
2556
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

PAPER Special Section on VLSI Design and CAD Algorithms

A Verification Method for Single-Flux-Quantum Circuits Using
Delay-Based Time Frame Model

Takahiro KAWAGUCHI†,††a), Kazuyoshi TAKAGI†,††, Members, and Naofumi TAKAGI†,††, Senior Member

SUMMARY Superconducting single-flux-quantum (SFQ) device is an
emerging device which can realize digital circuits with high switching
speed and low power consumption. In SFQ digital circuits, voltage pulses
are used for carrier of information, and the representation of logic values
is different from that of CMOS circuits. Design methods exclusive to SFQ
circuits have been developed. In this paper, we present timing analysis
and functional verification methods for SFQ circuits based on new timing
model which we call delay-based time frame model. Assuming that possi-
ble pulse arrival is periodic, the model defines comprehensive time frames
and representation of logic values. In static timing analysis, expected pulse
arrival time is checked based on the model, and the order among pulse ar-
rival times is calculated for each logic gate. In functional verification, the
circuit behavior is abstracted in a form similar to a synchronous sequen-
tial circuit using the order of pulse arrival times, and then the behavior is
verified using formal verification tools. Using our proposed methods, we
can verify the functional behavior of SFQ circuits with complex clocking
scheme, which appear often in practical design but cannot be dealt with in
existing verification method. Experimental results show that our method
can be applied to practical designs.
key words: single-flux-quantum circuit, static timing analysis, formal ver-
ification

1. Introduction

A superconducting single-flux-quantum (SFQ) circuit is an
emerging circuit with high switching speed and low energy
consumption [1]. An SFQ logic gate consists of super-
conducting loops with Josephson junctions and inductances.
Fabrication of an SFQ circuit with more than 10,000 Joseph-
son junctions has become possible [2]–[4]. An SFQ logic
circuit uses a voltage pulse and a magnetic flux quantum
as a carrier of information and for state representation, re-
spectively. Cell-based design is adopted in designing SFQ
circuits. A set of logic gates for SFQ circuits is predefined
as a cell library [5]. Behavior of each gate which is repre-
sented by pulse transferring and state transition is defined in
the cell library.

To design large scale SFQ circuits, computer-aided de-
sign (CAD) tools are indispensable. Because SFQ circuits
use voltage pulses and behave differently from CMOS cir-
cuits, CAD tools for CMOS circuits may not be used in SFQ
circuits as they are without change. Tools for clock tree
synthesis [6], placement and wire routing [7], [8], circuit

Manuscript received March 13, 2015.
Manuscript revised July 13, 2015.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
††The authors are with the ALCA-JST, Kyoto-shi, 606-8501

Japan.
a) E-mail: kawaguti@lab3.kuis.kyoto-u.ac.jp

DOI: 10.1587/transfun.E98.A.2556

description [9], [10], static timing analysis [11] and formal
verification [12] are developed for SFQ circuits.

SFQ circuits are driven by voltage pulses. Represen-
tation of logic values using voltage pulse is different from
that using voltage level. In general, the logic values “1” and
“0” are represented by the presence and the absence of a
pulse, respectively. Such representation needs to distinguish
the logic value “0” from the state of “no signal”. In most
common logic representation using a synchronizing clock, a
time frame for a gate is defined as a time section partitioned
by clock pulses and the absence of a pulse in the time frame
represents logic value “0” at the time frame. Therefore, A
gate with clock supply, which is called a clocked gate, is
commonly used in SFQ circuits. Because the clocked gates
store the data, SFQ circuits is often designed with gate-level
pipelines.

Switching of SFQ circuit is faster than that of CMOS
circuits. To achieve multi-giga-hertz circuit, skewed clock-
ing scheme is often chosen in SFQ circuits. There exist sev-
eral clocking schemes with different behavior of a gate. In
the most common clocking scheme in SFQ circuits, called
concurrent-flow clocking, a data pulse arrives after the cor-
responding clock pulse and the gate behaves like as a logic
gate combined with a delay flip-flop. In the clocking scheme
called clock-follow-data clocking, a data pulse arrives be-
fore the corresponding clock pulse and the gate behaves like
as a logic gate in a combinational circuit.

In general, the time frame of a gate is defined by syn-
chronizing clock distributed to the gate. However, there
often exist SFQ circuits partly or completely composed of
gates without clock supply. In addition, the skewed clocking
scheme is used in almost of SFQ circuits. Because of gates
without clock supply and skewed clocking scheme, the time
frames of these gates cannot be defined in the existing time
frame model. When the time frames are not defined for a
gate explicitly, the logic values also cannot be defined for
the gate.

In SFQ circuits, the order of pulse arrival times of in-
puts of a gate effects the behavior of the gate. The simple
example of the effect of the order is a clocked gate in the
concurrent-flow clocking and the clock-follow-data clock-
ing. A clocked gate in the concurrent-flow clocking has the
different order of pulse arrival times of inputs from that in
the clock-follow-data clocking and even if these gates are
the same type, the behavior of a gate are different from that
of the other gate.

The CAD algorithms and tools proposed in [11] and

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

KAWAGUCHI et al.: A VERIFICATION METHOD FOR SINGLE-FLUX-QUANTUM CIRCUITS USING DELAY-BASED TIME FRAME MODEL
2557

[12] assume that a synchronizing clock is distributed to
all gates in a circuit and only the concurrent-flow clock-
ing scheme is employed because the behavior of SFQ gates,
which is not clocked or using the other clocking, could not
be represented as a logic function and state transition. Static
timing analysis and formal verification for SFQ circuits em-
ploying other clocking schemes such as clock-follow-data
clocking scheme and/or using gates without clock supply
has not been proposed. Such circuits are verified by only
logic simulation. Logic simulation is hard to verify a large
SFQ circuit on exhaustive input patterns. Omission of veri-
fication on exhaustive input patterns can overlook errors in
corner cases. Formal verification is effective to detect such
errors.

In this paper, we propose a verification method of SFQ
circuits using delay-based time frame model. The proposed
method aims to verify an SFQ circuit employing not only
concurrent-flow clocking scheme but also other clocking
schemes and composed of not only gates with clock supply
but also gates without clock supply by representing behav-
ior of the circuit as a logic function and state transition. The
model assumes the unique clock period of the SFQ circuit
under verification and the periodicity of pulse arrival time.
In the model, time frames for each gate are defined using the
assumptions and the path delay from the primary inputs to
the inputs of the gate. The proposed verification method
detects errors of an SFQ circuit by static timing analysis
and formal verification. There are two main purposes of
the static timing analysis. They are timing verification and
calculation of the order of pulse arrival times of the inputs
of a gate in a time frame. The proposed verification method
abstracts the behavior of an SFQ circuit along the order of
pulse arrival times. The abstracted behavior is similar to
that of a synchronous sequential circuit and can be verified
by formal verification tools for synchronous sequential cir-
cuits.

The rest of the paper is organized as follows. In Sect. 2,
we describe SFQ gates and circuits. In Sect. 3, we propose
delay-based time frame model. In Sect. 4, we propose a ver-
ification method using the delay-based time frame model.
In Sect. 5, we show experimental results. In Sect. 6, we con-
clude this paper.

2. SFQ Gates and Circuits

An SFQ logic gate consists of some superconducting loops
with Josephson junctions and inductances. When a voltage
pulse arrives at a loop, a flux quantum, i.e. an SFQ, can be
trapped or released. When an SFQ is released, a short volt-
age pulse is produced. A voltage pulse and an SFQ are used
as a carrier of information and for state representation, re-
spectively.

Cell-based design is adopted in designing SFQ circuits
[5]. Timing parameters, i.e. delay and timing constraints,
and behavior of each gate are defined in a cell library for
SFQ circuits. Details of the timing constraints will be de-
scribed in Sect. 4.2.2. While an SFQ circuit is working, bias

Fig. 1 PTFSMs of a clocked AND, an NDRO and a CB.

current is supplied to all gates in the circuit. The timing pa-
rameters depend on the amount of bias current to a gate. A
gate with clock supply, which is called a clocked gate, is
commonly used in SFQ circuits. There are clocked AND,
OR, EXOR, NOT, etc. A delay flip-flop (DFF) is also a
clocked gate. Some gates do not have clock supply.

The behavior of a gate is represented by a finite state
machine. We call it a pulse-transferring finite state ma-
chine (PTFSM). The PTFSM of gate g is represented with
M = (S , I,O, δ, λ, q). M is composed of a set of states S ,
a set of pulse arrivals at inputs I, a set of pulse arrivals at
outputs O, the transition function δ : S × I → S , the out-
put function λ : S × I → O and an initial state q. We
suppose that se ∈ S represents an error state and − ∈ O
represents no pulse arrivals at all outputs. If a pulse ar-
rival at input i on state s is forbidden for the gate, δ(i, s)
and σ(i, s) is se and −, respectively. We call such an input
a forbidden input. For example, M of a clocked AND gate
includes S = {s0, s1, s2, s3, se}, I = {a, b, clk},O = {c,−},
δ(s3, clk) = s0, δ(s1, a) = se, λ(s3, clk) = c, λ(s1, a) = −,
and q = s0. Figure 1 shows the PTFSMs of a clocked
AND, a Non-Destructive Read Out (NDRO) and a Conflu-
ence Buffer (CB). In this figure, transition and output func-
tions for forbidden inputs of the clocked AND gate are omit-
ted. NDRO and CB gates do not have forbidden inputs.

Clocking and timing designs are important factors af-
fecting the performance of an SFQ circuit because gates
switch with high speed and wiring delay is not negligible.
Zero skew clocking, which is commonly used in CMOS cir-
cuits, is not used in most SFQ circuits. To achieve multi-
gigahertz circuit, flow-clocking is often chosen [13]. In
flow-clocking, a skewed clock pulse is distributed to clocked
gates along data path and an interval between a clock pulse
and a data pulse is shorter than that in zero skew clock-
ing. Several flow-clocking schemes are used in SFQ cir-
cuits. One scheme is called concurrent-flow clocking. In
the concurrent-flow clocking scheme, a data pulse arrives
after the corresponding clock pulse and a gate behaves like
as a logic gate combined with a DFF. There is another flow-
clocking scheme, called clock-follow-data clocking. In the
clock-follow-data clocking scheme, a data pulse arrives be-
fore the corresponding clock pulse and a gate behaves like
as a gate in a combinational circuit. Concurrent-flow clock-
ing and clock-follow-data clocking have different order of
pulse arrival times and cause different behavior of a gate.

In most SFQ circuits, a synchronizing clock is used for

2558
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

Fig. 2 Time frames and logic values of gates with clock supply.

the definition of time frames and the representation of logic
values. Figure 2 shows time frames and logic values of the
gates with clock supply in an SFQ circuit. In this figure, a
synchronizing clock is skewed on gate1 and gate2. A time
frame for each gate is defined as the time section divided by
clock pulses. The logic values “1” and “0” at a time frame
are represented by the presence and the absence of a pulse
in the time frame, respectively.

There often exists an SFQ circuit using logic gates
without clock supply. Typical examples of such gates are
CB and NDRO. A CB has no clock input and is used as an
asynchronous OR gate. Although an NDRO has a clock in-
put clk, the clock input sometimes connects to a data signal
line rather than a clock signal line [3], [4], [14]. For these
gates, the order of pulse arrival times also affects behavior
of the gate.

3. Delay-Based Time Frame Model

The existing time frame model defines time frames, which
are also called clock cycles, as time sections divided by syn-
chronizing clock pulses. It is not suited to an SFQ circuit
using gates without clock supply because of clock skew and
partial lack of clock supply. If the time frames are not de-
fined for a gate, the representation of logic values is also not
defined for the gate.

We propose delay-based time frame model to define
time frames for SFQ circuits composed of gates with and
without clock supply and/or employing various clocking
schemes. The model assumes a unique clock period of a
circuit and the periodicity of pulse arrival time. The unique
clock period decides breadth of all time frames. The period-
icity means that pulse arrival time on a line appears periodi-
cally and is skewed along path delay from primary inputs to
the line. In addition, the model assumes that there do not ex-

Fig. 3 Time frames and logic values of gates in the delay-based time
frame model.

ist multi-cycle paths nor multiple pulses on a line in a time
frame. In the model, a clock signal line is treated without
distinction from the other data signal lines.

For the sake of simplicity, the following discussion of
the time frame model assumes that pulses on primary in-
puts, if they exist, arrive at the same time. However, the
time frame model can be easily applied to a circuit not based
on the assumption by giving pulse arrival times to primary
inputs. In the model, a time frame is skewed on each gate.
The amount of the skew of the first time frame of a gate is
the minimum path delay from primary inputs to inputs of the
gate. The time frame on a gate proceeds periodically to the
next time frame when the unique clock period of the circuit
elapses. Therefore, the amount of skew of time frames on a
gate is the same and equal to the amount of the skew of the
first time frame on the gate. By this definition, the amount
of the skew of all time frames on all gates with and without
clock supply in a circuit can be decided.

In the model, the logic values “1” and “0” at a time
frame are represented by the presence and the absence of a
pulse in the frame, respectively. On a clock signal line, one
pulse appears in every time frame. Therefore, a clock signal
line is dealt with as a data signal line with constant value
“1”.

Figure 3 shows the time frames and the representation
of logic values in the delay-based time frame model. The
amount of the skew on a gate is the minimum path delay
from primary inputs to inputs of the gate. Clock inputs of
all gates are not distinguished from data inputs unlike those
in Fig. 2. In other words, inputs of a gate include data inputs
and a clock input. A pulse arrival time on a line is repre-
sented by a dotted line box and appears periodically because
of the periodicity of pulse arrival time. Left and right edges
of the box represent the earliest and the latest pulse arrival
times, respectively. Skewed time frames on a gate also ap-

KAWAGUCHI et al.: A VERIFICATION METHOD FOR SINGLE-FLUX-QUANTUM CIRCUITS USING DELAY-BASED TIME FRAME MODEL
2559

pear periodically. Note that the starting point of each time
frame on a gate equals to the earliest pulse arrival time of
all inputs of the gate. For example, time frames of gate1
in Fig. 3 start at the earliest pulse arrival time of gate1 in2.
When a line has the logic value “1” at a time frame, a pulse
exists on the line in the time frame.

This model does not assume multiple pulses on a line
in a time frame nor a large difference between the earliest
and the latest pulse arrival times on a line. In some cases,
we need to treat them. For example, if a circuit has multiple
clock signals and timing of each input of a CB gate depends
on that of the different clock signal, a difference between the
pulse arrival times of the output of the CB will be large. To
treat it, we duplicate the output line. Each of the duplicated
lines represents a path from the different input line to the
same output line. By the duplication of the output line, the
multiple pulses on a line can also be treated in this model.
It is important to duplicate a small part of lines in a circuit
because the duplication complicates the circuit. Therefore,
if the duplication is necessary for an output of a gate, which
is a CB gate in particular, the gate should be flagged or re-
named.

4. Verification Method Using the Delay-Based Time
Frame Model

4.1 Overview

We propose a verification method using the delay-based
time frame model. The proposed method detects errors of
an SFQ circuit using static timing analysis and formal veri-
fication. The verification flow is shown in Fig. 4.

The static timing analysis calculates the path delay, the
timing slacks, the minimum clock period and the order of
pulse arrival times. To use formal verification tools such
as model checker and equivalence checker, PTFSMs of all
gate in the SFQ circuit are abstracted. The proposed method
detects two types of errors. First, the occurrence of the for-
bidden input is detected by model checking. We call it for-
bidden input checking. Second, a discrepancy between the
implementation of a circuit and the specification for the cir-
cuit is detected by equivalence checking.

A negative timing slack is usually dealt with as a tim-
ing violation. However, if a negative timing slack is cal-
culated from a pair of inputs whose pulses do not appear
simultaneously in a time frame, a timing violation owing to
the negative timing slack does not occur. In forbidden in-
put checking, the negative timing slack is checked whether
it leads to the timing violation. Thus, not only formal ver-
ification but also static timing analysis includes forbidden
input checking. The abstracted behavior is similar to that
of a synchronous sequential circuit. Therefore, verification
tools for synchronous sequential circuits can be used for the
forbidden input checking and the equivalence checking. If
the forbidden input checking detects an error of a gate, the
gate can have a forbidden input which is caused by a neg-
ative timing slack or an unexpected input stimulus of the

Fig. 4 The proposed verification flow.

gate. Then, we should change the timing or the connection
of inputs of the gate. If the equivalence checking detects
the error, there exists a discrepancy between the implemen-
tation and the specification. Then, we should change the
implementation or the specification.

4.2 Static Timing Analysis

4.2.1 Calculation of Delay

Calculation of the path delay of an SFQ circuit is slightly
different from that of a CMOS circuit. In an SFQ cir-
cuit, memory elements such as delay flip-flop are not dis-
tinguished from other logic gates, because all logic gates
have memory functions. Timing parameters such as delay
and timing constraint of a gate are affected by bias current,
timing jitter and fabrication variations.

In this paper, we refer to an input pin of a gate as an in-
put of a gate. Similarly, an output pin of a gate is referred to
as an output of a gate. Timing dependency between an input
and an output of each gate is described in the cell library.
When a pulse on an output of a gate can be produced by a
pulse arrival on an input of the gate, pulse arrival time of the
output depends on that of the input. A pulse arrival time of
an output often depends on those of several inputs.

The earliest pulse arrival time to output o, Te(o), and
the latest pulse arrival time to o, Tl(o), are calculated by the
followings,

Tl(o) = max
i∈ID(o)

(Tl(i) + D(i, o)), (1)

Te(o) = min
i∈ID(o)

(Te(i) + D(i, o)), (2)

where the set of inputs whose pulse arrival times affect that
of o is ID(o) and the delay from i to o is D(i, o). The pulse

2560
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

Algorithm 1: Calculation of delay
Input: an SFQ circuit
Output: pulse arrival times of primary outputs and inputs of all

gates
// FO(o) is the set of inputs which are fan-outs
of output o

// ID(o) is the set of inputs whose pulse arrival
times affect that of output o

// OD(i) is the set of outputs whose pulse arrival
times depend on that of input i

1 I ← the set of inputs connecting to primary inputs;
2 while I � ∅ do
3 Pick an input i ∈ I;
4 I ← I − {i};
5 foreach od ∈ OD(i) do
6 if ∀id ∈ ID(od), Te(id) and Tl(id) are calculated then
7 Calculate Te(od) and Tl(od) by Eq. 1 and Eq. 2;

foreach f o ∈ FO(od) do
8 Calculate Te(f o) and Tl(f o);

9 I ← I∪ FO(od);

arrival times to input i, Te(i) and Tl(i) are calculated by the
followings,

Tl(i) = (Tl(f i) + D(f i, i)), (3)

Te(i) = (Te(f i) + D(f i, i)), (4)

where the fanin of i is f i which is an output of a gate.
Algorithm 1 shows the calculation process of the path

delay in an SFQ circuit. This algorithm assumes that the
arrival time of an output of a gate in the circuit does not
depend on itself. If there exists such output, pulse arrival
time of it cannot be defined.

4.2.2 Calculation of Timing Slack and Clock Period

In general, timing constraints of an SFQ gate are given as
setup and hold time constraints [15]. The setup and hold
time constraints represent the relationship between a data in-
put and a clock input of a gate. The concurrent-flow clock-
ing and the clock-follow-data clocking have different def-
initions of setup and hold constraints. If an SFQ circuit
employs multiple clocking schemes with the different def-
initions, the clocking schemes need to be declared on each
gate to use setup and hold constraints. In addition, timing
constraints of an SFQ gate may also exist between two data
inputs. For example, data inputs s and r of an NDRO gate
have an interval time constraint. If pulses on the inputs ar-
rive closely within the minimum interval time defined in the
constraint, the gate can perform incorrectly. On the other
hand, inputs a and b of a CB gate have another interval
time constraint. When a pulse on each of the inputs ar-
rives closely within the maximum interval time defined in
the constraint, only one pulse appears on an output c of the
CB. When these two pulses are farther than the maximum
interval time defined in the constraint, two pulses appear on
the output c. Because the presence of two pulses on a line
in a time frame is not assumed in the model, a large interval

time between a and b of CB can lead to a timing violation.
We classify these interval time constraints of a gate into

two types. They are the minimum and the maximum interval
time constraints. Each ordered pair of inputs of a gate has
one of these constraints or does not have an interval time
constraint. We consider an ordered pair of inputs (x, y) such
that a pulse of y arrives after a pulse arrival at x. When
(x, y) has the minimum interval time constraint, a pulse on y
should arrive after the elapse of the minimum interval time
from a pulse arrival time of x at the earliest. When (x, y) has
the maximum interval time constraint, a pulse on y should
arrive by the elapse of the maximum interval time from a
pulse arrival time of x at the latest. The interval time con-
straints do not depend on clocking schemes. Therefore, the
declaration of a clocking scheme on each gate is not neces-
sary in the proposed verification method.

For an ordered pair of inputs (x, y) of gate g, the timing
slack TS (g, x, y) is defined in three cases (a), (b) and (c): (a)
Tl(y) is larger than Te(x) and (x, y) has the minimum inter-
val time constraint (b) Tl(y) is larger than Te(x) and (x, y) has
the maximum interval time constraint (c) otherwise, namely,
Tl(y) is not larger than Te(x) or (x, y) does not have the min-
imum or the maximum interval time constraint. Figure 5(a)
shows the timing slack calculated by the minimum interval
time constraint. Figure 5(b) shows the timing slack calcu-
lated by the maximum interval time constraint. TS (g, x, y)
is calculated by the following,

TS (g, x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Te(y) − Tl(x) − ITmin(x, y) (a)

Te(x) + ITmax(x, y) − Tl(y) (b)

no value (c)

(5)

where the minimum and the maximum interval times
of (x, y) are ITmin(x, y) and ITmax(x, y), respectively. If
TS (g, x, y) or TS (g, y, x) is negative, a timing violation may
occur between x and y.

A clocked AND gate has the minimum interval time
constraints on (a, clk), (clk, a), (b, clk), (clk, b), (a, a), (b, b)
and (clk, clk). This gate does not have the interval time con-
straints on (a, b) and (b, a). A CB gate has the minimum
interval time constraints on (a, a) and (b, b) and the maxi-
mum interval time constraints on (a, b) and (b, a).

The calculation of timing slack can produce a negative
timing slack not causing a timing violation. For example,
when a CB gate has a negative timing slack on (a, b) and
pulses do not arrive at both of a and b in a time frame, the
negative timing slack can be ignored. It is checked whether a
negative timing slack causes a timing violation by forbidden
input checking in Sect. 4.3.2.

To guarantee the interval time constraints between in-
puts in a time frame and the next time frame, we calculate
the minimum clock period. Figure 5 shows the minimum
clock period of each gate. The minimum clock period of an
ordered pair of inputs (x, y) of gate g, CPmin(g, x, y), and the
minimum clock period of gate g, CPmin(g), are calculated by
the followings,

CPmin(g, x, y) = {Tl(y) − Te(x) + IT (y, x)}, (6)

KAWAGUCHI et al.: A VERIFICATION METHOD FOR SINGLE-FLUX-QUANTUM CIRCUITS USING DELAY-BASED TIME FRAME MODEL
2561

Fig. 5 Calculated timing slack and clock period (a) TS min(g1, x, y) =
Te(y)−Tl(x)− ITmin(x, y) and CPmin(g1, x, y) = Tl(y)− Te(x)+ ITmin(y, x)
(b) TS max(g2, x, y) = Te(x) + ITmax(x, y) − Tl(y) and CPmin(g2, x, y) =
Tl(y)− Te(x)+ ITmax(y, x) (c) CPmin(g3, x, x) = Tl(x)− Te(x)+ ITmin(x, x)
and CPmin(g3, x, y) = Tl(y) − Te(x).

CPmin(g) = max
x,y∈I(g)

(CP(g, x, y)), (7)

where I(g) is the set of inputs of gate g and IT (y, x)
is ITmin(y, x) in Fig. 5(a), ITmax(y, x) in Fig. 5(b) or 0 in
Fig. 5(c). When an interval time constraint does not exist on
(y, x), IT (y, x) is 0. IT (y, x) includes ITmax(y, x), because
ITmax(y, x) is the interval time constraint in a time frame. If
the clock period is smaller than Tl(y) − Te(x) + ITmax(y, x),
a pulse on x in a time frame is dealt with as a pulse in the
previous frame. The minimum clock period of the circuit is

CPmin = max
∀g

(CPmin(g)). (8)

4.2.3 Calculation of the Order

To define the behavior of a gate in a time frame, the order
of pulse arrival times of the inputs is necessary. A gate can
have the different behavior under the different order. A sim-
ple example of the different behavior of a gate owing to the
different order is a clocked gate employing concurrent-flow
clocking or clock-follow-data clocking. Even if these gates
are the same type, the different clockings cause the different
order and the different behavior of the gates.

In an SFQ circuit, the order of pulse arrival times of in-
puts of a gate is often multiple. For example, when a clocked
AND gate holds on timing relations of Te(clk) < Tl(a),

Te(clk) < Tl(b), Te(a) < Tl(b) and Te(b) < Tl(a), the or-
der of pulse arrival times can be (clk, a, b) or (clk, b, a).

Multiple order can result in multiple behavior. Al-
though the proposed verification method uses the one of the
order, which is the order of the earliest pulse arrival times
of the inputs. We consider a pair of inputs leading to mul-
tiple order {x, y} of a gate g. In the case where TS (g, x, y)
or TS (g, y, x) is negative, pulse arrivals at both of {x, y} in a
time frame is dealt as a forbidden input in the following ab-
straction of the behavior of a gate. In the other case where
both of TS (g, x, y) and TS (g, y, x) are not negative, no neg-
ative timing slacks and the multiple order on {x, y} represent
that multiple order must result in the same behavior on all
SFQ gates. An example of the case is {a, b} of a clocked
AND gate g. TS (g, a, b) and TS (g, b, a) cannot be negative
because there do not exist interval time constraints between
a and b. Both of pulse arrival sequences (a, b) and (b, a) on
any state in a time frame result in the same behavior of the
gate. In both of the cases, the order results in the same be-
havior in the following formal verification. Therefore, we
use the order of the earliest pulse arrival times as the order.

The order of the earliest pulse arrival times of inputs of
gate g, OI(g) is defined by the following,

OI(g) =

⎛⎜⎜⎜⎜⎜⎜⎝i1, i2, · · · , in |
∧

1≤ j≤n−1

Te(i j) ≤ Te(i j+1)

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

where n is the number of inputs of g and i1, i2, · · · , in are the
inputs.

4.3 Formal Verification

4.3.1 Abstraction of the Behavior of a Gate and a Circuit

We discretize the temporal behavior of a PTFSM using
delay-based time frame model. Using the PTFSM, it is hard
to describe a specification and to accomplish formal ver-
ification, because the PTFSM is driven by a pulse arrival
which is independent of a time frame. In the proposed ver-
ification method, we abstract the behavior represented by
the PTFSM to that represented by a synchronous finite state
machine (SFSM). An SFSM of a gate is defined by the fol-
lowings.

• The next state is a state at the next time frame
• The input alphabet is a set of bit vectors of all input

lines of the gate
• The output alphabet is a set of bit vectors of all output

lines of the gate
• An input and an output of an SFSM appear once in

every time frame

Abstraction of a PTFSM uses the order of the earliest
pulse arrival times of inputs of the gate. An input bit vector
of an SFSM with the order corresponds to a pulse arrival se-
quence. Thus, the output bit vector and the next state from
an input vector at a present state of an SFSM can be decided
by the corresponding PTFSM. For example, we consider an

2562
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

Fig. 6 Example of abstraction the PTFSM to the SFSM.

input bit vector 101 at a, b and clk on a present state s3 with
order (clk, b, a) of a clocked AND gate g in Fig. 6. The in-
put bit vector 101 corresponds to the pulse arrival sequence
(clk, a). On the PTFSM of the clocked AND gate, when
pulses arrive at clk and then a on state s3, the state results
in s1 and a pulse is produced on c. Therefore, on the SFSM
of g with order (clk, b, a), the next state and the output bit
vector from the input bit vector 101 at a, b and clk on the
present state s3 are s2 and 1 at c, respectively.

An SFSM has three types of forbidden input bit vectors
which are an input bit vector with the values “1” on both of
a pair of input lines whose timing slack is negative, an input
bit vector including a forbidden input of PTFSM and an in-
put bit vector producing more than one pulse on an output
line in a time frame. For example, when a clocked AND gate
g has a negative timing slack TS (g, a, clk) or TS (g, clk, a),
input bit vectors 101 and 111 at (a, b, clk) on any state are
forbidden. An input bit vector 100 at (a, b, clk) on state s1 of
g is forbidden, because the input bit vector includes a pulse
arrival at a on s1 which is forbidden on the PTFSM of g.

The SFSM of gate g, M′ is abstracted from the PTFSM
of g, M = (S , I,O, δ, λ, q). M′ = (S , I′,O′, δ′, λ′, q) is com-
posed of a set of states S , a set of input bit vectors I′, a set of
output bit vectors O′, the transition function δ′ : S × I′ → S ,
the output function λ′ : S × I′ → O′ and an initial state q.

I′ is a set of all bit vectors at input lines of g. O′
is a set of all bit vectors at output lines of g. When
OI(g) is decided, an input pulse arrival sequence on M,
(i0, i1, . . . , im−1) is defined uniquely from an input bit vector
i′ ∈ I′ where m is the number of values “1” on i′. δ′(i′, s ∈
S) and λ′(i′, s) are decided uniquely by (i0, i1, . . . , im−1)
on M corresponding to i′ on M′. δ′(i′, s) is the result-
ing state of δ(im−1, . . . δ(i1, δ(i0, s)) . . .). We consider a
state sequence (s0, s1 . . . , sm) and an output pulse arrival
sequence (o0, o1 . . . , om−1) where s0 = s, s j+1 = δ(i j, s j)
and o j = λ(i j, s j) for 0 ≤ j ≤ m − 1. Then, δ′(i′, s)
can also be represented as sm. When o ∈ O does not ap-
pear in (o0, o1 . . . , om−1), an output bit vector λ′(i′, s) has
value “0” at an output line of o. When o appears once in
(o0, o1 . . . , om−1), an output bit vector λ′(i′, s) has value “1”
at an output line of o. When o appears more than one time
in (o0, o1 . . . , om−1), λ′(i′, s)is the indefinite bit vector x. In
addition, whenever (i′, s) is a forbidden input of M′, δ′(i′, s)
and λ′(i′, s) are dealt as the error state se and the indefinite

bit vector x, respectively. If i′ has values “1” on both of
input lines a and b with negative TS (g, a, b) or TS (g, b, a),
∃ jδ(i j, s j) = se or λ′(i′, s) = x, (i′, s′) is a forbidden input.

For example, M′ of a clocked AND gate includes S =
{s0, s1, s2, s3, se}, I′ = {000, 001, ..., 111, x} at a, b and clk,
O′ = {0, 1, x} at c, δ′(s0, 110) = s3, λ′(s3, 001) = 1, q = s0.
The next state and the output bit vector from the forbidden
input bit vectors at the corresponding state, any input bit
vector at state se or input bit vector x at any state are always
se and x, respectively.

Figure 6 shows an example of abstraction the PTFSM
to the SFSM of a clocked AND gate g with OI(g) =
(clk, b, a) and negative timing slack TS (g, b, clk). Input bit
vectors 111 and 011 at (a, b, clk) on any state are forbidden
because TS (g, b, clk) is negative. Other forbidden input bit
vectors at (a, b, clk) are 100 and 110 on s1, 010 and 110 on
s2 and 010, 100 and 110 on s3 because the forbidden input
of the PTFSM.

The product machine of SFSMs of all gates in the cir-
cuit corresponds to the SFSM of the circuit. By abstracting
the behavior of all gates in the circuit, the SFSM of the cir-
cuit are given.

4.3.2 Forbidden Input Checking and Equivalence Check-
ing

When the SFSM of an SFQ circuit is abstracted from the
PTFSM of all gates in the circuit, the following verifica-
tion can be accomplished in a similar way to synchronous
sequential circuits. Model checking and equivalence check-
ing, which are called formal verification, are used for ver-
ification of synchronous sequential circuit. Some tools for
the formal verification are developed [16]–[18]. We can use
them for verification of an SFQ circuit.

In the proposed verification method, a forbidden input
of an SFSM is checked by the forbidden input checking. The
forbidden input checking is accomplished by using proper-
ties representing no forbidden input and checking whether
the properties are satisfied or not by model checking. When
a negative timing slack exists on a gate and forbidden input
checking is passed without errors on the gate, the negative
timing slacks can be ignored because negative timing slacks
also effect the SFSM. In the equivalence checking, the spec-
ification corresponding to behavior of the SFQ circuit needs
to be prepared. The specification and the abstracted SFSM
of the SFQ circuit are compared to detect an error of the
design.

5. Experimental Results

We have implemented the proposed static timing analysis
tool in SKILL language and the abstraction tool of behavior
in SKILL and C++ languages. The implemented static tim-
ing analysis tool obtains gate delay and timing constraints
from the cell library and calculates the path delay, timing
slacks including the minimum timing slack, the minimum
clock period and the order of pulse arrival times at each gate

KAWAGUCHI et al.: A VERIFICATION METHOD FOR SINGLE-FLUX-QUANTUM CIRCUITS USING DELAY-BASED TIME FRAME MODEL
2563

Table 1 Verification results.

circuit #gate #JJ #state #NTS min TS (ps) min CP (ps) STA time (s) FC time (s) EC time (s)
full adder 9 292 5832 0 3.6 23.5 0.3 < 0.01 < 0.01
8 bit CLA 158 6380 3.09 × 1086 9 −5.3 33.0 3.27 12.3 0.07
4-bit SS 190 3829 1.10 × 1081 50 −3.9 42.4 1.87 27.0 0.06

of an SFQ circuit. The abstraction tool translates PTFSM of
an SFQ circuit to the SFSM described in BLIF-MV which is
used for verification of synchronous sequential circuit. Si-
multaneously, the tool produces properties which represent
no occurrence of forbidden inputs in LTL language.

We verified several circuits using these tools. The
SFSM of the circuits was verified by forbidden input check-
ing and equivalence checking using vis [17] and ABC [18],
respectively. The forbidden input checking uses the proper-
ties produced by the abstraction tool. We verified three cir-
cuits, a full adder using NDROs and CBs without clock sup-
ply, an 8-bit carry look-ahead adder employing concurrent-
flow clocking (8-bit CLA) [6] and a 4-bit slice 32 bit shifter
using gates with and without clock supply (4-bit SS).

The experiments were conducted on a Linux platform
(Debian 6.0) with an Intel Xeon X5470 (3.33 GHz) and
32 GB of RAM. Table 1 shows the number of logic gates
(#gate), the number of Josephson junctions (#JJ), the num-
ber of states (#state), the number of negative timing slacks
(#NTS), the minimum timing slack (min TS), the mini-
mum clock period (min CP), CPU time for static timing
analysis (STA time), CPU time for forbidden input check-
ing (FC time) and CPU time for equivalence checking (EC
time). The forbidden input checking was accomplished by
unbounded model checking. The equivalence checking was
accomplished by unbounded sequential equivalence check-
ing.

In the forbidden input checking of the 8-bit CLA, we
detected a failed property caused by a connection error on a
clocked AND gate. The forbidden input of the gate, which
is pulse arrival at a on s1 specifically, could occur because
of this error. This error was also detected in the equivalence
checking.

50 negative timing slacks were detected by the static
timing analysis of the 4-bit SS. They were 29 in CBs, 8 in
RDFFs (resettable DFFs) and 13 in D2FF (DFFs with two
clock inputs and two corresponding outputs). The negative
timing slacks in RDFFs were caused by predecessors of CBs
and the output line of the CB had two pulses in a time frame.
In order to avoid the two pulses on a line in a time frame,
we duplicate lines from CBs to RDFFs as shown in Fig. 7.
All gates in the redesigned version of the 4-bit SS passed
through forbidden input checking and the negative timing
slacks on D2FFs and CBs could be ignored because pulses at
two inputs causing the negative timing slacks did not appear
simultaneously in a time frame.

The experimental results show that the proposed verifi-
cation method can handle circuits employing various clock-
ing and composed of gates with and without clock supply.

Fig. 7 Duplication of a line from CB to RDFF in 4-bit SS.

6. Conclusion

We have proposed a verification method of SFQ circuits.
To accomplish verification, we introduced a new time frame
model and definition of timing constraints to cope properly
with various clocking schemes and gates with and without
clock supply. The proposed method abstracts the behavior
of an SFQ circuit to a form similar to a synchronous sequen-
tial circuit. The abstracted behavior of an SFQ circuit can
be verified by an existing formal verification tool for syn-
chronous sequential circuits. When the formal verification
is applied to SFQ circuits using our method, quality of ver-
ification will be increased as compared to the verification
using only logic simulation.

We have shown the verification results for several SFQ
circuits. The results show that our method can be applied to
practical SFQ circuits. Other SFQ circuits such as a dual-
rail circuit can be verified by the proposed method as long
as the number of pulses on a line in a time frame is not more
than one.

Acknowledgments

The authors thank Prof. M. Tanaka of Nagoya University
and Prof. K. Hamaguchi of Shimane University. This work
was supported in part by CREST JST, ALCA JST and VLSI
Design and Education Center (VDEC), the University of To-
kyo in Collaboration with Cadence Design Systems, Inc.

References

[1] K.K. Likharev and V.K. Semenov, “RSFQ logic/memory family:

http://dx.doi.org/10.1109/77.80745

2564
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.12 DECEMBER 2015

A new Josephson-junction technology for sub-terahertz-clock-fre-
quency digital systems,” IEEE Trans. Appl. Supercond., vol.1, no.1,
pp.3–28, 1991.

[2] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N.
Irie, N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, “De-
sign and Implementation of a Pipelined Bit-Serial SFQ Micropro-
cessor, CORE1β,” IEEE Trans. Appl. Supercond., vol.17, no.2,
pp.474–477, 2007.

[3] H. Park, Y. Yamanashi, K. Taketomi, N. Yoshikawa, M. Tanaka, K.
Obata, Y. Ito, A. Fujimaki, N. Takagi, K. Takagi, and S. Nagasawa,
“Design and implementation and on-chip high-speed test of SFQ
half-precision floating-point adders,” IEEE Trans. Appl. Supercond.,
vol.19, no.3, pp.634–639, 2009.

[4] H. Hara, K. Obata, H. Park, Y. Yamanashi, K. Taketomi, N.
Yoshikawa, M. Tanaka, A. Fujimaki, N. Takagi, K. Takagi, and S.
Nagasawa, “Design, implementation and on-chip high-speed test of
SFQ half-precision floating-point multiplier,” IEEE Trans. Appl. Su-
percond., vol.19, no.3, pp.657–660, 2009.

[5] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S.
Tahara, “A single flux quantum standard logic cell library,” Physica
C: Superconductivity, vol.378-381, pp.1471–1474, 2002.

[6] K. Takagi, Y. Ito, S. Takeshima, M. Tanaka, and N. Takagi, “Lay-
out-driven skewed clock tree synthesis for superconducting SFQ cir-
cuits,” IEICE Trans. Electron., vol.E94-C, no.3, pp.288–295, 2011.

[7] Y. Kameda and S. Yorozu, “Automatic Josephson-transmission-
line routing for single-flux-quantum cell-based logic circuits,” IEEE
Trans. Appl. Supercond., vol.13, no.2, pp.519–522, 2003.

[8] M. Tanaka, K. Obata, Y. Ito, S. Takeshima, M. Sato, K. Takagi, N.
Takagi, H. Akaike, and A. Fujimaki, “Automated passive-transmis-
sion-line routing tool for single-flux-quantum circuits based on A*
algorithm,” IEICE Trans. Electron., vol.E93-C, no.4, pp.435–439,
2010.

[9] F. Matsuzaki, N. Yoshikawa, M. Tanaka, A. Fujimaki, and Y. Takai,
“A behavioral-level HDL description of SFQ logic circuits for quan-
titative performance analysis of large-scale SFQ digital systems,”
Physica C: Superconductivity, vol.392-396, pp.1495–1500, 2003.

[10] K. Takagi, N. Kito, and N. Takagi, “Circuit description and design
flow of superconducting SFQ logic circuits,” IEICE Trans. Electron.,
vol.E97-C, no.3, pp.149–156, 2014.

[11] Y. Kameda, S. Yorozu, Y. Hashimoto, H. Terai, A. Fujimaki, and
N. Yoshikawa, “High-speed demonstration of single-flux-quantum
cross-bar switch up to 50 GHz,” IEEE Trans. Appl. Supercond.,
vol.15, no.1, pp.6–10, 2005.

[12] K. Takagi, M. Sato, M. Tanaka, and N. Takagi, “A verifica-
tion method of pipeline processing behavior of superconducting
singl-flux-quantum pulse logic circuits,” 16th Workshop on Syn-
thesis And System Integration of Mixed Information technologies
(SASIMI2010), R2-17, pp.208–231, 2011.

[13] O.A. Mukhanov, P.D. Bradley, S.B. Kaplan, S.V. Rylov, and A.
Kirichenko, “Design and operation of RSFQ circuits for digital sig-
nal processing,” Proc. 5th Int. Supercond. Electron. Conf, pp.27–30,
1995.

[14] M. Tanaka, H. Akaike, A. Fujimaki, Y. Yamanashi, N. Yoshikawa,
S. Nagasawa, K. Takagi, and N. Takagi, “100-GHz single-flux-quan-
tum bit-serial adder based on 10-kA/cm2 niobium process,” IEEE
Trans. Appl. Supercond., vol.21, no.3, pp.792–796, 2011.

[15] K. Gaj, E.G. Friedman, and M.J. Feldman, “Timing of multi-gi-
gahertz rapid single flux quantum digital circuits,” in High Perfor-
mance Clock Distribution Networks, pp.135–164, Springer, 1997.

[16] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S.C. Krishnan,
R.K. Ranjan, T.R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R.K.
Brayton, and A.L. Sangiovanni-Vincentelli, “HSIS: A BDD-based
environment for formal verification,” Proc. 31st Annual Conference
on Design Automation Conference. DAC’94, pp.454–459, 1994.

[17] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Staple, G.

Swamy, and T. Villa, “VIS: A system for verification and synthesis,”
Computer Aided Verification, Lecture Notes in Computer Science,
vol.1102, pp.428–432, 1996.

[18] R. Brayton and A. Mishchenko, “ABC: An academic industri-
al-strength verification tool,” Computer Aided Verification, Lecture
Notes in Computer Science, vol.6174, pp.24–40, 2010.

Takahiro Kawaguchi received the B.E., and
M.I.S. degrees in information engineering from
Nagoya University, Nagoya, Japan, in 2010 and
2012, respectively. He is currently working to-
ward Dr. degree at Kyoto University. His cur-
rent research interests include algorithms for
computer-aided design of SFQ integrated cir-
cuits.

Kazuyoshi Takagi received the B.E., M.E.
and Dr. of Engineering degrees in information
science from Kyoto University, Kyoto, Japan, in
1991, 1993 and 1999 respectively. From 1995 to
1999, he was a Research Associate at Nara In-
stitute of Science and Technology. He had been
Assistant Professor since 1999 and promoted to
an Associate Professor in 2006, at the Depart-
ment of Information Engineering, Nagoya Uni-
versity, Nagoya, Japan. He moved to Depart-
ment of Communications and Computer Engi-

neering, Kyoto University in 2011. His current interests include system
LSI design and design algorithm.

Naofumi Takagi received the B.E., M.E.
and Ph.D. degrees in information science from
Kyoto University, Kyoto, Japan, in 1981, 1983
and 1988 respectively. He joined Kyoto Univer-
sity as an instructor in 1984 and was promoted
to an associate professor in 1991. He moved to
Nagoya University, Nagoya, Japan, in 1994, and
promoted to a professor in 1998. He returned
to Kyoto University in 2010. His current inter-
ests include computer arithmetic, hardware al-
gorithms, and logic design. He received Japan

IBM science Award and Sakai Memorial Award of the Information Pro-
cessing Society of Japan in 1995, and The Commendation for Science and
Technology by the Minister of Education, Culture, Sports, Science and
Technology of Japan in 2005.

http://dx.doi.org/10.1109/77.80745
http://dx.doi.org/10.1109/tasc.2007.898606
http://dx.doi.org/10.1109/tasc.2009.2019070
http://dx.doi.org/10.1109/tasc.2009.2018039
http://dx.doi.org/10.1016/s0921-4534(02)01759-8
http://dx.doi.org/10.1587/transele.e94.c.288
http://dx.doi.org/10.1109/tasc.2003.813922
http://dx.doi.org/10.1587/transele.e93.c.435
http://dx.doi.org/10.1016/s0921-4534(03)00775-5
http://dx.doi.org/10.1587/transele.e97.c.149
http://dx.doi.org/10.1109/tasc.2004.839771
http://dx.doi.org/10.1109/tasc.2010.2101034
http://dx.doi.org/10.1007/978-1-4684-8440-3_11
http://dx.doi.org/10.1145/196244.196467
http://dx.doi.org/10.1007/3-540-61474-5_95
http://dx.doi.org/10.1007/3-540-61474-5_95
http://dx.doi.org/10.1007/978-3-642-14295-6_5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

