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PAPER Special Section on Information Theory and Its Applications

Random-Coding Exponential Error Bounds for Channels with
Action-Dependent States

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY Weissman introduced a coding problem for channels with
action-dependent states. In this coding problem, there are two encoders and
a decoder. An encoder outputs an action that affects the state of the channel.
Then, the other encoder outputs a codeword of the message into the channel
by using the channel state. The decoder receives a noisy observation of
the codeword, and reconstructs the message. In this paper, we show an
exponential error bound for channels with action-dependent states based
on the random coding argument.
key words: actions, channels with states, error exponents, exponential
error bounds

1. Introduction

In many practical situations, states of a communication
channel change from moment to moment. To analyze the
performance of coding systems under such a situation, many
researchers have been studied coding problems for channels
with states (cf. Chapter 7 in [1]). In these coding prob-
lems, researchers considered the situation where states of
the channel change by nature. Thus, the coding system can
neither control nor affect states of the channel.

On the other hand, Weissman [2] introduced a coding
problem for channels with action-dependent states, in which
an action of the coding system affects states of the channel.

More precisely, he considered the following coding
problem (see Fig. 1): To send a message to the receiver via
a channel with states, the coding system uses an action en-
coder and a channel encoder. The action encoder outputs an
action corresponding to the message, and the action affects
states of the channel. Then, the channel encoder receives the
state of the channel, and outputs a codeword of the message
into the channel. The receiver receives a noisy observation
of the codeword, and reconstructs the message by using a
decoder. For this coding problem, Weissman [2] showed the
channel capacity, where the channel capacity is the supre-
mum of rates of the code such that the decoding error prob-
ability vanishes as the block length tends to infinity. In [2],
he also studied various applications of channels with action-
dependent states, and showed the channel capacity for these
applications. Since he introduced the coding problem for
channels with action-dependent states, a lot of extensions of
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Fig. 1 Channels with action dependent states.

this coding problem have been reported [3]–[6].
For many coding systems, the decoding error proba-

bility is one of the most important performance measures
of the system. It is often evaluated by exponential form,
and for coding systems of channels with states, exponential
error bounds have been studied by many researchers [7]–
[11]. However, exponential error bounds for channels with
action-dependent states have not been fully studied. In this
paper, we focus on exponential error bounds for channels
with action-dependent states, and show an exponential er-
ror bound. Our result is based on the proof method in [11],
which was developed to clarify an exponential error bound
for channels with states that cannot be affected by coding
system. In [11], Moulin and Wang used basic information-
theoretic techniques such as method of types [12] and the
random coding argument except the decoding procedure. In
the decoding procedure, they employed a decoder using the
penalized empirical mutual information, where the “penal-
ized” means the existence of a term subtracting from the em-
pirical mutual information. This decoder may be regarded as
an empirical version of the MAP decoder (see [11, p.1332]).
In this paper, we also use this kind of decoder in order to
clarify exponential error bounds.

2. Preliminaries

In this section, we provide a precise formulation of the cod-
ing problem for channels with action-dependent states, and
show the channel capacity.

We will denote an n-length sequence of symbols
(a1,a2, · · · ,an) by the boldface letter a. We will denote ran-
dom variables (RVs) by capital letters X ,Y,Z, · · · , the val-
ues they can take by lowercase letters x,y,z, · · · , and the set
of these values by calligraphic letters X ,Y ,Z , · · · . The
probability distribution of a RV X will be denoted by PX .
The conditional distribution for X given Y will be denoted
by PX |Y . We will denote the set of all probability distri-
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butions over X by P(X ), and the set of all conditional
distributions from Y to X by W (X |Y ). We will de-
note the nth power of a probability distribution PX ∈P(X )
by Pn

X , i.e., Pn
X (x) = ∏n

i=1 PX (xi), and the nth power of
a conditional distribution PX |Y ∈ W (X |Y ) by Pn

X |Y , i.e.,
Pn

X |Y (x|y) =∏n
i=1 PX |Y (xi|yi).

Let X , Y , A and S be finite sets. A channel with
action-dependent states is characterized by two conditional
distributions PY |XS ∈ W (Y |X ×S ) and PS|A ∈W (S |A ).
For a message m∈Mn � {1, · · · ,Mn}, the action encoder f n

A
outputs an action a ∈ A n corresponding to the message m.
Thus, the action encoder is defined as

f n
A : Mn → A n.

The action a affects a state s ∈ S n according to Pn
S|A(s|a).

On the other hand, the channel encoder f n
C receives the state

s of the channel PY |XS, and outputs a codeword x ∈ X n cor-
responding to the message m. Thus, the channel encoder is
defined as

f n
C : Mn ×S n → X n.

The channel encoder sends the codeword to a decoder via
the channel PY |XS. Then, the decoder ϕn receives a channel
output y ∈ Y n that is drawn from Pn

Y |XS(y|x,s), and recon-
structs the message m. Thus, the decoder is defined as

ϕn : Y n → Mn.

The rate Rn of a code ( f n
A, f n

C,ϕn) is defined as

Rn �
1
n

logMn,

and the error probability of the code is defined as

εn( f n
A, f n

C,ϕn) �
1

Mn
∑

m∈Mn

Pr{ϕn(Y
n) � m|m is sent}.

We say that R ≥ 0 is achievable if there exists a se-
quence of codes {( f n

A, f n
C,ϕn)} such that

liminf
n→∞

Rn ≥ R

and

lim
n→∞

εn( f n
A, f n

C,ϕn) = 0.

Then, the channel capacity C of the channel with action-
dependent states is defined as

C = sup{R : R is achievable}.
For the channel with action-dependent states, Weiss-

man [2] showed the next theorem.

Theorem 1 ([2, Theorem 1]).

C = max
PASUXY

[I(U ;Y )− I(U ;S|A)]

= max
PASUXY

[I(A,U ;Y )− I(U ;S|A)],

where I(U ;Y ) and I(A,U ;Y ) are the mutual information be-
tween U and Y , and between (A,U) and Y , respectively,
I(U ;S|A) is the conditional mutual information between U
and S given A, PASUXY ∈ P(A ×S ×U ×X ×Y ) de-
notes the joint distribution such that

PASUXY (a,s,u,x,y) =PA(a)PS|A(s|a)PU |SA(u|s,a)
×1{ f (u,s)}(x)PY |XS(y|x,s)

for some PA ∈ P(A ), PU |SA ∈ W (U |S ×A ), f : U ×
S → X , |U | ≤ |A ||S ||X |+1, and 1X (x) is the indica-
tor function defined as

1X (x) �

{
1 if x ∈ X ,

0 if x �X .

3. Exponential Error Bounds

In this section, we show an exponential error bound for
channels with action-dependent states.

Before we show our main result, we need several defi-
nitions. For any sequence x ∈X n, we denote the number of
occurrences of x ∈ X in x by N(x|x). Then, we define the
type Px of a sequence x as an empirical distribution given by

Px(x) �
1
n

N(x|x) ∀x ∈ X .

Similarly, for any pair of sequences (x,y) ∈ X n ×Y n, we
denote the number of joint occurrences of (x,y) ∈ X ×Y
in (x,y) as N(x,y|x,y). Then, we define the joint type Pxy of
a sequence (x,y) as

Pxy(x,y) �
1
n

N(x,y|x,y) ∀(x,y) ∈ X ×Y ,

and define the conditional type Py|x of a sequence (x,y) as

Py|x(y|x) �
N(x,y|x,y)

N(x|x) ,

∀(x,y) ∈ X ×Y such that N(x|x) � 0.

Joint types and conditional types of more than two se-
quences can be defined similarly.

Let Pn(X ) denotes the set of possible types in X n.
For any PX̄ ∈ Pn(X ), we define T (PX̄ ) as

T (PX̄ ) � {x ∈ X n : Px = PX̄},
and for any sequences x ∈ X n and any conditional prob-
ability distribution PȲ |X̄ ∈ W (Y |X ), we define T (PȲ |X̄ |x)
as

T (PȲ |X̄ |x) � {y ∈ Y n : Pxy = Px ·PȲ |X̄},
where Px ·PȲ |X̄ represents the product of Px and PȲ |X̄ , i.e.,

Px ·PȲ |X̄ (x,y) = Px(x)PȲ |X̄ (y|x),∀(x,y) ∈ X ×Y .
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Furthermore, for any type PX̄ ∈ Pn(X ), let Wn(Y |PX̄ ) de-
notes the set of PȲ |X̄ ∈W (Y |X ) for which T (PȲ |X̄ |x) is not
empty for sequences x ∈ T (PX̄ ).

For types of sequences, the next lemma is well known
(see e.g. [12]).

Lemma 1.

1). |Pn(X )| ≤ (n+1)|X |, and for any type PX̄ ∈Pn(X ),
|Wn(Y |PX̄ )| ≤ (n+1)|X ||Y |.

2). For any PX̄ ∈ Pn(X ),

(n+1)−|X | exp{nH(X̄)} ≤ |T (PX̄ )| ≤ exp{nH(X̄)},
and for any x ∈ T (PX̄ ) and PȲ |X̄ ∈ Wn(Y |PX̄ ),

(n+1)−|X ||Y | exp{nH(Ȳ |X̄)} ≤ |T (PȲ |X̄ |x)|
≤ exp{nH(Ȳ |X̄)},

where H(X̄) is the entropy of X̄ , and H(Ȳ |X̄) is the
conditional entropy of Ȳ given X̄ .

3). For any PX ∈ P(X ), PX̄ ∈ Pn(X ), and x ∈ T (PX̄ ),

Pn
X (x) = exp{−n(D(PX̄‖PX )+H(X̄))},

and for any PY |X ∈ W (Y |X ), PȲ |X̄ ∈ Wn(Y |PX̄ ), and
y ∈ T (PȲ |X̄ |x),
Pn

Y |X (y|x) = exp{−n(D(PȲ |X̄‖PY |X |PX̄ )+H(Ȳ |X̄))},
where D(·‖·) denotes the relative entropy, and D(·‖ · |·)
denotes the conditional relative entropy.

The next theorem shows an exponential error bound for
channels with action-dependent states.

Theorem 2. For any channels PS|A ∈W (S |A ) and PY |XS ∈
W (Y |X ×S ), any finite set U , any Mn > 0, ε > 0, and
sufficiently large n, there exists a code ( f n

A, f n
C,ϕn) satisfying

εn( f n
A, f n

C,ϕn)

≤exp{−n max
PĀ∈Pn(A )

min
PS̄|Ā∈Wn(S |PĀ)

max
PŪ |S̄Ā∈Wn(U |PĀ·PS̄|Ā)

max
f̄ :U ×S→X

min
PȲ |X̄ S̄∈Wn(Y |PS̄X̄ )

[D(PS̄|Ā‖PS|A|PĀ)

+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄ )

+ |I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−Rn − ε |+]},
where |x|+ = max{0,x},

PS̄X̄ (s,x)= ∑
(a,u)∈A ×U

PĀ(a)PS̄|Ā(s|a)PŪ |S̄Ā(u|s,a)1{ f̄ (u,s)}(x),

and (Ā, S̄,Ū ,Ȳ ) is the quadruple of RVs drawn according to
the probability distribution PĀS̄ŪȲ such that

PĀS̄ŪȲ (a,s,u,y) = ∑
x∈X

PĀ(a)PS̄|Ā(s|a)PŪ |S̄Ā(u|s,a)

×1{ f̄ (u,s)}(x)PȲ |X̄ S̄(y|x,s).

By using this theorem and continuity of the mutual in-
formation and the relative entropy, we obtain the next corol-
lary.

Corollary 1. For any channels PS|A ∈ W (S |A ) and
PY |XS ∈ W (Y |X ×S ), any finite set U , and any R > 0,
there exists a sequence of codes {( f n

A, f n
C,ϕn)} such that

liminf
n→∞

Rn ≥ R,

and

liminf
n→∞

−1
n

logεn( f n
A, f n

C,ϕn)≥ Er(R),

where

Er(R)

� max
PĀ∈P(A )

min
PS̄|Ā∈W (S |A )

max
PŪ |S̄Ā∈W (U |S×A )

max
f̄ :U ×S→X

min
PȲ |X̄ S̄∈W (Y |X ×S )

[D(PS̄|Ā‖PS|A|PĀ)+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄ )

+ |I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−R|+].
Remark 1. Let |U | ≥ |A ||S ||X |+1. Then, according to
the corollary, we have

0 ≤Er(R)

≤ max
PĀ∈P(A )

max
PŪ |S̄Ā∈W (U |S×A )

max
f̄ :U ×S→X

[D(PS|A‖PS|A|PĀ)+D(PY |XS‖PY |XS|PS̄X̄ )

+ |I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−R|+]
= max

PĀ∈P(A )
max

PŪ |S̄Ā∈W (U |S×A )
max

f̄ :U ×S→X

×|I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−R|+
=|C−R|+.

Thus, if R ≥ C then Er(R) = 0. On the other hand, due to
the positivity of the relative entropy, Er(R) = 0 implies

|I(Ā,Ū ;Ȳ )− I(Ū; S̄|Ā)−R|+ = 0,∀PĀ ∈ P(A ),

∀PŪ |S̄Ā ∈ W (U |S ×A ),∀ f̄ : U ×S → X .

Thus, if Er(R) = 0 then R ≥ C. From the above argument,
Er(R) = 0 if and only if R ≥ C. This implies that, for any
R <C, there exists a sequence of codes {( f n

A, f n
C,ϕn)} such

that liminfn→∞ Rn ≥ R and the error probability vanishes
exponentially as the block length tends to infinity. This
strengthens the proof of the achievability part of Theorem
1 in [2].

Remark 2. When |S | = 1, i.e., the channel has a unique
state, we have (Ā,Ū) ↔ X̄ ↔ Ȳ . Hence, according to the
data processing inequality, we have

I(Ā,Ū ;Ȳ )≤ I(X̄ ,Ȳ ). (1)

On the other hand, since X̄ is a function of Ū (and a unique
state), we have Ȳ ↔ (Ā,Ū)↔ X̄ , and according to the data
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processing inequality, we also have

I(X̄ ,Ȳ )≤ I(Ā,Ū ;Ȳ ). (2)

From (1) and (2), we have

I(Ā,Ū ;Ȳ ) = I(X̄ ,Ȳ ). (3)

Hence, by letting |U | ≥ |X |, Er(R) can be written as

Er(R) = max
PĀŪ∈P(A ×U )

max
f̄ :U →X

min
PȲ |X̄∈W (Y |X )

× [D(PȲ |X̄‖PY |X |PX̄ )+ |I(Ā,Ū ;Ȳ )−R|+]
(a)
= max

PĀŪ∈P(A ×U )
max

f̄ :U →X
min

PȲ |X̄∈W (Y |X )

× [D(PȲ |X̄‖PY |X |PX̄ )+ |I(X̄;Ȳ )−R|+]
= max

PŪ∈P(U )
max

f̄ :U →X
min

PȲ |X̄∈W (Y |X )

× [D(PȲ |X̄‖PY |X |PX̄ )+ |I(X̄;Ȳ )−R|+]
(b)
= max

PX̄∈P(X )
min

PȲ |X̄∈W (Y |X )
[D(PȲ |X̄‖PY |X |PX̄ )

+ |I(X̄ ;Ȳ )−R|+],
where (a) follows from (3), and (b) comes from the fact
that minPȲ |X̄∈W (Y |X )[D(PȲ |X̄‖PY |X |PX̄ )+ |I(X̄;Ȳ )−R|+] de-

pends only on PX̄ ∈ P(X ). Thus, Er(R) coincides with
the well-known random coding error exponent (see [12,
p.152]).

Remark 3. When |A |= 1, i.e., any action cannot affect any
states, Er(R) can be written as

Er(R) = min
PS̄∈P(S )

max
PŪ |S̄∈W (U |S )

max
f̄ :U ×S→X

min
PȲ |X̄S̄∈W (Y |X ×S )

× [D(PS̄‖PS)+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄ )

+ |I(Ū ;Ȳ )− I(Ū ; S̄)−R|+],
where

PS̄X̄ (s,x) = ∑
u∈U

PS̄(s)PŪ |S̄(u|s)1{ f̄ (u,s)}(x).

This error exponent Er(R) coincides with the error exponent
of Somekh-Baruch and Merhav [10, Ẽ2(R)].

4. Proof of Theorem 2

Let us fix δ > 0 and a type PĀ ∈ P(A ) arbitrarily, and
for all conditional types PS̄|Ā ∈ Wn(S |PĀ), fix a function
f̄ : U ×S →X and a conditional type PŪ |S̄Ā ∈Wn(U |PĀ ·
PS̄|Ā) arbitrarily. Although the function and the conditional
type are functions of PS̄|Ā, we will denote these as f and
PŪ |S̄Ā for the sake of brevity. Then, we define random en-
coders and a decoder as follows.

Random generation of CA: For each m ∈ Mn, ran-
domly and independently generate sequences a(m), each

drawn according to the uniform distribution over T (PĀ). We
denote the set of sequences {a(1),a(2), · · · ,a(Mn)} by CA.

Random generation of C (PS̄|Ā,m): For each condi-
tional type PS̄|Ā ∈ Wn(S |PĀ), let M̄n(PS̄|Ā) be a positive in-
teger such that

M̄n(PS̄|Ā) = 
exp{n(I(Ū ; S̄|Ā)+δ )}�, (4)

where a triple of RVs (Ā,Ū , S̄) is distributed according to
PĀ ·PS̄|Ā ·PŪ |S̄Ā, and 
z� denotes the smallest integer which
is greater than or equal to z. Then, for each m ∈ Mn and
l ∈ M̄n(PS̄|Ā)� {1,2, · · · ,M̄n(PS̄|Ā)}, randomly and indepen-
dently generate sequences u(l,m), each drawn according to
the uniform distribution over T (PŪ |Ā|a(m)), where a(m) is
the element of CA corresponding to m, and

PŪ |Ā(u|a) = ∑
s∈S

PS̄|Ā(s|a)PŪ |S̄Ā(u|s,a).

Note that PŪ |S̄Ā changes with PS̄|Ā, and T (PŪ |Ā|a(m))

is not empty because PŪ |S̄Ā ∈ Wn(U |PĀ · PS̄|Ā) and
PS̄|Ā ∈ Wn(S |PĀ). We denote the set of sequences
{u(1,m), · · · ,u(M̄n(PS̄|Ā),m)} by C (PS̄|Ā,m).

Action encoder: For a given m∈Mn, chose a(m)∈CA

as the action.
Channel encoder: We use the following two-step en-

coding.

1. For a given m ∈ Mn and a state s ∈ S n, find l such
that u(l,m) ∈ C (Ps|a(m),m)∩T (PŪ |S̄Ā|s,a(m)). If more
than one such l exists, pick one of them randomly with
uniform distribution. If there is no such l, generate u
uniformly from T (PŪ |S̄Ā|s,a(m)).

2. For the sequence u found in the step 1), generate a
codeword x = f̄ n(u,s), where

f̄ n(u,s) = ( f̄ (u1,s1), f̄ (u2,s2), · · · , f̄ (un,sn)).

Decoder: For a given y ∈ Y n, the decoder finds a
m̂ ∈ Mn that maximizes the penalized empirical mutual in-
formation, i.e.,

m̂=argmax
m̂∈Mn

max
PS̄|Ā∈W (S |PĀ)

max
u∈C (PS̄|Ā,m̂)

[
I(a(m̂),u;y)−R̄n(PS̄|Ā)

]
,

where

I(a(m̂),u;y) = ∑
(a,u,y)∈A ×U ×Y

Pa(m̂)uy(a,u,y)

× log
Pa(m̂)uy(a,u,y)

Pa(m̂)u(a,u)Py(y)
,

and

R̄n(PS̄|Ā) �
1
n

logM̄n(PS̄|Ā).

As we stated in Introduction, the “penalized” means the ex-
istence of a term subtracting from an empirical mutual in-
formation. In the above decoder, the penalty is R̄n(PS̄|Ā).
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The decoder using a penalized empirical mutual information
was introduced by Moulin and Wang [11], and it may be re-
garded as an empirical version of the MAP decoder (see [11,
p.1332]). Thus, in this decoding procedure, we are using an
empirical version of the MAP decoder.

We now analyze the following average error probabil-
ity.

εn � ∑
( f n

A, f
n
C,ϕn)

Pr{(Fn
A ,F

n
C ,Φ

n) = ( f n
A, f n

C,ϕn)}εn( f n
A, f n

C,ϕ
n),

where the triple of RVs (Fn
A ,F

n
C ,Φ

n) denotes random en-
coders and a corresponding decoder.

In order to analyze the average error probability, for a
message m ∈ Mn, we first consider the encoding error, i.e.,
the case where no index l can be found in the first step of
the channel encoder. Thus, the encoding error occurs if the
event

Em � {U(l,m) � T (PŪ |S̄Ā|S,A(m)),∀l ∈ M̄n(PS|A(m))}

occurs, where (A(m),S,U(l,m)) denote RVs induced by the
random generation of CA, the channel PS|A and the random
generation of C (PS̄|Ā,m). Then, for any conditional type
PS̄|Ā ∈Wn(S |PĀ), any a∈T (PĀ), and s∈T (PS̄|Ā|a), we have

Pr{Em|S = s,A(m) = a}
=Pr{U(l,m) � T (PŪ |S̄Ā|s,a),∀l ∈ M̄n(PS̄|Ā)|S = s,

A(m) = a}
(a)
= ∏

l∈M̄n(PS̄|Ā)
Pr{U(l,m) � T (PŪ |S̄Ā|s,a)|S = s,

A(m) = a}
(b)
=(Pr{Û � T (PŪ |S̄Ā|s,a)|S = s,A(m) = a})M̄n(PS̄|Ā)

=(1−Pr{Û ∈ T (PŪ |S̄Ā|s,a)|S = s,A(m) = a})M̄n(PS̄|Ā),

(5)

where Û is an RV drawn according to the uniform distribu-
tion over T (PŪ |Ā|a), (a) comes from the fact that U(l,m) is

independent for all l ∈ M̄n(PS̄|Ā), and (b) comes from the
fact that U(l,m) drawn according to the uniform distribu-
tion over T (PŪ |Ā|a). Since T (PŪ |S̄Ā|s,a)⊆ T (PŪ |Ā|a) for all
s ∈ T (PS̄|Ā|a), we have

Pr{Û ∈ T (PŪ |S̄Ā|s,a)|S = s,A(m) = a}

=
|T (PŪ |S̄Ā|s,a)|
|T (PŪ |Ā|a)|

(a)
≥ exp{−n(I(Ū ; S̄|Ā)+δ (1)

n )}, (6)

where (a) comes from 2) of Lemma 1, a triple of RVs
(Ā, S̄,Ū) is distributed according to PĀ ·PS̄|Ā ·PŪ |S̄Ā, and

δ (1)
n =

|A ||S ||U | log(n+1)
n

.

By combining (5) and (6), we have

Pr{Em|A(m) = a,S = s}
≤ (1− exp{−n(I(Ū; S̄|Ā)+δ (1)

n )})M̄n(PS̄|Ā)

(a)
≤ exp{−exp{−n(I(Ū; S̄|Ā)+δ (1)

n )}M̄n(PS̄|Ā)}
(b)
≤ exp{−exp{n(δ −δ (1)

n )}},
where (a) comes from the fact that (1 − x)y ≤ exp{−xy}
(0 ≤ x ≤ 1, y ≥ 0), and (b) follows from (4). Hence, we
have

Pr{Em}
= ∑
(a,s)∈A n×S n

Pr{A(m) = a,S = s}Pr{Em|A(m) = a,S = s}

(a)
= ∑

a∈T (PĀ)
∑

PS̄|Ā∈Wn(S |PĀ)
∑

s∈T (PS̄|Ā|a)
Pr{A(m) = a,S = s}

×Pr{Em|A(m) = a,S = s}
≤ ∑

a∈T (PĀ)
∑

PS̄|Ā∈Wn(S |PĀ)
∑

s∈T (PS̄|Ā|a)
Pr{A(m) = a,S = s}

× exp{−exp{n(δ −δ (1)
n )}}

= exp{−exp{n(δ −δ (1)
n )}}, (7)

where (a) comes from the fact that A(m) is an RV with the
uniform distribution over T (PĀ).

Next, we consider the decoding error, i.e., the case
where the decoder outputs a wrong message. Thus, the de-
coding error occurs if the event

E ′
m = {∃m′ ∈ Mn,

∃PS̄′ |Ā ∈ Wn(S |PĀ),
∃l′ ∈ M̄n(PS̄′|Ā)

such that m′ � m, I(A(m′),U(l′,m′);Y)− R̄n(PS̄′|Ā)

≥ I(A(m),U(l,m);Y)− R̄n(PS̄|Ā)

for all PS̄|Ā ∈ Wn(S |PĀ) and l ∈ M̄n(PS̄|Ā)}
occurs, where the RV Y denotes the channel outputs. Then,
due to the symmetry of the code construction, we have

εn ≤ Pr{E1}+Pr{E c
1 ∩E ′

1}. (8)

The second term on the right-hand side of (8) can be
bounded as

Pr{E c
1 ∩E ′

1}
= ∑

(a,s,u,x,y)

Pr{A(1) = a,S = s,U = u,X = x,Y = y}

×Pr{E c
1 ∩E ′

1|a,s,u,x,y}
≤ ∑

(a,s,u,x,y)

Pr{A(1) = a,S = s,U = u,X = x,Y = y}

×Pr{E ′
1|E c

1 ,a,s,u,x,y}, (9)

where the RV U denotes the sequence found in the step 1)
of the channel encoder, and X denotes the codeword. Note
that
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Pr{A(1) = a,S = s,U = u,X = x,Y = y}
= PAn(a)Pn

S|A(s|a)PUn|SnAn(u|s,a)1{ f̄ n(u,s)}(x)P
n
Y |XS(y|x,s),

(10)

PAn(a) =

{
1

|T (PĀ)| if a ∈ T (PĀ),

0 if a � T (PĀ),
(11)

and

PUn|SnAn(u|s,a) =
{

1
|T (PŪ |S̄Ā|s,a)| if u ∈ T (PŪ |S̄Ā|s,a),
0 if u � T (PŪ |S̄Ā|s,a).

(12)

Hence, for any type PS̄|Ā ∈ Wn(S |PĀ), PȲ |X̄ S̄ ∈ Wn(Y |PS̄X̄ ),
and the type PĀS̄ŪX̄Ȳ satisfying

PĀS̄ŪX̄Ȳ (a,s,u,x,y) =PĀ(a)PS̄|Ā(s|a)PŪ |S̄Ā(u|s,a)
×1{ f̄ (u,s)}(x)PȲ |X̄ S̄(y|x,s), (13)

we have

∑
(a,s,u,x,y)∈T (PĀS̄ŪX̄Ȳ )

Pr{A(1) = a,S = s,U = u,X = x,Y = y}

= ∑
a∈T (PĀ)

PAn(a) ∑
s∈T(PS̄|Ā|a)

Pn
S|A(s|a) ∑

u∈T(PŪ |S̄Ā|s,a)
PUn|SnAn(u|s,a)

× ∑
{x∈X n:x= f n(u,s)}

1{ f n(u,s)}(x) ∑
y∈T (PȲ |X̄ S̄|s,x)

Pn
Y |XS(y|x,s)

(a)
≤ 1× exp{−nD(PS̄|Ā‖PS|A|PĀ)}×1×1

× exp{−nD(PȲ |X̄ S̄‖PY |XS|PS̄X̄ )}
= exp{−n(D(PS̄|Ā‖PS|A|PĀ)+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄ ))},

(14)

where (a) comes from 2) and 3) of Lemma 1. On the other
hand, for any (a,s,u,x,y) ∈ T (PĀS̄ŪX̄Ȳ ), we have

Pr{E ′
1|E c

1 ,a,s,u,x,y)

= Pr{∃m′ ∈ Mn,
∃PS̄′ |Ā ∈ Wn(S |PĀ),

∃l′ ∈ M̄n(PS̄′|Ā)

such that m′ � 1, I(A(m′),U(l′,m′);y)− R̄n(PS̄′|Ā)

≥ I(a,U(l,1);y)− R̄n(PS̄|Ā)

for all PS̄|Ā ∈ Wn(S |PĀ) and l ∈ M̄n(PS̄|Ā)

|E c
1 ,a,s,u,x,y}

≤ Pr{∃m′ ∈ Mn,
∃PS̄′ |Ā ∈ Wn(S |PĀ),

∃l′ ∈ M̄n(PS̄′|Ā)

such that m′ � 1, I(A(m′),U(l′,m′);y)− R̄n(PS̄′|Ā)

≥ I(a,U(l,1);y)− R̄n(Ps|a) for all l ∈ M̄n(Ps|a)

|E c
1 ,a,s,u,x,y}

(a)
≤ Pr{∃m′ ∈ Mn,

∃PS̄′ |Ā ∈ Wn(S |PĀ),
∃l′ ∈ M̄n(PS̄′|Ā)

such that m′ � 1, I(A(m′),U(l′,m′);y)− R̄n(PS̄′|Ā)

≥ I(a,u;y)− R̄n(Ps|a)|E c
1 ,a,s,u,x,y}

≤ ∑
m′∈Mn:

m′�1

∑
PS̄′|Ā∈Wn(S |PĀ)

∑
l′∈M̄n(PS̄′|Ā)

Pr{I(A(m′),U(l′,m′);y)

− R̄n(PS̄′|Ā)≥ I(a,u;y)− R̄n(Ps|a)|E c
1 ,a,s,u,x,y},

where (a) comes from the fact that there exists l ∈ M̄n(Ps|a
such that I(a,U(l,1);y) = I(a,u;y) due to the condition of
E c

1 . Let us define

E (a,s,u,y,PS̄′ |Ā) �{(a′,u′) ∈ T (PĀŪ ′) : I(a′,u′;y)

− R̄n(PS̄′|Ā)≥ I(a,u;y)−R̄n(Ps|a)},
where

PĀŪ ′(a,u) = PĀ(a) ∑
s∈S

PS̄′ |Ā(s|a)PŪ |S̄Ā(u|s,a).

We also define the corresponding set of conditional types

Tn(a,s,u,y,PS̄′ |Ā)

� {PĀŪ ′|Ȳ ∈ Wn(A ×U |Py) :

∑
y∈Y

Py(y)PĀŪ ′|Ȳ (a,u|y) = PĀŪ ′(a,u),

I(Ā,Ū ′;Ȳ )− R̄n(PS̄′|Ā)≥ I(a,u;y)− R̄n(Ps|a)},
(15)

where the triple of RVs (Ā,Ū ′,Ȳ ) is drawn from PĀŪ ′Ȳ =
PĀŪ ′|Ȳ ·Py. Then, we have

E (a,s,u,y,PS̄′ |Ā) =
⋃

PĀŪ ′|Ȳ∈Tn(a,s,u,y,PS̄′ |Ā)
T (PĀŪ ′|Ȳ |y).

Thus, we have

Pr{I(A(m′),U(l′,m′);y)− R̄n(PS̄′ |Ā)

≥ I(a,u;y)− R̄n(PS̄|Ā)|E c
1 ,a,s,u,x,y}

= ∑
(a′,u′)∈E (a,s,u,y,PS̄′ |Ā)

Pr{(A(m′),U(l′,m′)) = (a′,u′)|E c
1 ,

a,s,u,x,y}
(a)
= ∑

(a′,u′)∈E (a,s,u,y,PS̄′ |Ā)
Pr{(A(m′),U(l′,m′)) = (a′,u′)}

= ∑
(a′,u′)∈E (a,s,u,y,PS̄′ |Ā)

Pr{A(m′) = a′}

×Pr{U(l′,m′) = u′|A(m′) = a′}
= ∑

(a′,u′)∈E (a,s,u,y,PS̄′ |Ā)

1
|T (PĀ)|

1
|T (PŪ ′|Ā|a′)|

(b)
= ∑

(a′,u′)∈E (a,s,u,y,PS̄′ |Ā)

1
|T (PĀŪ ′)|

= ∑
PĀŪ ′|Ȳ∈Tn(a,s,u,y,PS̄′ |Ā)

∑
(a′,u′)∈T (PĀŪ ′|Ȳ |y)

1
|T (PĀŪ ′)|

= ∑
PĀŪ ′|Ȳ∈Tn(a,s,u,y,PS̄′ |Ā)

|T (PĀŪ ′|Ȳ |y)|
|T (PĀŪ ′)|

(c)
≤ ∑

PĀŪ ′|Ȳ∈Tn(a,s,u,y,PS̄′ |Ā)
(n+1)|A ||U | exp{−nI(Ā,Ū ′;Ȳ )}
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(d)
≤ exp{−n(I(a,u;y)− R̄n(Ps|a)+ R̄n(PS̄′|Ā)−δ (2)

n )},

where (a) comes from the fact that m′ � 1, (b) comes from
the fact that since |T (PŪ ′|Ā|a′)| only depends on PĀ and
PŪ ′|Ā,

|T (PĀŪ ′)|=|{(a,u) : a ∈ T (PĀ),u ∈ T (PŪ ′|Ā|a)}|
=|T (PĀ)||T (PŪ ′|Ā|a′)}|,

(c) comes from 2) of Lemma 1, (d) comes from the defini-
tion (15) and 1) of Lemma 1, and

δ (2)
n =

|A ||U |(|Y |+1) log(n+1)
n

.

Thus, for any (a,s,u,x,y) ∈ T (PĀS̄ŪX̄Ȳ ), we have

Pr{E ′
1|E c

1 ,a,s,u,x,y}
≤ ∑

m′∈Mn:
m′�1

∑
PS̄′|Ā∈Wn(S |PĀ)

∑
l′∈M̄n(PS̄′|Ā)

Pr{I(A(m′),U(l′,m′);y)

− R̄n(PS̄′|Ā)≥ I(Ā,Ū ;Ȳ )− R̄n(PS̄|Ā)|E c
1 ,a,s,u,x,y}

≤ ∑
m′∈Mn:

m′�1

∑
PS̄′|Ā∈Wn(S |PĀ)

∑
l′∈M̄n(PS̄′|Ā)

exp{−n(I(Ā,Ū ;Ȳ )

− R̄n(PS̄|Ā)+ R̄n(PS̄′|Ā)−δ (2)
n )}

≤ max
PS̄′|Ā∈Wn(S |PĀ)

exp{−n(I(Ā,Ū ;Ȳ )− R̄n(PS̄|Ā)+ R̄n(PS̄′|Ā)

− R̄n(PS̄′|Ā)−Rn −δ (3)
n )}

= max
PS̄′|Ā∈Wn(S |PĀ)

exp{−n(I(Ā,Ū ;Ȳ )− R̄n(PS̄|Ā)−Rn −δ (3)
n )}

=exp{−n(I(Ā,Ū ;Ȳ )− R̄n(PS̄|Ā)−Rn −δ (3)
n )}

≤2exp{−n(I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−Rn −δ −δ (3)
n )},

(16)

where

δ (3)
n = δ (2)

n +
|A ||S | log(n+1)

n
.

By combing (7), (8), (9), (14), and (16), we have

εn ≤exp{−exp{n(δ −δ (1)
n )}}

+ ∑
(a,s,u,x,y)

Pr{A(1) = a,S = s,U = u,X = x,Y = y}

×Pr{E ′
1|E c

1 ,a,s,u,x,y})
(a)
= exp{−exp{n(δ −δ (1)

n )}}+ ∑
PS̄|Ā∈Wn(S |PĀ)

× ∑
PȲ |X̄ S̄∈Wn(Y |PS̄X̄ )

∑
(a,s,u,x,y)∈T (PĀS̄ŪX̄Ȳ )

×Pr{A(1) = a,S = s,U = u,X = x,Y = y}
×Pr{E ′

1|E c
1 ,a,s,u,x,y})

≤exp{−exp{n(δ −δ (1)
n )}}+(n+1)|A ||S |(1+|S ||X ||Y |)

×2exp{−n min
PS̄|Ā∈Wn(S |PĀ)

min
PȲ |X̄ S̄∈Wn(Y |PS̄X̄ )

× [D(PS̄|Ā‖PS|A|PĀ)+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄ )

+ |I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−Rn −δ −δ (3)
n |+]}, (17)

where (a) comes from (10)–(12), and PĀS̄ŪX̄Ȳ is character-
ized by (13). Since (17) holds for any fixed δ > 0 and
PĀ ∈ P(A ), and any fixed PŪ |S̄Ā ∈ Wn(U |PĀ · PS̄|Ā) and
f̄ : U ×S →X which are dependent on PS̄|Ā ∈Wn(S |PĀ),
we can choose them in order to optimize the upper bound of
the error probability. Hence, for any ε > 0 and sufficiently
large n, there exists a code ( f n

A, f n
C,ϕn) such that

εn( f n
A, f n

C,ϕn)

≤exp{−n max
PĀ∈Pn(A )

min
PS̄|Ā∈Wn(S |PĀ)

max
PŪ |S̄Ā∈Wn(U |PĀS̄)

max
f̄ :U ×S→X

min
PȲ |X̄ S̄∈Wn(Y |PS̄X̄ )

[D(PS̄|Ā‖PS|A|PĀ)+D(PȲ |X̄ S̄‖PY |XS|PS̄X̄)

+ |I(Ā,Ū ;Ȳ )− I(Ū ; S̄|Ā)−Rn − ε |+]}.
This completes the proof of Theorem 2.

5. Conclusion

In this paper, we have dealt with channels with action-
dependent states, and derived an exponential error bound in
Theorem 2. Then, we have shown that when the channel
has a unique state, the error exponent of the obtained upper
bound coincides with the well-known random coding error
exponent. We also have shown that when any action cannot
affect any states, the error exponent of the obtained upper
bound coincides with the error exponent of Somekh-Baruch
and Merhav [10, Ẽ2(R)]. As for a future research, we will
investigate a lower bound of the error probability, and com-
pare it with our obtained upper bound. We will also compute
the error exponent for Gaussian channels.
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