IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
An Energy-Efficient Patchable Accelerator and Its Design Methods
Hiroaki YOSHIDAMasayuki WAKIZAKAShigeru YAMASHITAMasahiro FUJITA
Author information
JOURNAL RESTRICTED ACCESS

2014 Volume E97.A Issue 12 Pages 2507-2517

Details
Abstract

With the shorter time-to-market and the rising cost in SoC development, the demand for post-silicon programmability has been increasing. Recently, programmable accelerators have attracted more attention as an enabling solution for post-silicon engineering change. However, programmable accelerators suffers from 5∼10X less energy efficiency than fixed-function accelerators mainly due to their extensive use of memories. This paper proposes a highly energy-efficient accelerator which enables post-silicon engineering change by a control patching mechanism. Then, we propose a patch compilation method from a given pair of an original design and a modified design. We also propose a design method to add redundant wires in advance to decrease the necessary amount of patch memory for post-silicon engineering change. Experimental results demonstrate that the proposed accelerators offer high energy efficiency competitive to fixed-function accelerators and can achieve about 5X higher efficiency than the existing programmable accelerators. We also show the trade-off between redundant wires and the necessary amount of patch memory.

Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top