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An Efficient Algorithm for Weighted Sum-Rate M aximization in

Multicell OFDM A Downlink
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SUMMARY  This paper considers coordinated linear precoding for
rate optimization in downlink multicell, multiuser orthogal frequency-
division multiple access networks. We focus on twfietent design crite-
ria. In the first, the weighted sum-rate is maximized undangmit power
constraints per base station. In the second, we minimizeotaé trans-
mit power satisfying the signal-to-interference-plusseeratio constraints
of the subcarriers per cell. Both problems are solved ugigdsrd conic
optimization packages. A less complex, fast, and provabiywergent al-
gorithm that maximizes the weighted sum-rate with pericaiismit power
constraints is formulated. We approximate the non-conveighted sum-
rate maximization (WSRM) problem with a solvable convexnidry means
of a sequential parametric convex approximation approddie second-
order cone formulations of an objective function and thest@ints of the
optimization problem are derived through a proper changeaodfbles,
first-order linear approximation, and hyperbolic constigtransformation.
This algorithm converges to the suboptimal solution wraldrg fewer it-
erations in comparison to other known iterative WSRM aliyons. Nu-
merical results are presented to demonstrateftieeteveness and superior-
ity of the proposed algorithm.

key words: Weighted sum-rate maximization, Coordinated linear precod-
ing, Convex approximation, Second-order cone programming.

1. Introduction

and Susumu YOSHIDAT, Fellow

the beamforming designs presented in [5, 6] achieve optimal
capacity, these optimal techniques may be practically-inap
plicable because the computational complexity increases e
ponentially with the optimization problem size. Therefore
suboptimal design with less complex signal processing is
very important. Beamforming designs achieving necessary
optimality conditions have been thoroughly studied in [3,4
Surprisingly, it has been proved numerically in [5] that the
performances of suboptimal methods achieving the neces-
sary optimality conditions are indeed very close to the-opti
mal beamforming performance.

An iterative coordinated beamforming design based on
Karush-Kuhn-Tucker (KKT) optimality conditions has been
proposed in [3], which is not provably convergent. A so-
lution for the WSRM optimization problem with an alter-
nating maximization (AM) algorithm is presented in [4],
which relies on alternate updating between the beamform-
ing vectors and a closed-form posterior conditional proba-
bility. In [7-9], the authors solved the WSRM problem with
alternating optimization, establishing a relationshiween

The multiantenna Gaussian broadcast channel (BC) has reWeighted sum-rate and weighted minimum mean-square er-
cently been a subject of considerable interest and researc©" (WMMSE). Iterative and discrete power-control-based

primarily due to its inherent feature of realizing multpunt
multi-output (MIMO) spatial multiplexing benefits, even

solutions for WSRM have been discussed in [10]. How-
ever, these iterative WSRM optimization designs exhilbit re

when the mobile devices have a single antenna each [1]&tively slower convergence rates.

Costa precoding or dirty paper coding (DPC) [2], a non-

In this paper, we formulate and propose a less com-

linear interference cancellation technique, is known to be Plex and faster convergent solution for the WSRM prob-
a capacity-achieving strategy for BC. However, DPC im- lem _for multicell, multiuser orthogonal frequency—dmm
plementation demands substantial extra complexity at bothMultiple access (OFDMA) systems. Our beamforming de-
the base station (BS) and receivers. To the contrary, linearSign i based on a sequential parametric convex approxima-
precoding, a suboptimal precoding technique, can achieve 410N (SPCA) approach explored in [11]. This SPCA-based
large fraction of DPC capacity at significantly lower com- WSRM (SPCA-WSRM) optimization converges to the lo-
plexity without compromising the multiplexing gain. More- cal opt!mal_solutlon within a few iterations by |t§rat|vely
over, a linear precoder can be designed so as to deal witrPProximating the non-convex WSRM problem with a solv-
the weighted sum-rate maximization (WSRM) problem un- able_convex form. In particular, the WSRM problem is ap-
der per-BS power constraints [3]. proximated as a second-order cone program (SOCP) [15]

The WSRM problem with BS transmit power con- vylth proper change of vangbleg, mtroduc.lng addltlona.J op
straints is non-convex and NP-hard [3, 4], even for single fimization variables, applying first-order linear appirosi-
antenna users. As a result, finding the global optimal solu-tion and hyperbolic constraints transformations.

tion for this non-convex problem is veryfiltult. Though _ Power optimization under signal-to-interference-plus-
noise-ratio (SINR) constraints has been solved optimally b

various approaches. The downlink beamforming problem
under per-subcarrier SINR constraints has been solved via
equivalent uplink problem exploiting the uplink-downlink
duality in [19, 20]. In [21], a game theoretical approach
is used. In [22], the authors considered power allocation

Manuscript received March 15, 2013.
Manuscript revised July 27, 2013.
"The authors are with the Graduate School of Informatics, Ky-
oto University, Kyoto-shi, 606-8501 Japan.
a) E-mail: contact-h25e@hanase.kuee.kyoto-u.ac.jp
DOI: 10.1587trans.E0.??.1

Copyright© 200x The Institute of Electronics, Information and Comnuaion Engineers


http://arxiv.org/abs/1309.4203v1

IEICE TRANS. ??, VOL.Exx—??, NO.xx XXXX 200x

and beamforming as a joint problem an@i@ently solved inter-cell interference is experienced by the users; tigere
the joint problem under SINR constraints, iteratively up- no intra-cell interference. Each coordinated BS is equippe
dating the uplink beamformer and transmit power. We re- with Nt antennas, whereas the non-cooperative users have
fer to this method as JBPA. The optimality of the uplink- a single antenna each. The BSs are interconnected via high-
downlink duality-based approach in a single cell multiuser capacity backhaul links, and global channel state informa-
case has been proved in [23,24]. The authors of [25] formu-tion (CSI) is shared among them. Coordinated linear mul-
lated the downlink beamforming problem as a convex semi- tiuser downlink precoding is employed at each BS. The
definite program (SDP) using a constraint relaxation tech- downlink user scheduling is determined by the assignment
nigue. More recently, in [26], SOCP formulation was used functiong(m, n). The assignment of us&ifrom themth BS

to find the global optimal solution for this power optimiza- on thenth subcarrier is defined ds= ¢(m, n). Let the set

tion problem. Inter-cell interference cancellation thghu  of all the cells be denoted byl = {1,2,--- , Neeyis}, @and let
user scheduling in downlink beamforming has been per- N = {1,2,---, Ngyp} be the set of all subcarriers. The base-
formed in [27]. Most of these works are based on single- band signal model for the received data of usé&om cell
carrier systems. mon thenth subcarrier is given by
In this paper, we formulate the power optimization

problem under SINR constraints in multicell multicarrier Yk = Niemn FrmnGimn + Z Ny fiemvnGiermen + Zkmns
downlink beamforming using SOCP. Because the structure meM\m

of the optimization problem is convex [19, 20], no approxi- K=g(m'.n)

mation is required and the global optimal solution is guaran (1)

teed. The convergence behaviors of SOCP-based optimiza- here M\m defi th btracti f el ” ¢

tion are compared with other well-known iterative methods. where M\m e(:jmes ehsu rac 'Og 0 eg:r?]fm ri:N_SE
The reminder of the paper is organized as follows. The ﬁ\/l_. Yk € Ch enoteletNTeX .recENe syrln ° hor u | It

multicell, multiuser OFDMA network model and WSRM $(m, n). kkmndeBCS Tlr? tbe Corfnp ex c ang% Vggtor

optimization framework are presented in Section 2. Section toe:\rl\;ir:nli{csgat:non sugéarrigriseair\?eﬁrgnir usee CN{ 1

3 explains the process of sequential convex approximationd ~ CN(0. 1) denotes the transgmitted)é I;;wnrt])ol from BS

of the non-convex optimization problem. We illustrate the t(ljmsl]serk on s’ubcarrien and ~ CN(O 1)yis the additive

power optimization problem under SINR constraints in Sec- " . ) 1en, antzqem ’

tion 4. In Section 5, we discuss the simulation parametersWhlte Gaussian noise (AWGN) at user

and numerical results found in this work. Section 6 con-

cludes the paper.

Notations: Superscripts-f" and ()" denote the Hermitian _ _ _ _

transpose and transpose operations, respectively. @aussi !N this paper, we emphasize the linear beamformer design

distribution of regicomplex random variables with mean ~ for WSRM optimization in a multicell, multiuser OFDMA
and variancer? is defined aRA (1, 02)/CN (u, o2). Bold- network. The design objective is the maximization of the

face lower-caseipper-case letters defines a vegtuatrix. weighted sum-rate under per-BS transmit power constraints
Operator veg] stacks all the elements of the argumentinto 1€ SINR of thekth user from celm scheduled on subcar-

a column vector, and diag(puts the diagonal elements of Ternis given by
a matrix into a column vectoiR/C defines a reatomplex

2.2 Transmit Precoding Problem

H RKH
space.R{-} andJ{-} denote the real and imaginary part of Viem = i fom fin P . 2)
the arguments, respectivelyl and||- || refer to the absolute 1+ X hkmnfk'mnfbmnthmn
value and, norm of the arguments, respectively. kﬁ%ﬁ%
2 Problem Formulation The instantaneous downlink data-rate achieved bykthe
user from cellm on subcarrien is rym = 100,(1 + Ykmn),
2.1 System Model and the instantaneous rate over all the subcarriers is given

by Rim = 2nes,, Mkmn- The summation is over all the subcar-

We consider an interference-limited cellular systerhlgfis ~ "€rs scheduled to usérfrom cellm, i.e.,n € Sim, where
cells with Nuserscen Users per cell. An OFDMA multiplex- ~ Skm = (k= ¢(m n)}. Let the weight of usek in cell m

ing scheme withNs, subcarriers over a fixed bandwidth 1S defined asuam, which may correspond to the quality of
is employed, where the subcarrier assignments are nonihe service it requests or some sort of priority in the system

overlappin among the users within a cell. As a result, only C0onsequently, the WSRM problem is defined as

"Note that the non-overlapping subcarrier allocation inheac o Neetis Nsub
cell does not limit the applicability of our proposed alglon to the maXTImlzeZ Z Wk kmn
case of multiple active users in one subcarrier in one celtaBise m=1 n=1 3)
the BS has multiple transmit antennas, it can serve multipégs Nsub
in each subcarrier at the same time. Then the user expesienece subject tOZ I fkmn”% < Prmax M= 1, ..., Neeis

channel interference within its own cell. ~
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Fig.1 Cell configuration for numerical experiment.

with k = ¢(m,n). F = {fxm; Me M, ne N} is the set

of all beamforming vectors, anBmmax is the BS transmit
power constraint of celin. Because the optimization prob-
lem in (3) is non-convex, obtaining the global optimal so-
lution is considerably complex andfficult. Therefore, we
focus on a less complex and provably convergent local opti-
mal solution.

2.3 Review of Second-Order Cone Programming

There has been substantial developmentand progreisin e
cient methods for solving a large class of optimization prob
lems. To employ these algorithms, one should reformulate
the optimization problem into a standard form that the algo-
rithms can deal with. Conic programs, i.e., linear programs
(LP) with generalized inequalities [15, 18], are subjedted
special attention. One such standard conic program fof solv
ing convex problems is SOCP, which is of the form

maximize R(ax)
X
SOCP cix +d

subject to D}*x b

>4 0, i=1..,U

(4)

wherex is the vector consisting of the optimization vari-
ables, whereasg, b, c, d, and D; are parameters with ap-
propriate sizes. The notationy is used for defining the

generalized inequalities as

[0 97]zx 0 lIsl2 <.

(®)

Hyperbolic constraints have an important role in the SOCP
formulation of the WSRM objective function and con-
straints. For hyperbolic equatiom$ < xy, x>0, y >0
with z € R™" andx, y € R, the equivalent SOCP is given
by [15]

< X+y.

2

(6)

2z
T
zZz<xy, x>0, y>0 @”X—y

3. Sequential Parametric Convex Approximation for
WSRM Problem

As a first step towards transforming the non-convex WSRM
optimization problem ir{3) into a standard form that S@CP
is capable of dealing with, we rewritg] (3) as

Neenis Nsub

maximize @kmnl0d, (1 + Ykm)
¥ n=1
k=¢(m,n)

m=1

()

Nsub
H 2
SUbJeCt IO§ ”fkmn”z < I:)m,max» m= 1» cees Ncells
n=1

whereaym = wim, YN. LetV = {kmn,¥Ym,n| k = ¢(m, n)}

andJ = NeeisNsup  Therefore, the objective function be-
comes a function of variables and can be expressed as

J J
_ ay;
max § av,0g5(1 + v,) = max H (L+w)™, (®)

whereV; refers to thejth set inV. Replacing (I yy,)™
with auxiliary variablecy,, we can express the WSRM prob-
lem as

J
maximize| | cy;
ooy g

subject to

Nsub

C1: ) Ilficmll3 < Pramas M= 1,
n=1

C2:cy <y +1 W€V, j=1.J

©)

ceey Ncells

with gy, = 1/ay, and the constraints in C2 ofl(9) active
at the optimum. From the definition of,, in @), we can
rewrite C2 of [9) as

2
av; lhv,- ijl
o —lsw, = A
\/l + 2 hkrnfienn fk’mnhkm'n
meM\m
k=g (' ,n)
which can be equivalently expressed as
Qv 1/2 hVi ij
= <
meMm k’'mn” "knrn
k=¢(m',n)

Further, introducing slack variableg, and endorsing

1+ ¥ bt ity < v, the resulting
meM\m
k=g (m',n)

WSRM optimization problem froni{9) can be rewritten as

TSOCP constraints are convex and can be solved using convex
optimization tools such as SeDuMi [16].
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4
J
mgéljr’gljzeﬂ Cvj p\ll/jzgvi < hyfy;, WjeVv (13)
subject to C?/Yj <py +1 (14)
Nsub !
C1: Z Il fiamll2 < Prumase M= 1, .... Neels Both (I3) and[(IK) are still non-convex, however, and this
= (10) formulation leads us to employ the SPCA technique. First,

we focus on the convex approximation ¢f{13). Defin-

. Qvj 1/2
C2:¢4v.(c,' —1)7° < hy fy, . .
dvley) -7 < by, ing Q(4v,. pv,) = p\l/izg\/j with py,, {&v, > 0, we approx-

C3: Jthy fy} =0 imate Q({v,. pv;) with its convex upper estimate function
U(&v., pv:, 6v.) according to [11] as
ca: Ju > P fiemn o hh 0 < dv, vi» Py B,
neM\m . 1( Py
k=a(r1.n) U(dv;» pv;»0v) = > (Wl + 9vj§\2,i). (15)
i

The conformity betweefl]9) and (10) can be validated as fol-
lows. First, we note that constraining the imaginary part of ConsequentlyQ(y;, pv;) < U(4v;, pv;,0v)), Yoy, = 0.
hy, fv, to zero in C2 of[[ID) does noffect the optimalitjf of At the optimum,Q(dv;, pv;) = U(dv;, pv;,0v)) with by, =
@). Second, we can clarify that at the optimum, all the con- VPv;/{v;- Using the successive approximation method, this
straints in C4 of [(I0) uphold the equality. For instance, let OPtimal pointis approachedin an iterative way by intuityve
us presume that the;th constraint in C4 is not active. Let Updating the variables until the KKT points ¢f{10) are ob-
-, _ . a, v i tained. This convex over-estimation Q{¢y;, py;) allows
&v - vIB ?ndCVJ = {1+ (Cvj h 1)_[’) } , wheref |s_a us to express equatioh (13) as a hyperbolic constraint as
positive scaling parameter. Choosjfig- 1, the constraints T
o Pv;
&% byt - 5 -]
2

in C2 and C4 of[(10) become active together if we substitute s
and the corresponding SOCP representation is given by

< (h\/j ij - 2, + 1),

({vj, cVJ) with (5/J EVJ). However, the impact of such a sub-
stitution is factually a larger objective becawsg > ¢y, for
B> 1, which is a contradiction with the fact that an optimal
solution is obtained.

Now, we clearly notice that per-cell transmit power b ho fo — 24

. . . ng 2 ( Vi 1V 20y 1)

constraints C1, resulting SINR constraints C2, and con-
straint C3 are LPs with generalized equaljiiesqualities Now, let us turn our focus onto the convex approximation

that_can directly be _expressed as SOCP. Becguse these cons (). To arrive at an SOCP, we scale gli such that
straints are already in convex form, they require no approx- )

imation. In order to express C1 as SOCP, &t be the ~ Qv; < 10 as to make functioq},” concave. Function, '
set of beamformers for ceth. By making use of operator is differentiable. For dferentiable concave functiol with
vec(), we can reformulate C1 dsec(Fm)ll2 < vPmmax (Yx,y € domain (V)), t.he .first—order concavity.condition
for which the equivalent SOCP according[id (5) is given by says that the gradient line is the global over-estimatonef t
function [15]. FunctiorfV(x) + VxV(X)" (y — X) is defined as

pvv
th ij - ﬁ +1
}T >y 0. (16)

[ \/Pm,max] ) (11) a first-order linear approximation to the functiorxatvhere
vec(fm) (VxV(X); = ﬁ;")gx). Equivalently, we approximr;m?‘q,vii with
To express C4 of(10) as an SOCP, ity € CNeets~1xNrx its concave over-estimator as follows
and Fiy € CNrx(Neas=1) pe the collected channel and & v v -1

. . . .. C\/J_C\/J'SqV’C\/J' (CV»—CV»')
beamforming matrices, respectively, containing the chan- i ol Vi i il 17

nels from all interfering BSs and beamforming vectors cor-
responding to constraint C4 df_{10). As a result, we can

write constraint C4 aﬁ;[l diag(HimFim)]T”Z < v, which  and iteratively solve[{17) in parallel witfi{1L6) until con-
is equivalent to an SOCP vergence. Specifically, it is the linearization agfj’ around
pointcy, ;, wherecy, ; is the value oy, at theith iteration.
(12) Both (16) and[(1l7) are non-decreasing; however, they are
upper-bounded by the per-BS transmit power constraints.
Finally, we focus on reformulating the objective func-

tion of the WSRM problem in a convex solvable form.
There are two possible ways to express the objective func-
tion of (I0) such that the objective function can be handled
by the existing convex solver, as described here.

"For anyr, we havehy, fy,[? = |hy, fy,e"?. Therefore, choos- Method 1: The geometric mean (GM) of the opti-
ing 7 such that¥{hy, fy,} = 0 does not fiect optimality. mization variablesy = (cy,Cy,...cy,)”, is concave when

qv; -1 Qv; .
Pv; = av,G, ) (Oy, —Cv,i) + ¢y — 1 (with (12))

>q 0.

dv;
1 diag(HinFin)]|'

We are now left with non-convex constraint C2 of the opti-

mization problem in[{Z]0). We exploit the SPCA approach to
approximate C2 as convex. To initiate the convex approxi-
mation, we rewrite C2 with a suitable change of variables as
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¢y, = 0,VV;. Maximizing the GM of the optimization vari-
ables will yield the same weighted sum-rate as maximizing
the product of the optimization variables as long as the vari
ables are nonnegativéfime [15]; hence, we can rewrite the
objective function as

J

maximize| | cy, :& maximizey.
F.0v; .4y =1 F.Cv;dv;

(18)
Using the CVX [17] solver with SeduMi, a disciplined con-
vex programming, we can directly use the GM of the opti-
mization variables as an objective function.

Method 2: The second method is based on transfor-
mation of the product of the optimization variables into hy-
perbolic constraints, which also admit SOCP represemtatio
Thus, we need to reformulate the problem by introducing
new variables and by incorporating hyperbolic constraints
Lety be the set of new variables. During the transformation
process, variables g are assigned values at lpg stages.

To simplify analysis, letl = 2", whereu is a real positive
quantity. The transformation procedure is provided below.

Procedure 1: For hyperbolic constraints formulation

Initialize: (//‘j‘ =cv;, ] =1,..,Jandu = log,(J)
forl=uu-1,..1

(w:dl)z Sy q¥y, i=1,.,27
en

At the last stage of the hyperbolic constraints trans-

Py
th ij - E;\Z +1

C3: @ o |2 0.
4% Tj (hVi ij - ﬁ -1
J

C4. S‘{hvi fvi} =0.
qv; —1 Qv

CS:pyv; 2 qvey) (Cv;—cvi)+cy ;-1
Cé: v ™24 0

|1 diag(HinFin)| |7
C7:yv, 20,0y, 2 0, implicit constraints .
4. Denote 6y, 1. \'7]1 piv+jl) = optimal values at step 3.
5.6yt = \Jot/ogt i=i+l

6. until convergence or= Niter

In the iterative optimization process, the initég|s are cru-
cial to feasibility and convergence. We have noticed that
in most cases, the randomly generateg lead to infea-
sible solutions in the first iteration. To make sure that the
algorithm is feasible on the first step, we follow the steps in
Procedure2 to find good initialdy;s.

The other numerical issue that is not addressed in [12]
is the situation when one or more of thgs become zero,
i.e., no power in that or those particular subcarriers of the
corresponding cells. It is normal for some of the subcarri-
ers to not have any power because of limited BS power if
we recall the mechanism of a water-filling algorithm. How-
ever, when such a situation arises, we have noticed numer-
ical instability. We encounter the problem of dividing by
zero because we need to calculaté\l. In order to avoid

formation process, the objective function emerges to be athjs situation, we slightly modify the imposed constraints

one-variable optimization problem definedygs= y°. Fi-
nally, applying [(6) yields the SOCP formulations for21
hyperbolic equations ofMethod 2. It is worth noting that
this algorithm is inspired by [11-13] and is similar to [12],
which proposes the SPCA-based algorithm for multicell
MU-MISO networks. However, we formulate and propose
the SPCA-based algorithm with a GM approach for mul-
ticell OFDMA networks and resolve two practical limiting
factors related to the algorithm implementation, which are

not addressed in [12] to make the algorithm more general,

especially when the problem size is comparatively larger.

Algorithm: SOCP-based SPCA-WSRM

1. Initialization: Nier, i =0, (@ -+ vy,
2. Repeat
3. Solvethefollowing

maximizey (if Method 1is used) or

F.0v; 4y
maximize y° (if Method 2 is used)
F.0v 4vj ovp v
subject to
C1: Procedurel with (@) (if Method 2 is used).

c2: [ VPmmex

VeC(Tm):| 27( O’ m= 1’ RAEE) Ncells-

on py; such aspy; > ¢ (e.g.,6=0.0001) so as to bypass the
numerical problem. This modification yields a solution that
is close to the original one without encountering numerical
instability.
Procedure 2: For

generating initiaby,; s

Step 1: Generate channel-matched beamformers such that
the per-BS power constraint is satisfied for all cells, ifgum =
AY; Pmmax/N(hkmn/”hkrm”Z) with k = ¢(m n)-

Step 2. Use C4 of [(ID) to findy, by substituting the ineg-
uality with an equality.

Step 3: Calculatecy, o from C2 of [I0) manipulating the ab-
solute value ohy, fy,.

Step 4: Find py, using [13) Finally, the initial value oby,

is obtained asf, = Pv;/¢v;.

4. Power Optimization with SINR Constraints

In this section, we consider the power optimization issue of
multicell downlink beamforming subject to individual SINR
constraints of the subcarriers per cell. Generally, theRSIN
constraints are determined based on the signaling scheme
and the target bit error rate (BER) requirements of the sys-
tem. The SINRs are dependent on the transmission power
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and the choice of beamformers. In our study, minimization 65 T T T T T T T
is performed over the beamformers because the power is ab-

wherel'y, is the target SINR for subcarrier of cell m,
which is assigned to us&r= ¢(m, n). From a network oper-
ator’s perspective, this strategy is interesting becaugsir
mizes the powerféciency of the system through minimiza-
tion of the inter-carrier interference. When devising ajoal
rithmic solution to the optimization problem ih{19), we are
required to clarify the possibility that the SINR constiain
may be infeasible. Throughoutthis analysis, we assume thafig.2 Average sum-rate performances foffdient WSRM
the SINR targets are feasible. SINR feasibility is guaradte  algorithms.

because the SINR constraints we employ in this analysis are

actually taken from previous WSRM optimization.

Per-subcarrier SINR constraints in_{19) may appear S|NR constraints are feasible under the availability of per

non-convex. For a single-cell downlink beamforming case, cell transmit power, constraint C3 has no significant impact
the authors of [26] showed that the SINR constraints of this

type can be formulated as SOCP constraints. Thisimportant;  Numerical Results
observation motivates us to solfe(19) via an SOCP-based

convex optimization program. Using the SINR definition in
@), we can rewrite the SINR constraints bf(19) as

SPCA-WSRM —3—
AM[4] —e—
WMMSE [7] —<— |
ZF [14] —>—
5 4 I I I I I I I
10 12 14 16 18 20 22 24 26

Power, dBW

sorbed by them. = O |
N, N, £
‘cells Nsub 8 55 i |
L. 2 <
mmg’nlze g Z”fkmn“z (29) e
m=1 n=1 T 50 F |
subject tOymkn > Iimkn, YM, N andk = ¢(m, n), 2
()
“g’, 45 Opimal [5] —%— -
g
<

40 %

w

The performance of the proposed algorithm is analyzed on a
cellular network with three coordinated BSs, two users per
) ) T2 cell, and one cell frequency reuse factor. The distance be-
ﬁmkmnfkmn' > “[1 diag(Hint Fin) | H2 (20)  tween adjacent BSs is 1000 m. The users are uniformly
distributed around their own BS within a circular annulus
In the previous section, as we restricted ourselves to thewith external and internal radii of 1000 m and 500 m, re-
beamformers in whichm fumn > 0, Ym, n, (20) results in spectively, as shown in Fi@] 1. Similar to [3], frequency-
selective channel ccﬁ?ecisesnts over 64 subcarriers are mod-
/ihkmnfkmn > “[l diag(HintFint)]TH ’ (21)  eled ashim = (2oo|kim)  OrernAkm, Wherely, is the dis-
Ll 2 tance between B& and usek. The value of 10logy(®xm)
is distributed aRN (0, 8), accounting for log-normal shad-
owing, andAxm ~ CN(0, 1) accounts for Rayleigh fading.
All BSs are subjected to equal transmit power constraints,
> O. (22) i.e., Pmmax = Pmax YM. We also consider that perfect chan-
nel state information (CSI) is available both at the BSs and
users. The initial user assignment is performed randomly.
The power optimization problem can also be defined underwe consideMNy, = 2 and use the CVX [17] package for
per-cell maximum transmit power constraints, as we con- specifying and solving convex programs. For all cases, the
sidered in the previous section. Denotig +/Pmmax the maximum number of iterationier, is 20.
SOCP-based optimization for probleim{19) becomes We compare the average sum-ratg.{=1, Vm, k) per-
formances for various precoding strategies as a function of
per-BS transmit power in Fi§l 2. The iterative procedure for
SPCA-WSRM and other iterative methods, such as AM [4]
and WMMSE [7], stop when the increase in objective value

which can be formulated as SOCP

{ ﬂﬁhkrmfkrm

1 diag(HinFin)]|'

minimize &
F.é

subjecttoC1 : I{hxm fum} =0

\/FI A Fremn } (23) between two successive iterations<is (= 0.01). We see
c2: S NESY that the suboptimal solutions achieved by the SPCA-WSRM
[1 d'ag(HimFim)] algorithm and other techniques such as AM and WMMSE
[vec(#Fm) are indeed very close to the optimal precoding performance
C3: [ £ zx 0 achieved by the branch-and-bound (BB) method [5]. The

gap tolerance between the upper and lower bound of the
Relaxing constraint C3 of (23) means that there is no per-BB method is set to 0.01. Though the sum-rate achieved
cell transmit power constraint. However, as long as the by SPCA-WSRM, AM, and WMMSE are very close, the



GOLAMKIBRIA et al.: AN EFFICIENT ALGORITHM FOR WEIGHTED SUMRATE MAXIMIZATION IN MULTICELL OFDMA DOWNLINK

22 21 T T T T T

19

17

Weighted sum-rate (bps/Hz)
Weighted sum-rate (bps/Hz)

12 SPCA-WSRM —%—
AM —o— 16 SPCA-WSRM (¢ = 0) i
10 WMMSE —>— | SPCA-WSRM(e = 0.001) —x—
8 SIN[13] —5— | 15 SPCA-WSRM(e = 0.0001) —5—
6 1 1 1 1 1 1 1 1 1 14 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 2 4 6 8 10
Iteration index Iteration index

Fig.3 Convergence rate comparison foffdrent WSRM Fig.4 Performance of SPCA-WSRM with modified con-
algorithms. straint onpy, .

convergence rates of the optimal BB, AM, and WMMSE al- steady output for a random channel realization. The maxi-
gorithms are significantly slower. mum transmit power limit for all the BSs is set to 20 dBW,
From the point of view of complexity, though the and the user weights are chosen to lie within the range from
SPCA-WSRM algorithm consists of a large set of con- 0.10 to 0.60. We observe that the SPCA-WSRM algorithm
straints, they are all SOCP constraints, i.e., convex. Forconverges within a few iterations, whereas the AM and
the mth cell, the computational complexity per iteration is WMMSE algorithms are still far away from the convergence

Nusergeell , . level of SPCA-WSRM. This incident may be attributed to
© k§l D(Skm)NTX)’ whereD(Sin) defines the cardinal- "¢+ that AM-WSRM algorithm alternates between a

ity of Skm. Moreover, the SOCP in each iteration of SPCA- closed-form posterior conditional probability update ape
WSRM is a sparse SOCP, i.e., a large number of zeros ap-dating the beamforming vectors, whereas the WMMSE al-
pear in the KKT matrix. The sparsity increases along with gorithm relies on the relationship between the mutual infor
the iterative procedure. Because operations pertaining tomation and minimum mean-square error (MMSE) and alter-
sparse matrix structures and algorithms are faster, our pro nates between the updating of receive and transmit beam-
posed SPCA-SOCP method converges within a small num-formers. As a result, comparatively slower convergences
ber of iterations. The most significant aspect of this ap- are observed. However, good initial values for the vari-
proach is that it is general enough to apply to a variety ables involved in WMMSE accelerate the convergence rate.
of problems relating to SINR optimization (not necessarily The successive interference nulling (SIN) algorithm [13]
some-rate). is based on solving determinant-maximization (MAXDET)
The computational complexities of both AM and programs. So the complexity is very high when we have
WMMSE per iteration are almost the same and depend onlarge number of antennas at BS. Though it exhibits con-
the problem size. A closed-form expression can be foundvergence performance close to the SPCA-WSRM, the per-
per iteration for the case of the sum-power constraint fgr an iteration running time is approximately 5 to 6 times higher.
mth cell. The WMMSE admits an water-filling solution per Fig. [4 compares the WSR performances of SPCA-
iteration if we consider sum-power constraint, whereasif w based optimization for dierent values of such thatpy; >
consider a special case of per-antenna power constraints i. For all the cases, we generate the initial values\oé
each cell, the complexity of WMMSE is equal to that of the usingProcedure 2. We notice that the modified constraints
SPCA-WSRM algorithm. However, the convergence speeddo not significantly &ect optimality. It is obvious that the
of WMMSE is slow since it is based on alternating opti- larger the value of, the larger the performance gap between
mization concept. Although the BB algorithm is guaranteed the curves evolves. We do not depict any explicit capac-
to achieve an optimal solution, it is very computationally ity plot for Method 1 andMethod 2 because both of them
expensive. With a gap of 0.01, the BB method converges toexhibit identical WSR performance. Although both meth-
a sum-rate, which is close enough to the optimal sum-rate.ods produce equivalent WSR, the per-iteration running time
However, it takes approximately 900 iterations to converge for Method 1 is slightly longer tharMethod 2. We have
to this sum-rate. also observed that the SPCA-WSRM algorithm along with
In Fig.[3, we compare the WSRs achieved by the pro- Procedure2 provides a feasible solution to the optimization
posed SPCA-WSRM method and other iterative algorithms problem all the times.
as a function of the number of iterations required to acquire In Fig.[3, we plot the convergence performance curves
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Fig.6 Total transmitted power versus iteration indexes for
joint optimization of a coordinated beamforming system.

of our proposed WSRM method forftirent system param-
eters. The curves are obtained for threffedlent cases: case
1 with {Nceis = 3, Nusergcel = 4, Nsup = 64}, case 2 with
{Ncels = 4, Nusergcell = 6, Nsyp = 128}, and case 3 with
{Ncelis = 6, Nusergcell = 8, Nsup = 256}. Because the SPCA-
WSRM method is a linear-time method, the complexity per
cell per iteration increases linearly with increasedNi,
Nusergcel, andNsyp. As a result, the per-iteration running

iterative methods converge to the global optimal solution,
they exhibit diterent convergence rates. It is clear that
SOCP-based optimization has a smooth and faster conver-
gence as compared to the other iterative methods evaluated.
For the SOCP method, the transmit power values obtained
at each iteration are taken as solver CVX’s iterative values

6. Conclusions

In this paper, we study the WSRM optimization problem for
a multicell OFDMA multiplexing system. We formulate and
propose an SPCA-based convex approximation of the opti-
mization problem, which is known to be non-convex and
NP-hard. This iterative SOCP optimization is provably con-
vergentto the local optimal solution. Some numerical issue
related to the algorithm implementation are also discussed
Particularly, in terms of the convergence rate, this atbarni
exhibits excellent performance and outperforms some previ
ously analyzed solutions to the WSRM optimization prob-
lem. For power optimization with SINR constraints, SOCP-
based beamforming design is straightforward without using
uplink-downlink duality. SOCP optimality conditions may
be helpful in performance analysis or in enhancing the de-
sign criteria without resorting to the virtual uplink preloh.
There are many worthy extensions of this paper. De-
centralized beamforming optimization would be an interest
ing future project. Power minimization under per-user rate
constraints rather than per-subcarrier SINR constraiats ¢

time increases. However, the iterative convergence behav-also be considered. Another possible direction is to camsid

iors remain almost the same.

Finally, in Fig.[8, we compare the convergence behav-
iors for different power optimization algorithms. Though
any initial power vector sequence will converge to the opti-
mal power allocations in [22], they have a rapid power fluc-
tuation impact at the very first iteration if the initial powe
allocations are not chosen appropriately. For the current
analysis, the initial power values are chosen to be 0.006
W over all the subcarriers. The rate optimization based
on uplink-downlink duality has a comparatively slower con-

vergence rate due to alternate updating between the uplinkig

beamformer and downlink transmit power. Though all these

users with multiple antennas. In that case, the convergence
speed is expected to be lower for SOCP-based optimization,
for which a trade- investigation can be performed.
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