
452
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

PAPER Special Section on Mathematical Systems Science and its Applications

Discrete Abstraction of Stochastic Nonlinear Systems

Shun-ichi AZUMA†a), Member and George J. PAPPAS††, Nonmember

SUMMARY This paper addresses the discrete abstraction problem for
stochastic nonlinear systems with continuous-valued state. The proposed
solution is based on a function, called the bisimulation function, which
provides a sufficient condition for the existence of a discrete abstraction
for a given continuous system. We first introduce the bisimulation function
and show how the function solves the problem. Next, a convex optimization
based method for constructing a bisimulation function is presented. Finally,
the proposed framework is demonstrated by a numerical simulation.
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1. Introduction

System abstraction, i.e., extracting a simpler but qualita-
tively similar model from a given system, has recently
aroused great interest. The reason lies in its great poten-
tial for analysis and control of highly complex systems.
For example, when one wants to verify if a system satis-
fies a certain property, the use of its abstracted model dras-
tically reduces the computational complexity. In addition,
abstraction allows us to adopt the hierarchical control strat-
egy, where the abstracted model plays an important role at
the planning level. So far, the abstraction based approach
has achieved a great success in, e.g., the motion planning
of robots [1], [2], the formal verification of software [3], [4],
and the control of biological systems [5], [6].

For this topic, various results have been extensively ob-
tained. For deterministic systems, system equivalence has
been discussed based on the notion of bisimulation relation
[7], [8], and its generalization, called the approximate bisim-
ulation, has been proposed in [9]. Moreover, for stochas-
tic systems, the bisimulation notion has been developed in
[10]–[12]. These works have provided fundamental theories
of system abstraction.

More concrete methodologies to abstract systems have
been studied in [13]–[24]. They can be classified as Ta-
ble 1, where the systems with continuous-valued state and
those with discrete-valued state are respectively called the
continuous systems and the discrete systems. Item (i) corre-
sponds to the reduction of a continuous system to a contin-
uous system with lower dimensional state space, while (ii)
is the reduction of a continuous system to a finite-state ma-

Manuscript received April 4, 2013.
Manuscript revised June 15, 2013.
†The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 611-0011 Japan.
††The author is with the Department of Electrical and Systems

Engineering, University of Pennsylvania, USA.
a) E-mail: sazuma@i.kyoto-u.ac.jp

DOI: 10.1587/transfun.E97.A.452

Table 1 Results on system abstraction.

(a) deterministic (b) stochastic

(i)
continuous system
to continuous system [13]–[15] [16]–[21]

(ii)
continuous system
to discrete system

[22]
[23], [24],

[This paper]

Fig. 1 Discrete abstraction of stochastic systems into Markov chains.

chine, which is called the discrete abstraction. On the other
hand, (a) and (b) are distinguished by whether the original
(and abstracted) systems are deterministic or stochastic.

Here, we are interested in a problem in (ii)-(b), i.e., the
discrete abstraction of stochastic systems. This is motivated
by the recent result [5] on the biological control. There,
the stochastic continuous system model of a biological sys-
tem is abstracted into a Markov chain with two discrete
states. Then, by exploiting good properties of the Markov
chain, it has succeeded in establishing a promising control
framework. However, the abstracted model is derived by
the Monte Carlo method with a large number of numeri-
cal simulations. So we need to develop a more systematic
method to abstract stochastic continuous systems to Markov
chains. In addition, it should be noticed that, as shown in
Table 1, a discrete abstraction technique for stochastic sys-
tems has been proposed in [23], [24]. However, the resulting
systems are not the standard Markov chains but the Markov
set-chains which are more challenging to utilize than the
standard ones.

This paper thus addresses the discrete abstraction of
stochastic nonlinear systems to Markov chains, shown in
Fig. 1. This abstraction reduces analysis and control prob-
lems for continuous systems into those for Markov chains,
to which the existing useful techniques can be applied. For
example, a basic issue for stochastic systems is the so-called
reachability problem (or the safety verification problem),
that is, to compute the probability that the system does not
reach an undesirable state set. For continuous systems, the
problem is in general difficult to solve due to its exponential
complexity with the state dimension. In contrast, it can be
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easily solved for Markov chains, because, as is well known,
various probabilities on the system evaluation can be easily
computed from the stochastic state transition matrices.

In this paper, to solve the discrete abstraction problem,
we introduce a function, called the bisimulation function,
which provides a sufficient condition for the existence of
a Markov chain which is bisimilar to a given original sys-
tem. Although the bisimulation function has been originally
proposed in [9], the function proposed here is slightly dif-
ferent; the original is analysis-oriented, while ours is rather
design-oriented. After introducing the bisimulation func-
tion, we next propose a method for deriving a bisimulation
function. This is based on convex optimization, which en-
ables efficient computation. Finally, the proposed frame-
work is demonstrated by numerical simulation.

This paper is based on our earlier preliminary ver-
sion [25], and contains full explanations and proofs omitted
there.
Notation: Let R, R0+, and N be the real number field, the set
of nonnegative real numbers, and the set of positive integers,
respectively. We denote by Pn×n the set of n × n stochastic
matrices, and denote by B(x, ε) the closed ball of center x
and radius ε. We use In to express the n × n identity matrix,
and M1 ⊗M2 to express the Kronecker product of the matri-
ces M1 and M2. For the random variable w, let E[w] be the
expected value and let E[w|π] be the expected value when
the event π occurs. Finally, for the vector x and the matrix
M, the symbols ‖x‖ and ‖M‖ express the Euclidean norm
and the Frobenius norm, respectively, i.e., ‖x‖ = √x�x and
‖M‖ = √tr(M�M).

2. Problem Formulation

Consider the discrete-time nonlinear system

Σc : x(t + 1) = f (x(t)) + g(x(t))w(t) (1)

where x ∈ Rn is the state, w ∈ Rm is the stochastic process,
and f : Rn → Rn and g : Rn → Rn×m are functions. The
initial state is given as x(0) ∈ X0 for a bounded set X0 ⊂ Rn.
For the process w, it is assumed that

(A1) w(t) ∈W for a bounded set W ⊂ Rm,
(A2) E[w(t)|x(t) = ξ] = 0 for all ξ ∈ Rn,
(A3) E[w(t)w�(t)|x(t) = ξ] = W(ξ) for a given variance-

covariance matrix W(ξ) ∈ Rm×m (which depends on
x(t)).

The first assumption means that w is bounded, which is
fairly basic in considering the abstraction to a finite-state
system. The second and third ones specify the expected
value and the variance. They essentially mean that the ex-
pected value and the variance are known in advance, and are
necessary for the abstraction with a criterion based on the
first- and second-order moments of the state x(t). Note that
(A2) does not lose any generality; when E[w(t)|x(t) = ξ] =
e(ξ) � 0, we recover the same results for the system trans-
formed with the new input valuable w̄(t) := w(t) − e(x(t)).

In this paper, we are interested in abstracting Σc into

the following Markov chain:

Σd(P) : Pr[ z(t + 1) = ζ j | z(t) = ζi ] = Pi j (2)

where z ∈ {ζ1, ζ2, . . . , ζN} (ζi ∈ Rn) is the state, which takes
one of the N vector values, and Pi j ∈ [0, 1] is the probability
for the transition ζi → ζ j in one time step. We express by P
the stochastic state transition matrix, i.e., P := [Pi j] ∈ PN×N .

The system Σc and its state are often called the continu-
ous system and the continuous state, respectively. Likewise,
the system Σd(P) and its state are called the discrete system
and the discrete state. In addition, the reachable set of Σc is
defined as

Reach(Σc) :=

{
x+ ∈Rn

∣∣∣∣∣∣∃(t, x0, w0, . . . , wt−1)∈N×X0×Wt

s.t. x+ = x(t, x0, w0, . . . , wt−1)

}

where x(t, x0, w0, . . . , wt−1) is the state x(t) under the condi-
tion x(0) = x0, w(0) = w0, . . ., w(t − 1) = wt−1.

For evaluating the distance between the two systems Σc

and Σd(P), we employ

Δ1(ξ, ζi, P) :=
∥∥∥ E[ x(t+1) | x(t)=ξ ] − E[ z(t+1) | z(t)=ζi ]

∥∥∥,
(3)

Δ2(ξ, ζi, P) :=
∥∥∥ E[ x(t+1) x�(t+1) | x(t) = ξ ]

− E[ z(t+1) z�(t+1) | z(t) = ζi ]
∥∥∥, (4)

which are based on the first- and second-order moments of
the states.

Definition 1 (ε-bisimulation): For the systems Σc and
Σd(P), suppose that a precision ε ∈ R0+ satisfying

ε ≥ sup
ξ∈Reach(Σc)

min
i∈{1,2,...,N}

‖ξ − ζi‖ (5)

is given. Then the systems Σc and Σd(P) are said to be ε-
bisimilar (denoted by Σc �ε Σd(P)) if, for all (ξ, ζi) satisfy-
ing ‖ξ − ζi‖ ≤ ε, the relations

Δ1(ξ, ζi, P) ≤ ε, (6)

Δ2(ξ, ζi, P) ≤ ε2 (7)

hold. �

Note that (5) guarantees that, for each x(t) ∈
Reach(Σc), there exists a discrete state ζi which is an ε-
neighbor of x(t).

Note also that the right hand side of (7) is bounded by
the square of ε, since Δ2 is based on the second-order term
of x and z. Other types of relations, such as Δ1(ξ, ζi, P) ≤ ε,
Δ2(ξ, ζi, P) ≤ δ with independent values ε and δ, can be also
handled by the straightforward extention.

Then the following problem is addressed in this paper.

Problem 1: For the continuous system Σc, suppose that the
discrete states ζ1, ζ2, . . ., ζN are given.
(i) Given a stochastic matrix P ∈ RN×N and a precision ε ∈
R0+, determine if Σc �ε Σd(P).
(ii) Find a P and an ε satisfying Σc �ε Σd(P). �

Several remarks on Problem 1 are given.



454
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.2 FEBRUARY 2014

First, the relation Σc �ε Σd(P) allows us to easily (but
approximately) solve the reachability problem for the con-
tinuous system Σc, that is, compute the probability that any
initial state on a set does not reach an undesirable set. For
example, the probability for Σc that any x(0) ∈ X0 = B(ζ1, ε)
does not reach a set X1 = B(ζN , ε) within time T is approxi-
mated by

Pr[ z(1) � ζN , z(2) � ζN , . . . , z(T ) � ζN | z(0) = ζ1 ]

for the discrete system Σd(P). Then this is easily computed
as

T∏
t=1

(1 − Pt
1N)

where Pt
1N is the (1,N)-th element of Pt (the stochastic tran-

sition matrix to the t-th power).
Second, in Problem 1, the discrete states {ζ1, ζ2, . . . , ζN}

are pre-fixed, though one might have a flexibility in choos-
ing {ζ1, ζ2, . . . , ζN} in some cases. This type of problem is
considered in the situation where some key states in the dy-
namics are known a priori. For example, it has been pointed
out in [5] that in a biological system, stable equilibria are
dominant factors to describe the dynamics.

Third, due to mathematical difficulty, it is too difficult
to solve Problem 1 exactly. In fact, (i) and (ii) correspond to
the so-called nonnegativity problem† and the robust inequal-
ity problem††, in which the arising inequalities ((6) and (7))
are nonconvex with respect to ξ (which will be shown later).
This fact motivates us to introduce a bisimulation function
which provides a sufficient condition for the existence of
(P, ε) satisfying Σc �ε Σd(P).

3. Bisimulation Functions

3.1 Definition

In this paper, a bisimulation function is defined based on the
decomposition of Δ1(ξ, ζi, P) and Δ2(ξ, ζi, P) in (3) and (4).

We decompose Δ1(ξ, ζi, P) into two parts:

Δ1(ξ, ζi, P)

=
∥∥∥E[ x(t+1) |x(t)= ξ ] − E[ x(t+1) |x(t)= ζi ]

+ E[ x(t+1) |x(t)= ζi ] − E[ z(t+1) | z(t) = ζi ]
∥∥∥

≤ ∥∥∥E[ x(t+1) |x(t)= ξ ] − E[ x(t+1) |x(t)= ζi ]
∥∥∥

+
∥∥∥E[ x(t+1) |x(t)=ζi ]−E[ z(t+1) | z(t)=ζi ]

∥∥∥ (8)

Here, the first term expresses the difference by the state-
space quantization and the second term does the difference
of the dynamics. For simplicity of notation, we denote these
terms by Δ11(ξ, ζi) and Δ12(ζi, P), i.e.,

Δ1(ξ, ζi, P) ≤ Δ11(ξ, ζi) + Δ12(ζi, P). (9)

In a similar way to this, Δ2(ξ, ζi, P) can be decomposed
as

Δ2(ξ, ζi, P) ≤ ∥∥∥ E[ x(t+1) x�(t+1)| x(t)=ξ ]

− E[ x(t+1) x�(t+1)| x(t)=ζi ]
∥∥∥

+
∥∥∥ E[ x(t+1) x�(t+1)| x(t)=ζi ]

− E[ z(t+1)z�(t+1)| z(t)=ζi ]
∥∥∥

= Δ21(ξ, ζi) + Δ22(ζi, P) (10)

where Δ21(ξ, ζi) and Δ22(ζi, P) are similarly defined. Note
that Δ11(ζi, ζi) = 0 and Δ21(ζi, ζi) = 0. Then a bisimulation
function is introduced as follows.

Definition 2 (Bisimulation functions): A function φ :
R0+ × {ζ1, ζ2, . . . , ζN} → R is a bisimulation function for
Σc and {ζ1, ζ2, . . . , ζN} if
(a) φ(‖ξ − ζi‖, ζi) is differentiable with respect to ‖ξ − ζi‖,
(b) φ(‖ξ − ζi‖, ζi) ≤ ‖ξ − ζi‖ − Δ11(ξ, ζi),
(c) ‖ξ − ζi‖φ(‖ξ − ζi‖, ζi) ≤ ‖ξ − ζi‖2 − Δ21(ξ, ζi),

(d) there exists a positive scalar ω such that

ω ≤ ∂φ(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ ,

(e)
∂φ(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ ≤ 1. �

3.2 Significance of Bisimulation Functions

The significance of the bisimulation function is stated as fol-
lows.

Theorem 1: If there exists a bisimulation function φ for Σc

and {ζ1, ζ2, . . . , ζN}, the following statements hold.
(i) There exist a stochastic matrix P and a precision ε such
that Σc �ε Σd(P).
(ii) If the pair (P, ε) satisfies

−φ(ε, ζi) + Δ12(ζi, P) ≤ 0 (i = 1, 2, . . . ,N), (11)

−εφ(ε, ζi) + Δ22(ζi, P) ≤ 0 (i = 1, 2, . . . ,N), (12)

then Σc �ε Σd(P).

Proof : First, we prove (ii). By applying Definition 2 (b)
and (11) to (9), it follows that

Δ1(ξ, ζi, P) ≤ ‖ξ − ζi‖ − φ(‖ξ − ζi‖, ζi) + φ(ε, ζi)
holds for every (ξ, ζi) ∈ Rn × {ζ1, ζ2, . . . , ζN}. From Defini-
tion 2 (e), ‖ξ − ζi‖ − φ(‖ξ − ζi‖, ζi) is monotonically nonde-
creasing with ‖ξ − ζi‖, which implies that if ‖ξ − ζi‖ ≤ ε,
then

Δ1(ξ, ζi, P) ≤ ε − φ(ε, ζi) + φ(ε, ζi) ≤ ε.
On the other hand, in a similar way to the above, it can be
shown from (10), (12), and Definition 2 (c) that

Δ2(ξ, ζi, P) ≤ ‖ξ − ζi‖2 − ‖ξ − ζi‖ φ(‖ξ − ζi‖, ζi) + εφ(ε, ζi).
Then since Definition 2 (b) and (e) imply that ‖ξ − ζi‖(‖ξ −

†Determine if F(x) ≥ 0 for all x in an infinite set X ⊆ Rn.
††Find y ∈ Rm such that F(x, y) ≥ 0 for all x ∈ X.
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ζi‖−φ(‖ξ−ζi‖, ζi)) is monotonically nondecreasing with ‖ξ−
ζi‖, we have

Δ2(ξ, ζi, P) ≤ ε2 − εφ(ε, ζi) + εφ(ε, ζi) ≤ ε2

under the condition ‖ξ − ζi‖ ≤ ε. These mean Σc �ε
Σd(P). Next, (i) is proven. Definition 2 (d) means that
−φ(‖ξ − ζi‖, ζi) is monotonically decreasing with ‖ξ − ζi‖.
Furthermore, it means that −‖ξ − ζi‖φ(‖ξ − ζi‖, ζi) is mono-
tonically decreasing with ‖ξ−ζi‖ on [ε̄,∞) (ε̄ is some value).
So for any stochastic matrix P, there exists an ε satisfying
(11) and (12). This and (ii) imply (i). �

Statement (i) provides a sufficient condition for the
continuous system Σc to be ε-bisimilar to Σd(P) for a given
(P, ε), and (ii) characterizes (P, ε) for the bisimulation by 2N
inequalities.

Once a bisimulation function is obtained, the solutions
to Problem 1 can be readily derived. The decision problem
(i) is solved by checking the satisfaction of (11) and (12) for
the given (P, ε). On the other hand, (ii) is resolved by finding
a pair (P, ε) satisfying (11) and (12). For example, a solution
with the minimum ε, which may be the most useful, is given
as follows.

Theorem 2: The pair (P(∞), ε(∞)) given by the following
algorithm is an asymptotic solution of (11) and (12) with the
minimum ε.
(Algorithm BISIM)
(Step 1) Set

εmin := the minimum ε satisfying (5),

εmax := a sufficiently large positive number,

ε(0) :=
εmin + εmax

2
,

k := 0 (counter initialization).

(Step 2) Solve the following optimization problem and let
(γ(k), P(k)) be the solution.

min
γ∈R, P∈PN×N

γ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−φ(ε(k), ζi) +
∥∥∥ f (ζi) − [ζ0 ζ1 · · · ζN]P�ei

∥∥∥≤ γ
(i = 1, 2, . . . ,N),

−ε(k)φ(ε(k), ζi) +
∥∥∥ f (ζi) f�(ζi) + g(ζi)W(ζi)g�(ζi)

− [ζ0ζ�0 ζ1ζ
�
1 · · · ζNζ�N ](P�⊗ InN)Ei

∥∥∥ ≤ γ
(i = 1, 2, . . . ,N)

where ei := [0 · · · 0 1 0 · · · 0]� is the i-th standard basis in
RN and Ei is the nN × n matrix of the form

Ei := [0n×n · · · 0n×n In 0n×n · · · 0n×n]�.
↑

the i-th block

(Step 3) If γ(k) > 0,

ε(k + 1) :=
εmax + ε(k)

2
, εmin := ε(k),

otherwise

ε(k + 1) :=
εmin + ε(k)

2
, εmax := ε(k).

(Step 4) k := k + 1 and go to Step 2.

Proof : See Appendix A. �

The above method is based on the convex optimization
for P (and γ) and the bisection search for ε. Thus a solution
to Problem 1 (ii) can be efficiently computed.

As a consequence of the above discussion, Problem 1
can be reduced into finding a bisimulation function φ. In the
next section, we propose a computationally tractable method
to derive a bisimulation function.

Remark 1: The existence of a bisimulation function (in
Definition 2) is just a sufficient condition for the system Σc to
have an ε-bisimilar Markov chain Σd(P). Thus, even though
a bisimulation function does not exist, we cannot conclude
that Problem 1 is infeasible. Such a bisimulation function,
which gives a sufficient condition, can be found in several
studies, e.g., [22]. �

4. Construction of Bisimulation Functions

In order to compute bisimulation functions, the following
result plays an important role.

Theorem 3: All bisimulation function for Σc and {ζ1,
ζ2, . . . , ζN} are given by

φ(‖ξ − ζi‖, ζi) = ‖ξ − ζi‖ −
√
α(‖ξ − ζi‖, ζi) (13)

where α : R0+ × {ζ1, ζ2, . . . , ζN} → R0+ is the parameter
function satisfying

(a’) α(‖ξ − ζi‖, ζi) is differentiable with respect to ‖ξ − ζi‖,
(b’) α(‖ξ − ζi‖, ζi) − ‖ f (ξ) − f (ζi)‖2 ≥ 0,

(c’) α(‖ξ − ζi‖, ζi)‖ξ − ζi‖2
−‖ f (ξ) f�(ξ) + g(ξ)W(ξ)g�(ξ)

− f (ζi) f�(ζi) − g(ζi)W(ζi)g
�(ζi)‖2 ≥ 0,

(d’) there exists a positive scalar ω such that

4(1 − ω)2α(‖ξ − ζi‖, ζi) −
(
∂α(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖

)2

≥ 0,

(e’)
∂α(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ ≥ 0,

where f , g, and W are defined in Sect. 2.

Proof : It is obvious that (13) is a bijective relation be-
tween φ and α (note α(‖ξ − ζi‖, ζi) ∈ R0+). So we show
that (a)–(e) are equivalent to (a’)– (e’).
(a)↔ (a’): Trivial from (13).
(b)↔ (b’): Since an explicite form of E[ x(t+1) |x(t)= ξ ] is
obtained as (A· 1) in Appendix A, we have

Δ11(ξ, ζi) = ‖ f (ξ) − f (ζi)‖. (14)

This and (13) prove that (b) and (b’) are equivalent.
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(c)↔ (c’): From (A· 3) in Appendix A, we have

Δ21(ξ, ζi) = ‖ f (ξ) f�(ξ) + g(ξ)W(ξ)g�(ξ)

− f (ζi) f�(ζi) − g(ζi)W(ζi)g
�(ζi)‖. (15)

This and (13) imply that (c) and (c’) are equivalent.
(d)↔ (d’): Consider the inequality in (d’). By transposing
the second term to the right hand side and taking the square
root of both sides, the inequality is expressed as

2(1 − ω)
√
α(‖ξ − ζi‖, ζi) ≥ ∂(

√
α(‖ξ − ζi‖, ζi) )2

∂‖ξ − ζi‖ ,

and, equivalently,

2(1 − ω)
√
α(‖ξ − ζi‖, ζi)

≥ 2
√
α(‖ξ − ζi‖, ζi)∂

√
α(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ .

Furthermore, this is represented as

1 − ∂
√
α(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ ≥ ω.

Since (13) implies

∂φ(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ = 1 − ∂

√
α(‖ξ − ζi‖, ζi)
∂‖ξ − ζi‖ , (16)

it is shown that (d’) is equivalent to (d).
(e)↔ (e’): Trivial from (13). �

In Definition 2, the bisimulation function φ is intro-
duced with the properties (b) and (c) including square-root
terms, e.g., ‖ξ − ζi‖ (=

√
(ξ − ζi)�(ξ − ζi)). On the other

hand, Theorem 3 provides a parameterization of φ by the
function α which is not characterized by square-root terms
(in (b’) and (c’)). This enables us to derive a bisimulation
function via a sum of squares problem (which is convex!
[26]).

Assume that the elements of f , g, and W are quotients
of a polynomial by a positive polynomial (or can be approx-
imated by them), and α is of the form

α(‖ξ − ζi‖, ζi) = bi‖ζi‖2 +
M∑
j=1

ci j‖ξ − ζi‖2 j (17)

where bi, ci j ∈ R are coefficients and M ∈ N is an accuracy
parameter selected by users. Then the function α is con-
structed with the solution to the following sum of squares
problem.

Find bi, ci j (i = 1, 2, . . . ,N, j = 1, 2, . . . ,M)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Left hand side of (b’) × p1(ξ) is a sum of squares,
Left hand side of (c’) × p2(ξ) is a sum of squares,
Left hand side of (d’) is a sum of squares,
Left hand side of (e’) × ‖ξ − ζi‖ is a sum of squares,

(i = 1, 2, . . . ,N),

where p1, p2 and ω are arbitrarily given positive polynomi-

als and a small positive scalar. Note that α and
(
∂α(‖ξ−ζi‖,ζi)
∂‖ξ−ζi‖

)2

are polynomials of ‖ξ − ζi‖2 (= (ξ − ζi)�(ξ − ζi)), i.e., poly-
nomials of ξ. In addition, notice that, since (b’), (c’), and
(e’) are not always polynomial conditions, they are trans-
formed into equivalent polynomial conditions by introduc-
ing the positive polynomials p1, p2 and the positive term
‖ξ − ζi‖.

By solving this sum of squares problem, we can derive
a function α and thus obtain a bisimulation function φ.

It should be remarked that the sum of squares prob-
lems can be reduced into the so-called semi-definite pro-
gramming problems [26], and they can be solved by, e.g.,
the MATLAB toolbox “SOSTOOLS” [27].

5. Example

Consider the following continuous system

Σc :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(t + 1) = 0.3x1(t) +

x2(t)

3 + x2
1(t)x2

2(t)
,

x2(t + 1) = −0.15x1(t) + 0.3x2(t) + w(t)

where xi ∈ R (i ∈ {1, 2}), w ∈ W := [−1, 1], E(w) = 0, and
E(w2) = 0.3. The discrete states of Σd(P) are given by

ζ1 :=

[−1
−1

]
, ζ2 :=

[−1
0

]
, ζ3 :=

[−1
1

]
, ζ4 :=

[−1
0

]
,

ζ5 :=

[
0
0

]
, ζ6 :=

[
0
1

]
, ζ7 :=

[
1
−1

]
, ζ8 :=

[
1
0

]
, ζ9 :=

[
1
1

]
.

Then the proposed method provides the bisimulation
function

φ(‖ξ − ζi‖, ζi) = ‖ξ − ζi‖ −
√

0.27‖ξ − ζi‖2 + 0.26‖ζi‖2.

This guarantees that there exists a stochastic matrix P and a
precision ε such that Σc �ε Σd(P) (see Theorem 1). Using
this, we obtain the Markov chain Σd(P) in Fig. 2 with ε �
0.8, where some nodes with small probability are omitted.

For the system Σc and the discrete states {ζ1, ζ2, . . . , ζ9},
the minimum ε satisfying (5) is

√
2/2 (� 0.707). Compared

with this, it turns out that the discrete system Σd(P) with

Fig. 2 Discrete abstraction by the proposed method. In this figure, some
nodes with small probability are omitted.
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ε � 0.8 is a good approximation of Σc.
In this way, the proposed method solves the discrete

abstraction problem for stochastic continuous systems.

6. Conclusion

This paper has considered the discrete abstraction problem
for stochastic nonlinear systems. The problem has been re-
duced into the problem of finding the bisimulation function,
which provides a systematic method to abstract stochastic
continuous systems to Markov chains. We also have pre-
sented a construction technique of the bisimulation function
based on sum of squares programming (which is convex).

There are several open issues in our framework. For
example, it is expected to extend the proposed method to a
more general class of systems such as non-affine stochastic
nonlinear systems and stochastic hybrid systems. In addi-
tion, the proposed method cannot directly give any conclu-
sion for the trajectory on the time interval [0,∞), which is
an issue to be further studied. Such topics are interesting
future works.
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Appendix A: Proof of Theorem 2

A.1 Preliminary: Explicite Formulas of First- and Second-
order Moments of States and Formulas of Δ12(ζi, P)
and Δ22(ζi, P)

By straightforward calculation with Assumptions (A2) and
(A3), the first- and second-order moments of the states x and
z are expressed as follows.

E[ x(t+1) |x(t) = ξ ] = E[ f (ξ) + g(ξ)w(t) ]

= f (ξ) + g(ξ)E[w(t)|x(t) = ξ]

= f (ξ), (A· 1)

E[ z(t+1) | z(t) = ζi ] = [ζ0 ζ1 · · · ζN]P�ei, (A· 2)

E[ x(t+1) x�(t+1) | x(t) = ξ ]

= E[ ( f (ξ) + g(ξ)w(t))( f (ξ) + g(ξ)w(t))� ]

= f (ξ) f�(ξ) + f (ξ)E[w(t)|x(t) = ξ]�g�(ξ)

+ g(ξ)E[w(t)|x(t) = ξ] f�(ξ)

+ g(ξ)E[w(t)w(t)�|x(t) = ξ]g�(ξ)

= f (ξ) f�(ξ) + g(ξ)W(ξ)g�(ξ), (A· 3)

E[ z(t+1) z�(t+1) | z(t) = ζi ]

= [ζ0ζ
�
0 ζ1ζ

�
1 · · · ζNζ�N ](P� ⊗ InN)Ei. (A· 4)

Furthermore, from (3), (4), and (A· 1)–(A· 4), we have
the following explicite formulas of Δ12(ζi, P) and Δ22(ζi, P):

Δ12(ζi, P) =
∥∥∥ f (ζi) − [ζ0 ζ1 · · · ζN]P�ei

∥∥∥, (A· 5)

Δ22(ζi, P) =
∥∥∥ f (ζi) f�(ζi) + g(ζi)W(ζi)g

�(ζi)

− [ζ0ζ
�
0 ζ1ζ

�
1 · · · ζNζ�N ](P�⊗ InN)Ei

∥∥∥.
(A· 6)

A.2 Proof of Main Part

First, Algorithm BISIM corresponds to the (standard) bisec-
tion root finding method for the following scalar equation
with the variable ε:

min
P∈PN×N

max
i∈{1,2,...,N}

max{−φ(ε, ζi) + Δ12(ζi, P) ,

−εφ(ε, ζi) + Δ22(ζi, P)} = 0. (A· 7)

Thus we have a solution to (A· 7) by the procedure.
Next, we show that (A· 7) holds for the solution of (11)

and (12) with the minimum ε. From (3) and (4), Δ12(ζi, P) ≥
0 and Δ22(ζi, P) ≥ 0. Thus it follows that

φ(ε, ζi) ≥ 0 (A· 8)

holds for the all solutions to (11) and (12). For ε satisfying
(A· 8), −φ(ε, ζi) and −εφ(ε, ζi) are monotonically decreas-
ing, which means that ε is the minimum if one of the 2N
terms

min
P∈PN×N

−φ(ε, ζi) + Δ12(ζi, P) (i = 1, 2, . . . ,N),

min
P∈PN×N

−εφ(ε, ζi) + Δ22(ζi, P) (i = 1, 2, . . . ,N)

is zero and the others are nonpositive. This condition is ex-
pressed in (A· 7), which completes the proof.
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