE) equation for LDPC codes. In this letter, we
restrict graphical models to such a class of graphical nsodel
that BP algorithms converge asymptotically.

As a phenomenological model for elucidating thresh-
old improvement, we propose a spatially-coupled dynami-
cal system with multiple stable solutions. This letter is or
ganized as follows: In Sectidd 2 the BP algorithm is char-
acterized via a dynamical system with multiple stable so-
lutions after presenting a motivating example for regular
LDPC codes. In Sectionl 3 a spatially-coupled dynamical
system with multiple stable solutions is defined. Further-
more, an intuitive understanding of threshold improvement
is presented. Sectidmh 4 presents the main result of thes.lett

2. Systems without Spatial Coupling
2.1 Density Evolution for regular LDPC Codes

The explicit formula of the Bethe free energy for LDPC
codes is unknown. We shall construct potential energy as-
sociated with the Bethe free energy from DE. Let us con-
sider the DE equation for regular LDPC codes over binary
erasure channel (BEC) with erasure probabiifit2, The-
orem 3.50]

du
Y1 — Yt = —d—(yt: €, yo=1 (1)
Y

where the potential energy associated with the Bethe free
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energy is given by

U(yie) = fo 2 d(c@)) dz @)

with ¢(y) = 1 - p(1 — y). In these expressiong, denotes
the bit error rate (BER) for the BP decoder in iteration
Furthermore A(y) andp(y) are given byi(y) = y*~* and

p(y) = y*1, respectively, withd, andd, denoting the de- y

grees of variable and check nodes. Note that the BP fixed- ]

point ., corresponds to a stationary point of the potential Fig.1 Bistable potential energy (y).

energy[(2). When is smaller than the BP threshaigh, the

potential [2) has the unique stable solutigr= 0. Thisob-  genote the position of a system in the spatially coupling di-
servation implies that the BER converges to zero #a o mension, Withxmax > O defining the size of the whole sys-

for e < egp. Whene > egp, On the other hand, the po-  tem, and lety(x,t) be the state of the system at position
tential [2) has two stable solutiops = 0 andy; > 0, and  and at timet. The spatially-coupled system we consider is
one unstable solutiop, > 0, satisfyingy; < yu < yr. The governed by the equation

BER in this case converges to the strictly positive vajue

int — oo. Threshold saturation [4] implies that can ap- oy  du 1, .(dy 29 dy
proach the smaller stable solutign= 0 for € € [egp, emap) ot —d—y(y) —50W(5) *5x\PW) @

by spatial coupling, witlwap denoting the MAP threshold. i . i i
whereD(y) > 0 is a positive coupling function. We study

2.2 Dynamical System with Multiple Stable Solutions the system({4) with the initial and boundary conditions

In order to investigate the universality of threshold imygo y(x0)=yoe R for x € (—Xmax Xmax), (5)
ment, we consider a continuous-time dynamical system with
ageneral potential energy functiobl (y) Y(£Xmax 1) = 4. (6)
dy _ _d_U(y)’ 4(0) = yo € R, 3) Let (2N + 1) denote the number of coupled systems.
dt dy Threshold improvement occurs when the number of coupled

As a simple example, let us consider a bistable potential en-SyStéms, or equivalentli, tends to infinity and when the
ergy functionU(y), shown in Fig[ll. The potential energy €0UPling strengtfiD(y)ll tends to zerd [4.7]. The systef (4)
U(y) has two stable solutions and one unstable solusion ~ ¢@n be regarded as a space-continuum limit df 21)
Lety_ andy. denote the smaller and larger stable solutions, SPace-discrete coupled systemsNn— co, or an approx-
respectively, i.ey_ < y.. If the initial valueyo is largerthan ~ imation of finite diferences in the coupled systems. These
the unstable solution,, the statey(t) converges to the larger ~ INterpretations are justifiable by lettidg= xmax/N and con-
stable solutiony, in t — co. Otherwisey(t) — y_. Without S|dgr|ng (;I\I + 1) copies of the original system at positions
loss of generality, we assume that largé) implies better ~ X = iAfori=—N,—N+1,...,N-1,N. AsN gets large, the
performance. The larger stable solutigncorresponds to  differencey((i+1)A, ) -4(iA, 1) is expected to be siiciently

the optimal solution. Note that the term “optimal solution” Small, so that one can approximate thiéefence by
is used to represent not tigbobal stable solution but the _ . dy A%

largest stable solution in this letter. The typical BP solution y((i + DAY —y(A. ) ~ Aos + = 5. (")
corresponds to the smaller stable solution because the

initial value for the BP algorithm is commonly smaller than The diference((l7) is commonly included into a nonlinear
the unstable solutiop, e.g., se€ [6,13] for CDMA systems.  function. Expanding the nonlinear function with respect to
Thus, the inability of BP to get across the unstable solution 2 Yields a coupling functiorD(y) depending on the state
makes the BP performance worse than the optimal perfor-y(x.1). Seel7] for spatially-coupled CDMA systems. The

mance when the potential energdyy) is not monostable. last two terms on the right-hand side of (4) come from such
In this letter, the potential enerdy(y) is assumed to ~ @pproximations of space-discrete coupled systems.
have multiple stable solutions. We hereafter refer to the ~ Threshold improvement for spatially-coupled CDMA

largest stable solution, denoted by, and the other stable ~ Systems can be understood frdrh (4) [7]. Unfortunately, the
solution(s) as the optimal solution and the BP solution(s), Phenomenological modell(4) does not include LDPC con-

respectively. volutional codes. This is because a higher-order approxima
tion is needed near the boundaries for an ensemble of LDPC

3. Spatially-Coupled Dynamical System convolutional codes [4], while the DE equation can be ap-
proximated byl(#) in the bulk region far from the boundaries.

In order to obtain functionality of escaping from the BP so- The system[{4) can be regarded as a dynamical sys-

lution(s), we consider a collection of identical systema-co tem with the so-called Ginzburg-Landau free energy func-
pled in a one-dimensional manner. bLete (—Xmax Xmax) tional H(y) [14] as its potential energy
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~oy ). (8)

H(y) = i :ax (%)Z]dx. (9)

In (), 6/6y denotes the functional derivative with respect to
y. The energy functional{9) implies that we impose spatial
coupling that smooths the stagéx, t) spatially. The point

of spatial coupling is that the boundaries are fixed to the
optimal solutiony,. A “stretched rubber rope,” both ends
of which are fixed to the optimal solutian,, is utilized to
“climb” the potential barriers between the BP solution(s)
and the optimal solution. The tension of the rubber rope
lifts the statey(x,t) toward the optimal solution. In LDPC
convolutional codes, such a boundary condition resultafro
termination of convolutional codes|[4].

D(y(x.1)

{U(y(x, )+ —2

4. Main Result

For simplicity, we hereafter assume that the coupling func-
tion does not depend ap i.e.,D(y) = D > 0. We believe
that the main result holds for state-dependent coupling-fun
tions. We focus on stationary solutiof() to (4), satisfying

d%y
dx2’
Figure[2 shows examples of the stationary solutifx) for
the double-well potential (y) = y*/4 — y?/2 — hy with
the parameteh € R. The double-well potential has a
metastable solutiog- < O (resp.y, > 0) and a stable
solutiony, > O (resp.y- < 0) forh > 0 (resp.h < 0).
Whenh = 0.01, the state approaches the uniform solution
y(X) = y,. Whenh = -0.01, on the other hand, the station-
ary solutiony(x) is a pot-shaped solution. Note that this so-
lution is a natural solution for the case where the sjétet)
cannot climb potential barriers. Pot-shaped stationaly-so
tions also appear in LDPC convolutional codes. $Sée [4] for
the details.

The main result of this letter is that there are no pot-
shaped stationary solutions if the boundaries are fixedgo th
global stable solution.

(10)

du
0= —d—(y) +D Y(£Xmax) = Y+
y

Definition 1: A stationary solutiony(x) is called a pot-
shaped solution if the following conditions are satisfied:

* y(0) < y(EXmax)-
e dy/dx > 0 forx> 0.
Note that any solution t¢_(10) is an even functiorxpf
because the fierential equatior{{10) is invariant under the

transformationk’ = —x. Thus, the second condition implies
dy/dx < 0forx<O.

Theorem 1: Suppose that the coupling functi@(y) > 0O
does not depend om If the largest stable solutiom, of

3
1.5
uniform solution
1
h=0.01
0.5
> ot
05
pot-shaped solution
1 h=-0.01
-15 . s .
-1 -0.5 0 0.5 1

X

Fig.2 Stationary solutions t¢14) fdd = 0.01 andXmax =
1. The initial valueyg is equal toy.-.

Before proving Theorer] 1, we shall present the sig-
nificance of Theoreri]1. Obviously, the uniform solution
y(X) = y, is a stationary solution to the spatially-coupled
dynamical systeni{4). Intuitively, non-monotonic soluiso
on X € [0, Xmax (Or X € [—Xmax O]) cannot become sta-
tionary solutions to[{4) with the uniform initial condition
y(x, 0) = yo, because the staigx, t) should move closer to
y+ as the positiorx gets closer to the boundary. Thus, The-
orent1 implies that the staigx, t) converges to the uniform
solutiony(X) = y, int — oo for any initial value, i.e., the
state can approach the optimal solution for general patenti
energyU (y) such that the largest stable solutignis the
unigue global stable solution.

Remark 1: Suppose that the continuum approximation of
the DE equation(s) for a spatially-coupled graphical model
is given by [4). We assume that the potential endydy)

is bistable and that it contains a parametewhich corre-
sponds to the erasure probability for LDPC codes over BEC
or to the system load for CDMA systems. We rewrite the
potential energy atl(y; ). The potentiall(y_; €) at the
smaller stable solutiop_ is assumed to be higher than that
atthe larger stable solutign for smalle, as shown in Fid.]1.

As € increases, the potentibl(y_; €) at the smaller stable
solution is assumed to get lower, while the potential at the
larger stable solution gets higher. Eventually, the paaént
energyU(y; €) ma2/ have the same height at the two stable
solutions ate = eBSPC). Theorenfll allows us to define the
BP threshold for the spatially-coupled graphical model as
the pointe) at whichU(y_; e£) = U(y.;e57). The
BP thresholdséspc) coincides with the optimal threshold for
spatially-coupled CDMA system§s|[7]. It is unclear whether
the BP threshole>" coincides with the optimal one fany
spatially-coupled graphical model.

Proof of Theorem[I} We shall prove Theorehi 1 by con-
tradiction. Suppose that there is a pot-shaped statiomary s

U(y) is the unique global stable solution, then, there are nolution y(X). Integrating[(ID) after multiplying both sides by

pot-shaped stationary solutions.

dy/dx, we obtain
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Fig.3 Bifurcation diagram foixyax = 1, obtained by nu-
merical simulations off{4). The initial valug is equal to
the smaller stable solution.

D (dy, .\’

3 (2w ~vw-+c )
with a constantC. We use the boundary condition
y(xXmax) = y+ and the positivity of the left-hand side of
(@7) to findC > —U(y,), where we have used the assump-
tion thaty, is the unique minimizer otU(y). If y, was a
local minimizer, the inequality would have to be replaced
by C > -U(y,) + AU, with AU > 0 denoting the energy gap
betweery, and the global minimizer.

Since we have assumed that there is a stationary solu-

tion satisfyingdy/dx > O (resp.dy/dx < 0) for x > O (resp.
x < 0), integrating[(Il) after taking the square root of both
sides yields

F(y)=x-Xx forx>0, (12)
with
_ B (M
Fly) = ny NV ToEh (13)

wherey denotes a value betweg(0) andy, that does not
minimize the potential energy, i.eJ(y) > U(y,). In (I2),
we have selected a constant of integration suchib@t= y.
Repeating the same argument fo« 0, we obtain

y=F (X -X forxe (—Xmax Xmax, (14

whereF ! denotes the inverse function 6f{13).

Any stationary solution must beféérentiable since it
is a solution to the second-ordeffférential equatior_(10).
However, the solutiori.(14) is notftierentiable at the origin
unlessdF~/dyl,-,) = 0 or dF/dyl,—,) = o, in which the
value y(0) at the origin is given by(0) = F~1(-X). The
unigueness of the global stable solution implies that the in
tegrand in[(IB) can diverge only@t y.. Thus, a necessary
condition fordF/dyl,=,) = o is y(0) = y., which contra-
dictsy(0) < y(£Xmax)- |
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What occurs when the boundaries are fixed to a
metastable solution? Figufé 3 shows a bifurcation dia-
gram of stationary solutions for the double-well potential
U(y) = y*/4 — y?/2 — hy with the parametehn. The larger
stable solutiory, for h < 0 corresponds to the metastable
solution, i.e., the boundaries are fixed to the metastalie so
tion. The state converges to a pot-shaped stationary spluti
int — oo when O, —h) is located above the curve shown in
Fig.[3. Otherwise, the state converges to the uniform solu-
tiony = y.. Aslong ad is finite, the state may be conveyed
to the uniform solutiorny = y, for smallh. However, such
a solution seems to disappeatn— 0, which corresponds
to the limit in which threshold improvement occurs[4, 7].
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