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SUMMARY This paper considers coordinated linear precoding for
rate optimization in downlink multicell, multiuser orthogonal frequency-
division multiple access networks. We focus on two different design crite-
ria. In the first, the weighted sum-rate is maximized under transmit power
constraints per base station. In the second, we minimize thetotal trans-
mit power satisfying the signal-to-interference-plus-noise-ratio constraints
of the subcarriers per cell. Both problems are solved using standard conic
optimization packages. A less complex, fast, and provably convergent al-
gorithm that maximizes the weighted sum-rate with per-celltransmit power
constraints is formulated. We approximate the non-convex weighted sum-
rate maximization (WSRM) problem with a solvable convex form by means
of a sequential parametric convex approximation approach.The second-
order cone formulations of an objective function and the constraints of the
optimization problem are derived through a proper change ofvariables,
first-order linear approximation, and hyperbolic constraints transformation.
This algorithm converges to the suboptimal solution while taking fewer it-
erations in comparison to other known iterative WSRM algorithms. Nu-
merical results are presented to demonstrate the effectiveness and superior-
ity of the proposed algorithm.
key words: Weighted sum-rate maximization, Coordinated linear precod-
ing, Convex approximation, Second-order cone programming.

1. Introduction

The multiantenna Gaussian broadcast channel (BC) has re-
cently been a subject of considerable interest and research,
primarily due to its inherent feature of realizing multi-input
multi-output (MIMO) spatial multiplexing benefits, even
when the mobile devices have a single antenna each [1].
Costa precoding or dirty paper coding (DPC) [2], a non-
linear interference cancellation technique, is known to be
a capacity-achieving strategy for BC. However, DPC im-
plementation demands substantial extra complexity at both
the base station (BS) and receivers. To the contrary, linear
precoding, a suboptimal precoding technique, can achieve a
large fraction of DPC capacity at significantly lower com-
plexity without compromising the multiplexing gain. More-
over, a linear precoder can be designed so as to deal with
the weighted sum-rate maximization (WSRM) problem un-
der per-BS power constraints [3].

The WSRM problem with BS transmit power con-
straints is non-convex and NP-hard [3, 4], even for single
antenna users. As a result, finding the global optimal solu-
tion for this non-convex problem is very difficult. Though

Manuscript received March 15, 2013.
Manuscript revised July 27, 2013.
†The authors are with the Graduate School of Informatics, Ky-

oto University, Kyoto-shi, 606-8501 Japan.
a) E-mail: contact-h25e@hanase.kuee.kyoto-u.ac.jp

DOI: 10.1587/trans.E0.??.1

the beamforming designs presented in [5,6] achieve optimal
capacity, these optimal techniques may be practically inap-
plicable because the computational complexity increases ex-
ponentially with the optimization problem size. Therefore,
suboptimal design with less complex signal processing is
very important. Beamforming designs achieving necessary
optimality conditions have been thoroughly studied in [3,4].
Surprisingly, it has been proved numerically in [5] that the
performances of suboptimal methods achieving the neces-
sary optimality conditions are indeed very close to the opti-
mal beamforming performance.

An iterative coordinated beamforming design based on
Karush-Kuhn-Tucker (KKT) optimality conditions has been
proposed in [3], which is not provably convergent. A so-
lution for the WSRM optimization problem with an alter-
nating maximization (AM) algorithm is presented in [4],
which relies on alternate updating between the beamform-
ing vectors and a closed-form posterior conditional proba-
bility. In [7–9], the authors solved the WSRM problem with
alternating optimization, establishing a relationship between
weighted sum-rate and weighted minimum mean-square er-
ror (WMMSE). Iterative and discrete power-control-based
solutions for WSRM have been discussed in [10]. How-
ever, these iterative WSRM optimization designs exhibit rel-
atively slower convergence rates.

In this paper, we formulate and propose a less com-
plex and faster convergent solution for the WSRM prob-
lem for multicell, multiuser orthogonal frequency-division
multiple access (OFDMA) systems. Our beamforming de-
sign is based on a sequential parametric convex approxima-
tion (SPCA) approach explored in [11]. This SPCA-based
WSRM (SPCA-WSRM) optimization converges to the lo-
cal optimal solution within a few iterations by iteratively
approximating the non-convex WSRM problem with a solv-
able convex form. In particular, the WSRM problem is ap-
proximated as a second-order cone program (SOCP) [15]
with proper change of variables, introducing additional op-
timization variables, applying first-order linear approxima-
tion and hyperbolic constraints transformations.

Power optimization under signal-to-interference-plus-
noise-ratio (SINR) constraints has been solved optimally by
various approaches. The downlink beamforming problem
under per-subcarrier SINR constraints has been solved via
equivalent uplink problem exploiting the uplink-downlink
duality in [19, 20]. In [21], a game theoretical approach
is used. In [22], the authors considered power allocation
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and beamforming as a joint problem and efficiently solved
the joint problem under SINR constraints, iteratively up-
dating the uplink beamformer and transmit power. We re-
fer to this method as JBPA. The optimality of the uplink-
downlink duality-based approach in a single cell multiuser
case has been proved in [23,24]. The authors of [25] formu-
lated the downlink beamforming problem as a convex semi-
definite program (SDP) using a constraint relaxation tech-
nique. More recently, in [26], SOCP formulation was used
to find the global optimal solution for this power optimiza-
tion problem. Inter-cell interference cancellation through
user scheduling in downlink beamforming has been per-
formed in [27]. Most of these works are based on single-
carrier systems.

In this paper, we formulate the power optimization
problem under SINR constraints in multicell multicarrier
downlink beamforming using SOCP. Because the structure
of the optimization problem is convex [19, 20], no approxi-
mation is required and the global optimal solution is guaran-
teed. The convergence behaviors of SOCP-based optimiza-
tion are compared with other well-known iterative methods.

The reminder of the paper is organized as follows. The
multicell, multiuser OFDMA network model and WSRM
optimization framework are presented in Section 2. Section
3 explains the process of sequential convex approximation
of the non-convex optimization problem. We illustrate the
power optimization problem under SINR constraints in Sec-
tion 4. In Section 5, we discuss the simulation parameters
and numerical results found in this work. Section 6 con-
cludes the paper.
Notations: Superscripts (·)H and (·)T denote the Hermitian
transpose and transpose operations, respectively. Gaussian
distribution of real/complex random variables with meanµ
and varianceσ2 is defined asRN (µ, σ2)/CN(µ, σ2). Bold-
face lower-case/upper-case letters defines a vector/matrix.
Operator vec(·) stacks all the elements of the argument into
a column vector, and diag(·) puts the diagonal elements of
a matrix into a column vector.R/C defines a real/complex
space.ℜ{·} andℑ{·} denote the real and imaginary part of
the arguments, respectively.| · | and|| · ||2 refer to the absolute
value andl2 norm of the arguments, respectively.

2. Problem Formulation

2.1 System Model

We consider an interference-limited cellular system ofNcells

cells with Nusers/cell users per cell. An OFDMA multiplex-
ing scheme withNsub subcarriers over a fixed bandwidth
is employed, where the subcarrier assignments are non-
overlapping† among the users within a cell. As a result, only

†Note that the non-overlapping subcarrier allocation in each
cell does not limit the applicability of our proposed algorithm to the
case of multiple active users in one subcarrier in one cell. Because
the BS has multiple transmit antennas, it can serve multipleusers
in each subcarrier at the same time. Then the user experiences co-
channel interference within its own cell.

inter-cell interference is experienced by the users; thereis
no intra-cell interference. Each coordinated BS is equipped
with NTx antennas, whereas the non-cooperative users have
a single antenna each. The BSs are interconnected via high-
capacity backhaul links, and global channel state informa-
tion (CSI) is shared among them. Coordinated linear mul-
tiuser downlink precoding is employed at each BS. The
downlink user scheduling is determined by the assignment
functionφ(m, n). The assignment of userk from themth BS
on thenth subcarrier is defined ask = φ(m, n). Let the set
of all the cells be denoted byM = {1, 2, · · · ,Ncells}, and let
N = {1, 2, · · · ,Nsub} be the set of all subcarriers. The base-
band signal model for the received data of userk from cell
m on thenth subcarrier is given by

ykmn = hkmn fkmndkmn +
∑

m′∈M\m
k′=φ(m′ ,n)

hkm′n fk′m′ndk′m′n + zkmn,

(1)

whereM\m defines the subtraction of elementm from set
M. ykmn ∈ C denotes the received symbol for userk with
k = φ(m, n). hkmn ∈ C1×NTx is the complex channel vector
between userk and BSm. The beamformer used by BSm
to transmit data on subcarriern is given by fkmn ∈ CNTx×1.
dkmn ∼ CN(0, 1) denotes the transmitted symbol from BSm
to userk on subcarriern, andzkmn ∼ CN(0, 1) is the additive
white Gaussian noise (AWGN) at userk.

2.2 Transmit Precoding Problem

In this paper, we emphasize the linear beamformer design
for WSRM optimization in a multicell, multiuser OFDMA
network. The design objective is the maximization of the
weighted sum-rate under per-BS transmit power constraints.
The SINR of thekth user from cellm scheduled on subcar-
rier n is given by

γkmn =
hkmn fkmn f H

kmnhH
kmn

1+
∑

m′∈M\m
k′=φ(m′ ,n)

hkm′n fk′m′n f H
k′m′n hH

km′n

. (2)

The instantaneous downlink data-rate achieved by thekth
user from cellm on subcarriern is rkmn = log2(1 + γkmn),
and the instantaneous rate over all the subcarriers is given
by Rkm =

∑

n∈Skm
rkmn. The summation is over all the subcar-

riers scheduled to userk from cell m, i.e., n ∈ Skm, where
Skm = {n | k = φ(m, n)}. Let the weight of userk in cell m
is defined aswkm, which may correspond to the quality of
the service it requests or some sort of priority in the system.
Consequently, the WSRM problem is defined as

maximize
F

Ncells
∑

m=1

Nsub
∑

n=1

wkmrkmn

subject to
Nsub
∑

n=1

|| fkmn||22 ≤ Pm,max, m = 1, ...,Ncells

(3)
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Fig. 1 Cell configuration for numerical experiment.

with k = φ(m, n). F := { fkmn; m ∈ M, n ∈ N} is the set
of all beamforming vectors, andPm,max is the BS transmit
power constraint of cellm. Because the optimization prob-
lem in (3) is non-convex, obtaining the global optimal so-
lution is considerably complex and difficult. Therefore, we
focus on a less complex and provably convergent local opti-
mal solution.

2.3 Review of Second-Order Cone Programming

There has been substantial development and progress in effi-
cient methods for solving a large class of optimization prob-
lems. To employ these algorithms, one should reformulate
the optimization problem into a standard form that the algo-
rithms can deal with. Conic programs, i.e., linear programs
(LP) with generalized inequalities [15, 18], are subjectedto
special attention. One such standard conic program for solv-
ing convex problems is SOCP, which is of the form

SOCP :























maximize
x

ℜ(aHx)

subject to

[

cH
i x + di

DH
i x + bi

]

�K 0, i = 1, ...,U

(4)

wherex is the vector consisting of the optimization vari-
ables, whereasa, b, c, d, and Di are parameters with ap-
propriate sizes. The notation�K is used for defining the
generalized inequalities as

[

(v s)T
]

�K 0⇔ ||s||2 ≤ v. (5)

Hyperbolic constraints have an important role in the SOCP
formulation of the WSRM objective function and con-
straints. For hyperbolic equationsz2 ≤ xy, x ≥ 0, y ≥ 0
with z ∈ R1×n andx, y ∈ R, the equivalent SOCP is given
by [15]

zT z ≤ xy, x ≥ 0, y ≥ 0 ⇔
∥

∥

∥

∥

∥

∥

2z
x − y

∥

∥

∥

∥

∥

∥

2

≤ x + y. (6)

3. Sequential Parametric Convex Approximation for
WSRM Problem

As a first step towards transforming the non-convex WSRM
optimization problem in (3) into a standard form that SOCP†

is capable of dealing with, we rewrite (3) as

maximize
F

Ncells
∑

m=1

Nsub
∑

n=1
k=φ(m,n)

αkmnlog2(1+ γkmn)

subject to
Nsub
∑

n=1

|| fkmn||22 ≤ Pm,max, m = 1, ...,Ncells

(7)

whereαkmn = wkm,∀n. Let V := {kmn,∀m, n | k = φ(m, n)}
and J = NcellsNsub. Therefore, the objective function be-
comes a function ofJ variables and can be expressed as

max
F

J
∑

j=1

αV j log2(1+ γV j ) = max
F

J
∏

j=1

(1+ γV j )
αV j , (8)

whereV j refers to thejth set inV. Replacing (1+ γV j )
αV j

with auxiliary variablecV j , we can express the WSRM prob-
lem as

maximize
F , cV j

J
∏

j=1

cV j

subject to

C1 :
Nsub
∑

n=1

|| fkmn||22 ≤ Pm,max, m = 1, ...,Ncells

C2 : c
qV j

V j
≤ γV j + 1, ∀V j ∈ V, j = 1, ..., J

(9)

with qV j = 1/αV j and the constraints in C2 of (9) active
at the optimum. From the definition ofγV j in (2), we can
rewrite C2 of (9) as

c
qV j

V j
− 1 ≤ γV j =

∣

∣

∣hV j fV j

∣

∣

∣

2

√

1+
∑

m′∈M\m
k=φ(m′,n)

hkm′n fk′m′n f H
k′m′nhH

km′n

,

which can be equivalently expressed as

(

c
qV j

V j
− 1

)1/2
≤

hV j fV j
√

1+
∑

m′∈M\m
k=φ(m′ ,n)

hkm′n fk′m′n f H
k′m′nhH

km′n

.

Further, introducing slack variablesζV j and endorsing
√

1+
∑

m′∈M\m
k=φ(m′ ,n)

hkm′n fk′m′n f H
k′m′n hH

km′n ≤ ζV j , the resulting

WSRM optimization problem from (9) can be rewritten as

†SOCP constraints are convex and can be solved using convex
optimization tools such as SeDuMi [16].
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maximize
F ,cV j ,ζV j

J
∏

j=1

cV j

subject to

C1 :
Nsub
∑

n=1

|| fkmn||22 ≤ Pm,max, m = 1, ...,Ncells

C2 : ζV j(c
qV j

V j
− 1)1/2 ≤ hV j fV j

C3 : ℑ{hV j fV j } = 0

C4 :
√

√

√

1+
∑

m′∈M\m
k=φ(m′ ,n)

hkm′n fk′m′n f H
k′m′nhH

km′n ≤ ζV j

(10)

The conformity between (9) and (10) can be validated as fol-
lows. First, we note that constraining the imaginary part of
hV j fV j to zero in C2 of (10) does not affect the optimality† of
(9). Second, we can clarify that at the optimum, all the con-
straints in C4 of (10) uphold the equality. For instance, let
us presume that theV jth constraint in C4 is not active. Let

¯ζV j , ζV j/β and c̄V j ,

{

1+
(

c
qV j

V j
− 1

)

β2
}1/qV j , whereβ is a

positive scaling parameter. Choosingβ > 1, the constraints
in C2 and C4 of (10) become active together if we substitute
(

ζV j , cVJ

)

with
(

ζ̄V j , c̄VJ

)

. However, the impact of such a sub-
stitution is factually a larger objective because ¯cVJ > cV j for
β > 1, which is a contradiction with the fact that an optimal
solution is obtained.

Now, we clearly notice that per-cell transmit power
constraints C1, resulting SINR constraints C2, and con-
straint C3 are LPs with generalized equalities/inequalities
that can directly be expressed as SOCP. Because these con-
straints are already in convex form, they require no approx-
imation. In order to express C1 as SOCP, letFm be the
set of beamformers for cellm. By making use of operator
vec(·), we can reformulate C1 as||vec(Fm) ||2 ≤

√

Pm,max,
for which the equivalent SOCP according to (5) is given by

[ √

Pm,max

vec(Fm)

]

�K 0. (11)

To express C4 of (10) as an SOCP, letHint ∈ C(Ncells−1)×NTx

and Fint ∈ CNTx×(Ncells−1) be the collected channel and
beamforming matrices, respectively, containing the chan-
nels from all interfering BSs and beamforming vectors cor-
responding to constraint C4 of (10). As a result, we can

write constraint C4 as
∥

∥

∥

∥

[

1 diag(HintFint)
]T

∥

∥

∥

∥

2
≤ ζV j , which

is equivalent to an SOCP














ζV j
[

1 diag(HintFint)
]T















�K 0. (12)

We are now left with non-convex constraint C2 of the opti-
mization problem in (10). We exploit the SPCA approach to
approximate C2 as convex. To initiate the convex approxi-
mation, we rewrite C2 with a suitable change of variables as

†For anyπ, we have|hV j fV j |2 = |hV j fV j e
jπ|2. Therefore, choos-

ing π such thatℑ{hV j fV j } = 0 does not affect optimality.

p1/2
V j
ζV j ≤ hV j fV j , ∀V j ∈ V (13)

c
qV j

V j
≤ pV j + 1. (14)

Both (13) and (14) are still non-convex, however, and this
formulation leads us to employ the SPCA technique. First,
we focus on the convex approximation of (13). Defin-
ing Q(ζV j , pV j) = p1/2

V j
ζV j with pV j , ζV j ≥ 0, we approx-

imateQ(ζV j , pV j) with its convex upper estimate function
U(ζV j , pV j , θV j ) according to [11] as

U(ζV j , pV j , θV j) ,
1
2

(

pV j

θV j

+ θV jζ
2
V j

)

. (15)

Consequently,Q(ζV j , pV j) ≤ U(ζV j , pV j , θV j ), ∀θV j ≥ 0.
At the optimum,Q(ζV j , pV j) = U(ζV j , pV j , θV j ) with θV j =√

pV j/ζV j . Using the successive approximation method, this
optimal point is approached in an iterative way by intuitively
updating the variables until the KKT points of (10) are ob-
tained. This convex over-estimation ofQ(ζV j , pV j) allows
us to express equation (13) as a hyperbolic constraint as
∥

∥

∥

∥

∥

∥

∥

[

ζV j

√

θV j

2 (hV j fV j −
pV j

2θV j
− 1)]

]T
∥

∥

∥

∥

∥

∥

∥

2

≤ (hV j fV j −
pV j

2θV j
+ 1),

and the corresponding SOCP representation is given by
























hV j fV j −
pV j

2θV j
+ 1

[

ζV j

√

θV j

2 (hV j fV j −
pV j

2θV j
− 1)

]T

























�K 0. (16)

Now, let us turn our focus onto the convex approximation
of (14). To arrive at an SOCP, we scale allqV j such that

qV j < 1 so as to make functionc
qV j

V j
concave. Functionc

qV j

V j

is differentiable. For differentiable concave functionV with
(∀x, y ∈ domain (V)), the first-order concavity condition
says that the gradient line is the global over-estimator of the
function [15]. FunctionV(x)+∇xV(x)T (y− x) is defined as
a first-order linear approximation to the function atx, where
(∇xV(x))i =

∂V(x)
∂xi

. Equivalently, we approximatec
qV j

V j
with

its concave over-estimator as follows

c
qV j

V j
− c

qV j

V j,i
≤ qV jc

qV j−1

V j ,i
(cV j − cV j,i)

pV j ≥ qV jc
qV j−1

V j,i
(cV j − cV j,i) + c

qV j

V j,i
− 1 (with (14))

(17)

and iteratively solve (17) in parallel with (16) until con-
vergence. Specifically, it is the linearization ofc

qV j

V j
around

point cV j,i, wherecV j,i is the value ofcV j at theith iteration.
Both (16) and (17) are non-decreasing; however, they are
upper-bounded by the per-BS transmit power constraints.

Finally, we focus on reformulating the objective func-
tion of the WSRM problem in a convex solvable form.
There are two possible ways to express the objective func-
tion of (10) such that the objective function can be handled
by the existing convex solver, as described here.

Method 1: The geometric mean (GM) of the opti-
mization variables,χ = (cV1cV2...cVJ )

1/J, is concave when
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cV j � 0,∀V j. Maximizing the GM of the optimization vari-
ables will yield the same weighted sum-rate as maximizing
the product of the optimization variables as long as the vari-
ables are nonnegative affine [15]; hence, we can rewrite the
objective function as

maximize
F ,cV j ,ζV j

J
∏

j=1

cV j :⇔ maximize
F ,cV j ,ζV j

χ. (18)

Using the CVX [17] solver with SeduMi, a disciplined con-
vex programming, we can directly use the GM of the opti-
mization variables as an objective function.

Method 2: The second method is based on transfor-
mation of the product of the optimization variables into hy-
perbolic constraints, which also admit SOCP representation.
Thus, we need to reformulate the problem by introducing
new variables and by incorporating hyperbolic constraints.
Letψ be the set of new variables. During the transformation
process, variables inψ are assigned values at log2 J stages.
To simplify analysis, letJ = 2u, whereu is a real positive
quantity. The transformation procedure is provided below.

Procedure 1: For hyperbolic constraints formulation

Initialize: ψu
j = cV j , j = 1, ..., J andu = log2(J)

for l = u, u − 1, ..., 1
(

ψl−1
i

)2 ≤ ψl
2i−1ψ

l
2i, i = 1, ..., 2l−1

end

At the last stage of the hyperbolic constraints trans-
formation process, the objective function emerges to be a
one-variable optimization problem defined asψ0

1 = ψ
0. Fi-

nally, applying (6) yields the SOCP formulations for 2u − 1
hyperbolic equations ofMethod 2. It is worth noting that
this algorithm is inspired by [11–13] and is similar to [12],
which proposes the SPCA-based algorithm for multicell
MU-MISO networks. However, we formulate and propose
the SPCA-based algorithm with a GM approach for mul-
ticell OFDMA networks and resolve two practical limiting
factors related to the algorithm implementation, which are
not addressed in [12] to make the algorithm more general,
especially when the problem size is comparatively larger.

Algorithm: SOCP-based SPCA-WSRM

1. Initialization: Niter, i = 0, (θi
V j
, cV j,i),

2. Repeat
3. Solve the following

maximize
F ,cV j ,ζV j

χ (if Method 1 is used) or

maximize
F ,cV j ,ζV j ,vV j ,ψV j

ψ0 (if Method 2 is used)

subject to
C1: Procedure 1 with (6) (if Method 2 is used).

C2:

[ √

Pm,max

vec(Fm)

]

�K 0, m = 1, ...,Ncells.

C3:

































hV j fV j −
pV j

2θi
V j

+ 1
















ζV j

√

θi
V j

2 (hV j fV j −
pV j

2θi
V j

− 1)

















T

































�K 0.

C4:ℑ{hV j fV j } = 0.

C5: pV j ≥ qV jc
qV j−1

V j ,i
(cV j − cV j,i) + c

qV j

V j,i
− 1.

C6:















ζV j
[

1 diag(HintFint)
]T















�K 0.

C7: ψV j ≥ 0, cV j ≥ 0, implicit constraints .
4. Denote (cV j,i+1, ζ

i+1
V j
, pi+1

V j
) = optimal values at step 3.

5. θi+1
V j
=

√

vi+1
V j
/ζ i+1

V j
, i = i + 1

6. until convergence ori = Niter

In the iterative optimization process, the initialθV j s are cru-
cial to feasibility and convergence. We have noticed that
in most cases, the randomly generatedθV j s lead to infea-
sible solutions in the first iteration. To make sure that the
algorithm is feasible on the first step, we follow the steps in
Procedure 2 to find good initialθV j s.

The other numerical issue that is not addressed in [12]
is the situation when one or more of thevV js become zero,
i.e., no power in that or those particular subcarriers of the
corresponding cells. It is normal for some of the subcarri-
ers to not have any power because of limited BS power if
we recall the mechanism of a water-filling algorithm. How-
ever, when such a situation arises, we have noticed numer-
ical instability. We encounter the problem of dividing by
zero because we need to calculate 1/θV j . In order to avoid
this situation, we slightly modify the imposed constraints
on pV j such aspV j ≥ ε (e.g.,ε=0.0001) so as to bypass the
numerical problem. This modification yields a solution that
is close to the original one without encountering numerical
instability.
Procedure 2: For generating initialθV j s

Step 1: Generate channel-matched beamformers such that
the per-BS power constraint is satisfied for all cells, i.e.,fkmn =
√

Pm,max/N(hkmn/||hkmn||2) with k = φ(m, n).
Step 2: Use C4 of (10) to findζV j by substituting the ineq-
uality with an equality.
Step 3: CalculatecV j ,0 from C2 of (10) manipulating the ab-
solute value ofhV j fV j .

Step 4: Find pV j using (13). Finally, the initial value ofθV j

is obtained asθ0
V j
=
√

pV j/ζV j .

4. Power Optimization with SINR Constraints

In this section, we consider the power optimization issue of
multicell downlink beamforming subject to individual SINR
constraints of the subcarriers per cell. Generally, the SINR
constraints are determined based on the signaling scheme
and the target bit error rate (BER) requirements of the sys-
tem. The SINRs are dependent on the transmission power
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and the choice of beamformers. In our study, minimization
is performed over the beamformers because the power is ab-
sorbed by them.

minimize
F

Ncells
∑

m=1

Nsub
∑

n=1

|| fkmn||22

subject toγmkn ≥ Γmkn,∀m, n andk = φ(m, n),

(19)

whereΓmkn is the target SINR for subcarriern of cell m,
which is assigned to userk = φ(m, n). From a network oper-
ator’s perspective, this strategy is interesting because it opti-
mizes the power efficiency of the system through minimiza-
tion of the inter-carrier interference. When devising an algo-
rithmic solution to the optimization problem in (19), we are
required to clarify the possibility that the SINR constraints
may be infeasible. Throughout this analysis, we assume that
the SINR targets are feasible. SINR feasibility is guaranteed
because the SINR constraints we employ in this analysis are
actually taken from previous WSRM optimization.

Per-subcarrier SINR constraints in (19) may appear
non-convex. For a single-cell downlink beamforming case,
the authors of [26] showed that the SINR constraints of this
type can be formulated as SOCP constraints. This important
observation motivates us to solve (19) via an SOCP-based
convex optimization program. Using the SINR definition in
(2), we can rewrite the SINR constraints of (19) as

1
Γkmn
|hkmn fkmn|2 ≥

∥

∥

∥

∥

[

1 diag(HintFint)
]T

∥

∥

∥

∥

2

2
. (20)

In the previous section, as we restricted ourselves to the
beamformers in whichhkmn fkmn ≥ 0, ∀m, n, (20) results in

√

1
Γkmn

hkmn fkmn ≥
∥

∥

∥

∥

[

1 diag(HintFint)
]T

∥

∥

∥

∥

2
, (21)

which can be formulated as SOCP


















√

1
Γkmn

hkmn fkmn
[

1 diag(HintFint)
]T



















�K 0. (22)

The power optimization problem can also be defined under
per-cell maximum transmit power constraints, as we con-
sidered in the previous section. Denotingξ =

√

Pm,max, the
SOCP-based optimization for problem (19) becomes

minimize
F , ξ

ξ

subject toC1 : ℑ{hkmn fkmn} = 0

C2 :



















√

1
Γkmn

hkmn fkmn
[

1 diag(HintFint)
]T



















�K 0

C3 :

[

vec(Fm)
ξ

]

�K 0

(23)

Relaxing constraint C3 of (23) means that there is no per-
cell transmit power constraint. However, as long as the
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Fig. 2 Average sum-rate performances for different WSRM
algorithms.

SINR constraints are feasible under the availability of per-
cell transmit power, constraint C3 has no significant impact.

5. Numerical Results

The performance of the proposed algorithm is analyzed on a
cellular network with three coordinated BSs, two users per
cell, and one cell frequency reuse factor. The distance be-
tween adjacent BSs is 1000 m. The users are uniformly
distributed around their own BS within a circular annulus
with external and internal radii of 1000 m and 500 m, re-
spectively, as shown in Fig. 1. Similar to [3], frequency-
selective channel coefficients over 64 subcarriers are mod-
eled ashkmn =

(

200 1
lkm

)3.5
ΦkmnΛkmn, wherelkm is the dis-

tance between BSm and userk. The value of 10log10(Φkmn)
is distributed asRN (0, 8), accounting for log-normal shad-
owing, andΛkmn ∼ CN(0, 1) accounts for Rayleigh fading.
All BSs are subjected to equal transmit power constraints,
i.e., Pm,max = Pmax,∀m. We also consider that perfect chan-
nel state information (CSI) is available both at the BSs and
users. The initial user assignment is performed randomly.
We considerNTx = 2 and use the CVX [17] package for
specifying and solving convex programs. For all cases, the
maximum number of iterations,Niter, is 20.

We compare the average sum-rate (wkm=1, ∀m, k) per-
formances for various precoding strategies as a function of
per-BS transmit power in Fig. 2. The iterative procedure for
SPCA-WSRM and other iterative methods, such as AM [4]
and WMMSE [7], stop when the increase in objective value
between two successive iterations is≤ ǫ (= 0.01). We see
that the suboptimal solutions achieved by the SPCA-WSRM
algorithm and other techniques such as AM and WMMSE
are indeed very close to the optimal precoding performance
achieved by the branch-and-bound (BB) method [5]. The
gap tolerance between the upper and lower bound of the
BB method is set to 0.01. Though the sum-rate achieved
by SPCA-WSRM, AM, and WMMSE are very close, the
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Fig. 3 Convergence rate comparison for different WSRM
algorithms.

convergence rates of the optimal BB, AM, and WMMSE al-
gorithms are significantly slower.

From the point of view of complexity, though the
SPCA-WSRM algorithm consists of a large set of con-
straints, they are all SOCP constraints, i.e., convex. For
the mth cell, the computational complexity per iteration is

O

(

Nusers/cell
∑

k=1
D(Skm)NTx

)

, whereD(Skm) defines the cardinal-

ity of Skm. Moreover, the SOCP in each iteration of SPCA-
WSRM is a sparse SOCP, i.e., a large number of zeros ap-
pear in the KKT matrix. The sparsity increases along with
the iterative procedure. Because operations pertaining to
sparse matrix structures and algorithms are faster, our pro-
posed SPCA-SOCP method converges within a small num-
ber of iterations. The most significant aspect of this ap-
proach is that it is general enough to apply to a variety
of problems relating to SINR optimization (not necessarily
some-rate).

The computational complexities of both AM and
WMMSE per iteration are almost the same and depend on
the problem size. A closed-form expression can be found
per iteration for the case of the sum-power constraint for any
mth cell. The WMMSE admits an water-filling solution per
iteration if we consider sum-power constraint, whereas if we
consider a special case of per-antenna power constraints in
each cell, the complexity of WMMSE is equal to that of the
SPCA-WSRM algorithm. However, the convergence speed
of WMMSE is slow since it is based on alternating opti-
mization concept. Although the BB algorithm is guaranteed
to achieve an optimal solution, it is very computationally
expensive. With a gap of 0.01, the BB method converges to
a sum-rate, which is close enough to the optimal sum-rate.
However, it takes approximately 900 iterations to converge
to this sum-rate.

In Fig. 3, we compare the WSRs achieved by the pro-
posed SPCA-WSRM method and other iterative algorithms
as a function of the number of iterations required to acquire
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Fig. 4 Performance of SPCA-WSRM with modified con-
straint onpV j .

steady output for a random channel realization. The maxi-
mum transmit power limit for all the BSs is set to 20 dBW,
and the user weights are chosen to lie within the range from
0.10 to 0.60. We observe that the SPCA-WSRM algorithm
converges within a few iterations, whereas the AM and
WMMSE algorithms are still far away from the convergence
level of SPCA-WSRM. This incident may be attributed to
the fact that AM-WSRM algorithm alternates between a
closed-form posterior conditional probability update andup-
dating the beamforming vectors, whereas the WMMSE al-
gorithm relies on the relationship between the mutual infor-
mation and minimum mean-square error (MMSE) and alter-
nates between the updating of receive and transmit beam-
formers. As a result, comparatively slower convergences
are observed. However, good initial values for the vari-
ables involved in WMMSE accelerate the convergence rate.
The successive interference nulling (SIN) algorithm [13]
is based on solving determinant-maximization (MAXDET)
programs. So the complexity is very high when we have
large number of antennas at BS. Though it exhibits con-
vergence performance close to the SPCA-WSRM, the per-
iteration running time is approximately 5 to 6 times higher.

Fig. 4 compares the WSR performances of SPCA-
based optimization for different values ofε such thatpV j ≥
ε. For all the cases, we generate the initial values ofθV j s
usingProcedure 2. We notice that the modified constraints
do not significantly affect optimality. It is obvious that the
larger the value ofε, the larger the performance gap between
the curves evolves. We do not depict any explicit capac-
ity plot for Method 1 andMethod 2 because both of them
exhibit identical WSR performance. Although both meth-
ods produce equivalent WSR, the per-iteration running time
for Method 1 is slightly longer thanMethod 2. We have
also observed that the SPCA-WSRM algorithm along with
Procedure 2 provides a feasible solution to the optimization
problem all the times.

In Fig. 5, we plot the convergence performance curves
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of our proposed WSRM method for different system param-
eters. The curves are obtained for three different cases: case
1 with {Ncells = 3,Nusers/cell = 4,Nsub = 64}, case 2 with
{Ncells = 4,Nusers/cell = 6,Nsub = 128}, and case 3 with
{Ncells = 6,Nusers/cell = 8,Nsub = 256}. Because the SPCA-
WSRM method is a linear-time method, the complexity per
cell per iteration increases linearly with increases inNTx,
Nusers/cell, and Nsub. As a result, the per-iteration running
time increases. However, the iterative convergence behav-
iors remain almost the same.

Finally, in Fig. 6, we compare the convergence behav-
iors for different power optimization algorithms. Though
any initial power vector sequence will converge to the opti-
mal power allocations in [22], they have a rapid power fluc-
tuation impact at the very first iteration if the initial power
allocations are not chosen appropriately. For the current
analysis, the initial power values are chosen to be 0.006
W over all the subcarriers. The rate optimization based
on uplink-downlink duality has a comparatively slower con-
vergence rate due to alternate updating between the uplink
beamformer and downlink transmit power. Though all these

iterative methods converge to the global optimal solution,
they exhibit different convergence rates. It is clear that
SOCP-based optimization has a smooth and faster conver-
gence as compared to the other iterative methods evaluated.
For the SOCP method, the transmit power values obtained
at each iteration are taken as solver CVX’s iterative values.

6. Conclusions

In this paper, we study the WSRM optimization problem for
a multicell OFDMA multiplexing system. We formulate and
propose an SPCA-based convex approximation of the opti-
mization problem, which is known to be non-convex and
NP-hard. This iterative SOCP optimization is provably con-
vergent to the local optimal solution. Some numerical issues
related to the algorithm implementation are also discussed.
Particularly, in terms of the convergence rate, this algorithm
exhibits excellent performance and outperforms some previ-
ously analyzed solutions to the WSRM optimization prob-
lem. For power optimization with SINR constraints, SOCP-
based beamforming design is straightforward without using
uplink-downlink duality. SOCP optimality conditions may
be helpful in performance analysis or in enhancing the de-
sign criteria without resorting to the virtual uplink problem.

There are many worthy extensions of this paper. De-
centralized beamforming optimization would be an interest-
ing future project. Power minimization under per-user rate
constraints rather than per-subcarrier SINR constraints can
also be considered. Another possible direction is to consider
users with multiple antennas. In that case, the convergence
speed is expected to be lower for SOCP-based optimization,
for which a trade-off investigation can be performed.
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