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Off-grid DOA Estimation Based on Analysis of the
Convexity of Maximum Likelihood Function

Liang Liu and Ping Wei

Abstract—Spatial compressive sensing (SCS) has recently been
applied to direction-of-arrival (DOA) estimation owing to ad-
vantages over conventional ones. However the performance of
compressive sensing (CS)-based estimation methods decreases
when true DOAs are not exactly on the discretized sampling
grid. We solve the off-grid DOA estimation problem using the
deterministic maximum likelihood (DML) estimation method.
In this work, we analyze the convexity of the DML function
in the vicinity of the global solution. Especially under the
condition of large array, we search for an approximately convex
range around the ture DOAs to guarantee the DML function
convex. Based on the convexity of the DML function, we propose
a computationally efficient algorithm framework for off-gr id
DOA estimation. Numerical experiments show that the rough
convex range accords well with the exact convex range of the
DML function with large array and demonstrate the superior
performance of the proposed methods in terms of accuracy,
robustness and speed.

Index Terms—Compressive sensing, direction-of-arrival esti-
mation, off-grid model, convexity, deterministic maximum likeli-
hood.

I. I NTRODUCTION

T HIS paper addresses the problem of off-grid direction-
of-arrival (DOA) estimation through analysis of the

convexity of the maximum likelihood (ML) function. The
ML criterion has drawn much attention due to its attractive
benefits [1]–[5], such as consistency, asymptotic normality,
efficiency. However, the ML estimation approach generally
requires a multidimensional search at a great computational
cost in practical multi-target scenarios. Fortunately, some
iterative algorithms, such as the Newton type algorithm [6],
[7], are applied to reduce computation cost. However, those
iterative algorithms need a good initial value, which must be
sufficiently close to the global minimum in order to prevent
convergence to a local extremum. This work is dedicated to
find out a convergence region by analyzing the convexity of
the ML function.

Array processing for DOA estimation has been a topic
of intensive research interest during the past two decades
[8]. Since the ML approach is often deemed exceedingly
complex, several suboptimal methods are proposed, such as
subspace based methods, especially MUSIC algorithm [9],
which exchange the multidimensional search problem for one-
dimensional search problem. Whereas, the performance of
MUSIC algorithm is not good as ML estimation in DOA
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estimation with snapshot deficient scenario or coherent signals
[2]–[4].

Recently, the research on DOA estimation has been ad-
vanced owing to the development of methods based on com-
pressed sensing (CS) or sparse signal reconstruction (SSR)
[10] by exploiting the spatial sparsity in the array model.
The CS-based DOA estimation approaches are extremely
attractive for their ability to resolve closely spaced sources,
few snapshots and correlated sources. Some CS-based DOA
estimation methods have been presented.ℓ1 optimization (or
called basis pursuit, BP) [11]–[13], matching pursuit (MP)
[14], [15], and sparse Bayesian inference/learning (SBL) [16]–
[18] are proposed in the case of a single measurement vector
(SMV). In the case of multiple measurement vectors (MMV),
the simultaneous sparse approximation problem arises, and
singular value decomposition (SVD) is introduced to reduce
complexity and sensitivity against noise [19]. A natural exten-
sion of basis pursuit is convex relaxation algorithms, which
employ mixed normℓp,q optimization in this case [19]–[23].
Simultaneous orthogonal matching pursuit (S-OMP) [20] or
multiple response model orthogonal matching pursuit (M-
OMP) [24], is a multiple response variant of matching pursuit.
Additionally, sparse Bayesian learning for MMV guarantees
[25] the simultaneous sparsity by assuming the same sparse
prior, such as a Laplace signal prior, for the signals at all
snapshots.

All these CS-based DOA estimation methods employ fixed
sampling grid and assume that all the true DOAs are exactly
located on the selected grid. When the true DOAs are be-
yond the fixed grid, their performance will degrade due to
discretization error. There are still difficulties to set the grid
interval in practical situations where the true DOAs are not
on the sampling grid. On one hand, a dense sampling grid
is necessary for accurate DOA estimation to reduce the gap
between the true DOA and its nearest grid point since the
estimated DOAs are constrained on the grid. But on the other,a
dense sampling grid leads to high computational complexityof
recovery algorithm and a highly coherent matrix that violates
the condition for the sparse signal recovery.

In [26], an off-grid model for DOA estimation is introduced
and a sparse total least squares (STLS) method based on
the Gaussian assumption of off-grid distance is proposed.
However, the Gaussian condition cannot be satisfied in the
off-grid DOA estimation problem. In [27], a new off-grid
algorithm termed OGSBI-SVD from a Bayesian perspective is
presented by assuming the off-grid distance satisfies uniform
distribution. As shown in [27], OGSBI-SVD can exceed a
lower bound of root mean squared error (RMSE) that is shared
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among all on-grid model based methods. But its performance
is not ideal especially with high signal to noise ratio (SNR)
or large snapshots. Besides, this approach is not robust in the
case of large grid interval.

This work proposes a deterministic ML (DML) based
approach to mitigate CS-based DOA estimation biases. This
approach presents the same performance as DML, whose
asymptotic estimation performance often able to achieve the
Cramér-Rao bound (CRB). So this approach is no longer
limited by the density of sampling grid. This work can be
viewed from two aspects, one is that it mitigates CS-based
DOA estimation biases through ML estimation, the other is
that it realizes the ML estimation through CS-based DOA
estimation and Newton iteration. It is the key issue to make
the approach convergent. The main contributions of this work
are listed as follows. Firstly, we prove that the DML function
for DOA estimation is a convex function in the vicinity of
the global minimum. Secondly, we come to a conclusion that
an approximate convex range of the likelihood function can
be obtained under certain conditions, which to some extent
suggests how “sufficiently close” to the global minimum the
iterations must be initialized. Therefore, we decide the density
of sampling grid for CS-based DOA estimation algorithms by
our result instead of empiric value. In addition, we propose
a class of algorithms for off-grid DOA estimation based on
the convexity of the DML function. The proposed algorithms
consist of two stages. In the first stage, by setting the grid
interval according to our result, CS-based DOA estimation
approaches obtain coarse DOA estimates. In the second, we
initialize the Newton type iteration with these estimated DOAs
to realize the DML estimation. Because of the convexity of the
DML function, our proposed methods are likely to converge
to the global minimum of the DML function.

The following notations are used in the paper.(·)
T and

(·)H denote the transpose and Hermitian transpose, respec-
tively. ‖·‖F , E (·), Tr (·) and ℜ (·) stand for the Frobenius
norm, expectation, trace, and real part operators, respectively.
diag (A) denotes a column vector composed of the diagonal
elements of a matrixA, anddiag (x) is a diagonal matrix with
x being its diagonal elements.xj is the jth entry of a vector
x. Ai, Aj andAij are thejth column,ith row and(i, j)th
entry of a matrixA, respectively.x′ (θ), x′′ (θ) are the 1st,
2nd-order derivative ofx (θ) with respect toθ , respectively.
⊙ denotes the Hadamard product.IM stands for anM ×M
identity matrix.

The remainder of the paper is organized as follows. We
present the measurement models in Section II, and review
CS-based and ML for DOA estimation in Section III. We
analyze the convexity of the DML function in Section IV,
and derive our CSDML algorithms in Section V. Numerical
examples appear in Section VI. We give our conclusions in
Section VII.

II. MEASUREMENT MODELS

ConsiderK narrowband far-field signals impinging on an
array composed ofM(M > K) sensors. The array output can

be written as [8]

x (t) = A (θ) s (t) + n (t) , t = 1, · · · , T, (1)

wherex (t) is the measurement vector at thetth snapshot,
A (θ) = [a (θ1) , · · · , a (θK)] (denoted asA for convenience)
is the array steering matrix,a (θk) is the steering vector
corresponding to thekth source,θ = [θ1, · · · , θK ]T is the
vector containing the DOAs of all sources,θk is the DOA of
the kth source,s (t) is the vector of all signal values at the
tth snapshot,T is the total number of temporal measurements,
andn (t) is theM × 1 noise vector following the zero-mean
circular complex Gaussian distribution with covariance matrix
E{n (t)nH (t)} = σ2IM , σ2 is noise power. With the further
assumption thats (t) and n (t) are uncorrelated, the array
covariance matrix is given by

R = AΣAH + σ2IM , (2)

whereΣ is the source covariance matrix.R can be estimated
by R̂ ≈ 1

T

∑T
t=1 x (t)xH (t).

III. DOA E STIMATION : CS-BASED DOA ESTIMATION

AND MAXIMUM L IKELIHOOD ESTIMATION

In this section we review two kinds of methods for DOA
estimation, as we will take advantage of their conclusions in
our context.

A. CS-based DOA Estimation

Since DOAs are sparse in the spatial domain, the source
localization problem is formulated as a sparse representation
problem, or spatial compressive sensing (SCS) problem [19].
To cast the DOA estimation problem in a SCS framework,
an overcomplete representationΘ in terms of all possible
source locations was introduced. LetΘ = [Θ1, · · · ,ΘN ]
be a sampling grid of all source locations of interest and
Ψ = [a(Θ1), · · · , a(ΘN )] is the array manifold matrix cor-
responding to the DOAsΘ. The number of potential source
locationsN will typically be much greater than the number of
sourcesK or even the number of sensorsM . Assuming that
the true source directionsθ are contained inΘ, formulation
(1) is reformulated using an overcomplete representation as
the following form,

x (t) = Ψs̃ (t) + n (t) . (3)

where,s̃ (t) is aN × 1 vector containingK non-zero entries,
where thenth element̃sn (t) = sk (t) if Θn = θk for k =
1, · · · ,K, otherwisẽsn (t) = 0.

In effect, model (3) allows us to exchange the DOA estima-
tion problem for the problem of recovering the sparse signal
s̃ from the array outputx. When the number of snapshots
T > 1, this problem is a simultaneous sparse approximation
problem, which has received a lot of attention recently. And
several computationally feasible methods have been presented
for estimating the sparse signal, such as matching pursuit
(MP), convex relaxation, sparse Bayesian learning (SBL).
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B. Maximum Likelihood DOA Estimation

The ML approach is a standard technique in statistical
estimation theory. The ML estimation is calculated as the
values of the unknown parameters that maximize the likeli-
hood function. This can be interpreted as selecting the set of
parameters that make the observed data most probable. ML
techniques for the sensor array problem have been studied by
a number of researchers, see for example [5], [13], [28]. When
applying the ML technique to the sensor array problem, two
main methods have been considered, depending on the model
assumption on the signal waveforms. When the emitter signals
are modeled as Gaussian random processes, a stochastic ML
(SML) method is obtained. On the other side,if the emitter
signals are modeled as unknown deterministic quantities, the
resulting estimator is referred to as the deterministic ML
(DML) estimator. According to [29], we know that the DML
criterion depends onθ in a simpler way than does the SML
criterion. So we prefer the DML estimator in this paper.

The DML DOA estimator is shown as follow [2], [29]

ϑ = argmin
θ

tr
(
P⊥R

)
, (4)

where P⊥ = I − P, P = BB†, in which B is the
array steering matrix corresponding to the DOAs estimation
ϑ = [ϑ1, · · · , ϑK ], B† =

(
BHB

)−1
BH is the pseudo-

inverse ofB. However, it is important to note that (4) is a
non-linear multidimensional minimization problem, and the
criterion function often possesses a large number of local
minima.

All methods considered herein require a multidimensional
non-linear optimization for computing the signal parameter
estimates. Usually, analytical solutions are not available and
one has to resort to numerical search techniques. Several
optimization methods have appeared in the array processing
literature, including different Newton-type techniques.It is
well-known that the Newton-type method gives locally a
quadratic convergence. So Newton-type algorithms for the
DML techniques are described in this subsection. The estimate
is iteratively calculated as

ϑ
k+1 = ϑ

k −H−1
∇, (5)

where ϑ
k is the estimate at iterationk, H represents the

Hessian matrix of the criterion function, and∇ is the gradient.
The Hessian and gradient are evaluated atϑ

k.

The DML gradient is given by [1], [2].

∇ = −2ℜ
(
diag

(
B†RP⊥D

))
. (6)

The DML Hessian matrix can be expressed as (See Appendix
A)

H = 2ℜ (C) , (7)

where

C =
(
DHP⊥D

)
⊙
(
B†RB†H)T (8a)

−
(
DHP⊥RP⊥D

)
⊙
(
B†B†H)T (8b)

+
(
B†D

)
⊙
(
B†RP⊥D

)T
(8c)

+
(
B†D

)T
⊙
(
B†RP⊥D

)
(8d)

−I⊙
(
B†RP⊥F

)T
, (8e)

whereD = [D1, · · · ,DK ], F = [F1, · · · ,FK ], Di = a′ (ϑi),
Fi = a′′ (ϑi).

Since this paper needs to analyze the convexity of the
DML function, it is necessary to use accurate Hessian matrix
expression. For the expression of Hessians matrix of both [1]
and [2] is asymptotic, that of our paper differs from them.

IV. T HE CONVEXITY OF THE L IKELIHOOD FUNCTION

A. Motivation

Although the Newton method can quickly converge to a
local extremum, the quality of the convergence point depends
on the shape of the criterion function in question. If∇
possesses several minima, the iteration must be initialized
“sufficiently close” to the global minimum in order to prevent
convergence to a local extremum.

How “sufficiently close” to the global minimum will the
iteration converge? A sufficient condition is that the likelihood
function is convex in this area near the global minimum. So we
will analyze the convex of the DML function in this section.

B. The Convexity of the Likelihood Function near the True
DOAs

The following results about gradient and Hessian matrix will
show that the likelihood function is a convex function near the
true DOAs.

Lemma 1. DHP⊥D ≻ 0.

Proof: See Appendix B.

Theorem 1. lim
ϑ→θ

∇ = 0, lim
ϑ→θ

H ≻ 0.

Proof: See Appendix C.

Remark 1. Theorem 1 indicates thatθ is a minimum of
likelihood function. Note that DML function is a continuous
function in terms ofθ, thus there is a rangeΩ around the true
DOAs θ, where∀ϑ ∈ Ω, H ≻ 0.

C. The Convex Range of the Likelihood Function

The likelihood function is a convex function in the vicinity
of the global minimum according to subsection IV-B. As
long as the initial value is in the convex vicinity of the
DML solution, the Newton iteration is feasible. It is necessary
to determine the convex range of the DML function. To
determine the convex range of the DML function, we need
to analyze the positive definiteness ofH. Unfortunately, this
analysis is rather complicated becauseH is a multidimensional
nonlinear matrix function in terms ofϑ. We consider a
simply scene where array is a uniform linear array (ULA),
which is one of the most common array. Without loss of
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generality, the norm of the steering vector is normalized.
For arbitrary ULAs, whose sensors are located atd1, · · · ,
dM , we havea (θ) = 1√

M
exp

(
−j 2π

λ
sin (θ) [ d1 · · · dM ]

H
)

,

a′ (θ) = −j 2π
λ
cos (θ) [ d1 · · · dM ]H ⊙ a (θ).

For simplicity, we assume that: (1) the number of sensor
elementsM is large enough; (2) The interval between adjacent
true DOAsθ is large enough with fixedM ; (3) The interval
between the estimated DOAsϑ and the true DOAs is much
smaller comparing to the interval between adjacent DOAs,
namely |ϑi − θi| ≪ |θj − θi|, |ϑi − θi| ≪ |ϑj − ϑi|, i 6= j,
whereϑi is the estimation ofθi. According to the assumption
(1), (2) and (3), we have

∣∣BH
i Ai

∣∣2 ≫
∣∣BH

i Aj

∣∣2 ≈ 0,∣∣DH
i Ai

∣∣2 ≫
∣∣DH

i Aj

∣∣2 ≈ 0,
∣∣DH

i Di

∣∣2 ≫
∣∣DH

i Dj

∣∣2 ≈ 0.
Those expressions are shown in APPENDIX G of [2]. We can
reformulate them in the form of matrix as follows

BHA ≈
(
BHA

)
⊙ I, (9)

DHA ≈
(
DHA

)
⊙ I, (10)

DHD ≈
(
DHD

)
⊙ I. (11)

Based on (9) (10) (11) and after some matrix manipulations,
we further haveBHB = I, B†B†H = I, B†A =

(
B†A

)
⊙ I,

DHP⊥A =
(
DHP⊥A

)
⊙ I.

Lemma 2. B†iAΣAHP⊥Di is real, whereB†i denotesith
row vector ofB†.

Proof: See Appendix D.
Substituting (2) into (8c), we have

(8c) =
((
B†D

)
⊙ I

)
⊙
(
B†AΣAHP⊥D

)T
. (12)

From (12) we know (8c) is an approximately diagonal matrix,
whoseith diagonal element is

[(8c)]ii = (B†iDi)(B
†iAΣAHP⊥Di). (13)

Since αi = −j2π cos (ϑi)/λ is a pure imaginary number,
BH

i Di = αi

M

∑M

k=1 dk is a pure imaginary number. Note

that B†iDi ≈ BH
i Di, B†iDi is an approximately imaginary

number. Combining Lemma 2,[(8c)]ii is an approximately
imaginary number. Namely, (8c) is an approximately diago-
nal matrix with approximately imaginary numbers being its
diagonal elements. So,

ℜ ((8c)) ≈ 0. (14)

For similar reasons,

ℜ ((8d)) ≈ 0. (15)

Note that the formula (8e) includesFk, the second deriva-
tive of the steering vectora (ϑk), it is more difficult to take this
term into the analysis of formula (8). We will ignore this term
without proof. There are two underlying reasons for doing like
this. Firstly, the analysis of the positive definiteness ofH will
become easier. Secondly, the influence of neglecting (8e) is
nearly negligible in terms of the positive definiteness ofH

in practice. Therefore, after using the formula (14)-(15) and

neglecting (8e),H = 2ℜ (C) can be approximated as follows

C ≈ (8a) + (8b)

=
(
DHP⊥D

)
⊙
(
B†AΣAHB†H)T

−
(
DHP⊥AΣAHP⊥D

)
⊙
(
B†B†H)T

=
((
DHP⊥D

)
⊙ I

)
⊙
(((

B†A
)
⊙ I

)
Σ
((
B†A

)
⊙ I

)H)T

−
(((

DHP⊥A
)
⊙ I

)
Σ
((
DHP⊥A

)
⊙ I

)H)
⊙ I. (16)

SoC is an approximately diagonal matrix, whoseith diagonal
element is

Cii = Σii

(
B†iAi

)(
B†iAi

)H

DH
i P

⊥Di

−ΣiiD
H
i

(
P⊥Ai

) (
P⊥Ai

)H
Di

= ΣiiβiD
H
i P

⊥Di − Σii

∥∥P⊥Ai

∥∥2
F
DH

i

(
eie

H
i

)
Di

= Σii

(
βiD

H
i P

⊥Di − (1− βi)D
H
i

(
eie

H
i

)
Di

)
, (17)

where βi =
∣∣BH

i Ai

∣∣2, ei
∆
= P

⊥
Ai

‖P⊥Ai‖2

,
∥∥P⊥Ai

∥∥2
2

= 1 −
∣∣BH

i Ai

∣∣2 = 1− βi.

Lemma 3. P⊥ − eie
H
i � 0.

Proof: See Appendix E.
According to Lemma 3, we have

DH
i P

⊥Di −DH
i

(
eie

H
i

)
Di ≥ 0. (18)

If βi ≥ 0.5, βi ≥ 1− βi. Substitutingβi ≥ 1− βi, Σii > 0
and (18) into (17), we haveCii ≥ 0. Note that bothC andH
are approximately diagonal matrices, we have the following
result

H � 0, when
∣∣BH

i Ai

∣∣2 ≥ 0.5, i = 1, 2, · · · ,K. (19)

Remark 2. Since we use the approximation (9)(10)(11) and
neglect (8e) to obtain (19), the convex range given by (19)
is a rough range. Even so, the result is often useful to
roughly determine convex range of the DML function. In
fact, the rough range accords well with the real range, as
long as the hypothesis conditions are fully satisfied. This
will be shown by simulations. The significance of the result
lies in its giving some guidance for the iterative algorithm
initialization in practice. As long as the initial value forthe
iterative algorithm is in the above convex range, the algorithm
will converge to the global minimum of the DML function.
The approximate convex range is acquired through solving
the inequation

∣∣BH
i Ai

∣∣2 ≥ 0.5 using the numerical method.
In this way, the range is slightly different whenθi varies. The
range is almost same as long asθi is not a big angle. So,
we take the width whereθi = 0 as the range. Namely, the
approximately convex range is about half of 3dB (half-power)
beamwidthBW0.5 of the array around the true DOAs.

V. CSDML: OFF-GRID DOA ESTIMATION BASED ON THE

CONVEXITY OF DML FUNCTION

CS-based DOA estimation methods based on on-grid model
can provide estimated DOAs which are on its nearest grid point
since the estimated DOAs are constrained on the grid. And the
estimated DOAs can be uesd to initialize Newton iteration.
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TABLE I
ALGORITHM CSDML

1) Set grid intervalr according to (19) and (20), obtainΘ andΨ;

2) Calculateθc through the on-grid methods such as MP, convex
relaxation, SBL and so on;

3) Setϑ0 = θc for Newton iteration;

4) At ϑk, calculate∇ andH according to (6) and (7), respectively;

5) Updateϑk+1 according to (5);

6) Check the convergence criterion for thekth iteration. Terminate
the process when

∥∥ϑk+1 − ϑk
∥∥
2
≤ τ or the maximum number

of iterations is reached, whereτ is a predefined small value.
Otherwise, return to step (4) and continue the whole process
again.

Since the result (19) indicates that by and large the convex
range of the likelihood function is half of the 3dB beamwidth
of the array, we can set grid intervalr for the CS-based DOA
estimation as

r = γ
BW0.5

2
, (20)

whereγ < 1 is a small regulation parameter. When the DOAs
are more adjacent,γ is set to a smaller number. We recommend
to setγ = 0.5 usually since it can give an accurate yet fast
DOA estimation. Then the DOAsθc estimated by the CS-
based DOA estimation methods are most likely in the convex
range of the DML function so that Newton iteration always
converge to the global minimum rather than a local extremum.

Based on the above ideas, we propose a class of algorithms
for off-grid DOA estimation, outlined in Table I. The proposed
algorithms consist of two stages. By setting the grid interval
according to our result (19), CS-based DOA estimation ap-
proaches obtain coarse DOA estimates in the first stage. Next,
we initialize the Newton type iteration with these estimated
DOAs to realize the DML estimation.

Remark 3. It is worthy to note that all kinds of DOA
estimation methods can be applied in the first stage of the
proposed approach, including the CS-based methods, such as
MP, convex relaxation, SBL. As long as their DOA estimates
are already in the convex vicinity of the DML solution, the
Newton type iteration will converge to the global minimum of
the DML function and achieve the same performance in the
final. We can choose the computationally effective methods
in practice. Usually, OMP is decidedly less costly than all of
these methods.

We assumeN ≫ M ≫ K, whereN denotes the number
of sampling grid. Note that each iteration of both M-BP
and M-SBL can also be computed inO(NM2) using the
implementation as [25]. After SVD is introduced, each M-
OMP iteration can be computed inO(NMK) using the
implementation as [24] and standard techniques for least-
squares problems (see [30], Chapter 5, for extensive details).
Each Newton iteration can be computed inO(M2K), which
is not significant compared to M-BP, M-SBL or M-OMP
iteration.

VI. SIMULATION

This section includes two parts. Firstly, we compare the
convex rough range of ours with convex exact range of the
DML function. Secondly, we present the numerical simu-
lation results to illustrate the performance of the proposed
algorithm. In our experiments, we considerK = 2 nar-
rowband far-field non-coherent signals with the equal power
impinging on a ULA composed ofM sensors which are
separated by a half wavelength of the signal. The SNR is
defined asSNRi = 10log10(E(|si(t)|

2
)/σ2), where SNRi

denotesith signal’s SNR. The RMSE is defined asRMSE =√
1

NmK

∑Nm

i=1

∑K

k=1 (θ
i
k − θ̂ik)

2
, where the superscripti refers

to theith trial, Nm denotes the number of Monte Carlo tests.
The simulations are performed using MATLAB2012B running
on an Intel Core 2 Duo, 3.20 GHz processor with 3 GB of
memory, under Windows7 32bit.

A. Convexity of the Likelihood Function

In order to measure the similarity of the range based on the
(19) and the exact one, We define two measures as

IRR = K

√
M (ΩI)/M (ΩR), (21)

IAR = K

√
M (ΩI)/M (ΩA), (22)

where,ΩR represents a set, which subjects to∀ϑ ∈ ΩR, H ≻
0 and is obtained from experiment.ΩA represents another set,
which approximately subjects to∀ϑ ∈ ΩA, H ≻ 0, and is
obtained from (19). AndΩI = ΩR ∩ ΩA. M (Ω) represents
the measure ofΩ. TakingK-th root of the ratio is to eliminate
the influence of the dimensionK. Obviously,0 ≤ IRR ≤ 1,
0 ≤ IAR ≤ 1. WhenΩA is closer toΩR, both IRR and IAR
are closer to 1, and it means that the estimated range and the
actual range is consistent. Otherwise, they are closer to 0.

In the simulations, to acquire theΩR, firstly, we divide
the area near the real DOAs into uniformly-spaced grid, then
we calculate the eigenvalues ofH corresponding to the value
of the DOAs grid. If the eigenvalues ofH at a grid are all
non-negative, the ML function is convex at this grid, which
belongs toΩR. We regard the number of elements ofΩR as
M (ΩR). We can easily obtainΩA andM (ΩA) through the
3dB beamwidthBW0.5.

We carry out 3 experiments in this subsection. The number
of snapshots is fixed atT = 200 in each experiment. 500
Monte Carlo trials are simulated except the first one. Fig.1 is
the result of an experiment with SNR = 10 dB,M = 8 and
θ = [0◦ 30◦]T. BW0.5 ≈ 12.8◦ whenM = 8. It intuitively
shows the convex rough range and the exact range of the DML
function. Despite that the rough range based on (19) is slightly
different, two ranges still agree well.

Fig.2 depicts the IRR and IAR versus SNR, withθ =
[−7.5◦ 7.5◦]T and M = 8. It is shown that the mean of
IRR and IAR slightly increase with the increasing of SNR,
but nearly remains 0.73 and 0.84, respectively. As long as
(2) is satisfied strictly, the convex rough is always invariable.
But IRR and IAR fluctuate more remarkably around the mean
value with low SNR.
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Fig. 2. IRR and IAR versus SNR.

Fig.3 shows the IRR and IAR versus the number of sensors
M , with SNR fixed at 10 dB, DOA fixed at[−10◦, 10◦]. Fig.3
shows that by and large the mean of IRR and IAR increases
with the number of sensors. Namely, the convex rough range
and the exact range of the DML function agree better with
more sensors. In Fig.3, the means of both IRR and IAR are
about 0.93 whenM ≥ 12. Namely, the convex rough range
and the exact range of the DML function agree very well
when DOA interval is larger than2.5BW0.5 (BW0.5 ≈ 8◦

whenM = 12).

B. DOA Estimation Performance

In this subsection, we consider the uniform sampling grid as
{−90◦,−90◦ + r,−90◦ + 2r, · · · , 90◦}, with r being the grid
interval. We fix the number of sensors of ULA atM = 8. We
set the parameters of OGSBI-SVD as [27]. It’s worth pointing
out that it is necessary to set the origin at the middle point
of the ULA to reduce the approximation error for OGSBI-
SVD, however is unnecessary for our proposed algorithms.
We assume thatK is known in our simulation. Note that all
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Fig. 3. ICR and IAR versus the number of sensors.

kinds of the CS-based methods are optional in the first stage
of our proposed approach. In our simulations, we take OMP
[24] and SBL [25] as representatives of on-grid model based
methods. There are two underlying reasons for doing like this.
Firstly, OMP is computationally effective method. Secondly,
both SBL and OGSBI-SVD are from a Bayesian perspective.
We do not chooseℓ1-SVD because it costs too much usually.
Since OGSBI-SVD uses the SVD to reduce the computational
workload of the signal recovery process and the sensitivityto
noise. For the sake of fair, the SVD is introduced for OMP
and SBL, too. We compare OGSBI-SVD, SBL, OMP with
our proposed algorithms ,CSDML(SBL) and CSDML(OMP),
in terms of RMSE and computational time with respect to
SNR, snapshots and grid interval, where CSDML(SBL) and
CSDML(OMP) denote our proposed algorithms using SBL
and OMP in the first stage, respectively. 1000 Monte Carlo
trials for each experiment are simulated in this subsection.

It should be noted that there exists a Lower Bound for
the RMSE of the on-Grid methods (GLB) regardless of the
SNR since the best DOA estimate that those methods can
obtain is the grid point nearest to the true DOA. In fact,
the lower bound is shared among all on-grid model based
methods includingℓ1-SVD, SBL, OMP and so on. In the
case of the uniformly distributed DOA, the lower bound is
GLB = r

2
√
3
. In the case of the fixed DOA, the lower bound

is GLB =

√
1
K

∑K

k=1 (θk − θ̂k)
2
, whereθ̂k is the grid point

nearest toθk.
In the first two experiments, we consider thatθ =

[2.37◦, 30.82◦] and r = 2◦, which is equal to thatλ is set
0.313 sinceBW0.5 ≈ 12.8◦ for M = 8. Fig.4 depicts the
RMSE versus SNR, with the number of snapshots fixed at
T = 200, and Fig.5 shows the RMSE versus the number
of snapshots, with SNR fixed at 10 dB. It is shown that the
performance of the off-grid based methods, OGSBI-SVD and
CSDML, are superior to that of the on-grid method, SBL and
OMP, in terms of RMSE in Fig.4 and 5. The performance of
the on-grid model will degrade due to discretization error when
the true DOAs are beyond the fixed sampling grid. Fig.4 and 5
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show that although SBL and OMP have different performance,
CSDML(SBL) and CSDML(OMP) have same performance,
which outperforms OGSBI-SVD under the same simulation
conditions, especially with high SNR or large snapshots, where
OGSBI-SVD has the constant performances, however both
CSDML(SBL) and CSDML(OMP) are almost able to achieve
the CRB.

The sensitivity to grid interval of different methods is
studied in the third experiment. The SNR and the number
of snapshots are fixed at 10 dB and 200, respectively. When
M = 8, we haveBW0.5 ≈ 12.8◦. Therefore the grid
interval r is selected from1◦ to 6◦ with an interval of1◦.
It is equal to thatλ is set from 0.156 to 0.938 with an
interval of 0.156. In each trial,K = 2 directions ofθ1, θ2
are uniformly generated within direction intervals[−3◦, 3◦]
and [27◦, 33◦] respectively. The RMSE versus different grid
intervals is depicted in Fig.6, which shows that CSDML has
superior performance than OGSBI-SVD. This simulation also
demonstrates that CSDML is more robust than OGSBI-SVD,
even in the case of very coarse grid. Table II presents the
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Fig. 6. RMSE of DOA estimates versus the grid interval.

TABLE II
AVERAGED CPUTIMES OF OGSBI-SVDAND CSDML WITH RESPECT TO

r. TIME UNIT : sec.

r 1◦ 2◦ 3◦ 4◦ 5◦ 6◦

OGSBI-SVD 1.1e+0 1.3e-1 5.1e-2 3.3e-2 2.8e-2 2.1e-2

SBL 1.6e-1 1.6e-2 7.7e-3 6.1e-3 5.0e-3 3.8e-3

DML 5.0e-4 6.0e-4 5.9e-4 6.2e-4 6.2e-4 6.3e-4

CSDML(SBL) 1.6e-1 1.7e-2 8.3e-3 6.7e-3 5.6e-3 4.4e-3

OMP 4.3e-4 3.4e-4 3.4e-4 3.2e-4 3.2e-4 3.2e-4

DML 5.5e-4 5.6e-4 5.9e-4 6.2e-4 6.6e-4 6.3e-4

CSDML(OMP) 9.8e-4 9.0e-4 9.3e-4 9.4e-4 9.8e-4 9.5e-4

averaged CPU times of OGSBI-SVD and CSDML (excluding
the SVD process) with respect tor. Their CPU times decrease
as the grid gets coarser for both OGSBI-SVD and CSDML.
However, CSDML, especially CSDML(OMP), is many times
faster than OGSBI-SVD especially in the case of very fine grid
interval. Additionally, the CPU times of Newton iteration are
much less comparing with SBL or OGSBI-SVD, for Newton
iteration gives locally a quadratic convergence. The tablealso
shows that CSDML(OMP) is less costly than CSDML(SBL)
since OMP is less costly than SBL.

VII. C ONCLUSIONS

In this work, we analyzed the convexity of the DML
function in the vicinity of the global solution and found out
a rough range with large array, which is the half of 3dB
beamwidth around the true DOAs to generally guarantee the
DML function convex. It to some extent answered the question
that how close it should be to the global minimum to make sure
the iteration feasible. After that, we proposed algorithmsfor
off-grid DOA estimation based on the convexity of the DML
function. We illustrated by simulations that the approximately
convex range agrees well with the exact convex range of the
DML function with large array. The simulations demonstrated
that the proposed approaches outperform standard CS methods
based on on-grid model and the OGSBI-SVD based on off-
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grid model. The performance of the proposed approaches
is close to the CRB, and exceeds that of the OGSBI-SVD,
especially with high SNR and large snapshots. Moreover,
the proposed approaches are robust in the case of large
grid interval, whereas the OGSBI-SVD is not. Besides, the
proposed approaches are many times faster than OGSBI-SVD
in all case of grid interval.

From a new perspective, this work provided a computa-
tionally efficient algorithm framework including initial value
calculation and Newton iteration to realize DML estima-
tion. Unlike other approaches, our algorithms do not need
a global/multidimensional search and the convex analysis
of the DML function would guarantee the Newton iteration
convergence. This algorithm frame can be applied to DOA
estimation, frequency estimation and so on.

APPENDIX A
DERIVATION OF THE HESSIAN MATRIX

For convenience, the following matrices are defined as

Ei
∆
=

∂B

∂ϑi

= [0 Di 0] ,

Gi,j
∆
=

∂2B

∂ϑi∂ϑj

=

{
[0 Fi 0] , j = i

0 , j 6= i
.

According to the results in [31], [32], we have

∂2P

∂ϑi∂ϑj

= 2ℜ
(
−P⊥EjB

†EiB
†

+P⊥EiB
†B†HEH

j P
⊥

−B†HEH
j P

⊥EiB
H

−P⊥EiB
†EjB

†

+P⊥Gi,jB
†) .

Therefore, we have

Hji =
∂2tr

(
P⊥R

)

∂ϑi∂ϑj

= −
∂2tr (PR)

∂ϑi∂ϑj

= 2ℜ
[
tr
(
+B†RB†HEH

j P
⊥Ei

−B†B†HEH
j P

⊥RP⊥Ei

+B†RP⊥EjB
†Ei

+B†RP⊥EiB
†Ej

−B†RP⊥Gi,j

)]
. (23)

By comparison, (7) is the matrix form of (23).

APPENDIX B
PROOF OFLEMMA 1

Suppose arbitrary vectorx 6= 0. P⊥ = I − BB† is
the orthogonal projector matrix and the rank ofB is K ,
therefore its eigenvalues are composed of ones and zeros, and
the number of them isM − K and K , respectively. Thus
λmin

(
P⊥) = 0.

Obviously,DHP⊥D is a Hermitian matrix. And accord-
ing to the definition of the Rayleigh quotient and Min-max
theorem in [33], we have

xHDHP⊥Dx = (Dx)HP⊥ (Dx) ≥ λmin

(
P⊥) ‖Dx‖2.

If and only if Dx is the eigenvector ofP⊥ corresponding
to the smallest eigenvalue 0,xHDHP⊥Dx = 0. Otherwise,
xHDHP⊥Dx > 0 .

Since P⊥B = 0, then a (ϑi) , column vector ofB, is
eigenvector ofP⊥ corresponding to eigenvalue 0. If and
only if Dx ∈ R(B), whereR(B) denotes the column space
of B, (Dx)

H
P⊥ (Dx) = 0. However,Di = a′ (ϑi) and

Bi = a (ϑi), thusDx ∈ R(B) is usually not satisfied, and
(Dx)HP⊥ (Dx) > 0. Namely,∀x 6= 0, (Dx)HP⊥ (Dx) > 0.
ThereforeDHP⊥D ≻ 0 .

APPENDIX C
PROOF OFTHEOREM 1

Considering (2) and after some matrix manipulations, we
have

B†RP⊥ = B†AΣAHP⊥, (24)

(8a) + (8b) =
(
DHP⊥D

)
⊙
(
B†AΣAHB†H)T

−
(
DHP⊥AΣAHP⊥D

)
⊙
(
B†B†H)T.(25)

Taking the limit of (24) and (25), respectively, and note that
lim
ϑ→θ

AHP⊥ = 0, we have

lim
ϑ→θ

B†RP⊥ = 0 ⇒ lim
ϑ→θ

∇ = 0, (26)

lim
ϑ→θ

((8a) + (8b)) = (DHP⊥D)⊙ΣT. (27)

According to the theorem on Hadamard product in [33],
combining Lemma 1 andΣT ≻ 0, we obtain

(DHP⊥D)⊙ΣT ≻ 0. (28)

Note thatDHP⊥D⊙ΣT is a Hermitian matrix, thus we have

ℜ((DHP⊥D)⊙ΣT) ≻ 0. (29)

Combining the results of (26) and (27), we obtain

lim
ϑ→θ

H = 2ℜ
((
DHP⊥D

)
⊙ΣT

)
≻ 0. (30)

We thus prove Theorem 1.

APPENDIX D
PROOF OFLEMMA 2

In this subsection,A−j , A−i andAi(−j) are thejth to last
column, ith to last row andith row jth to last column of a
matrix A, respectively. LetX = B†AΣAHP⊥ ⊙ BT, we
haveXik =

(
B†AΣAH

(
P⊥)

k
Bk

)
ii

.
For arbitrary ULA, whose sensors are located atd1,

· · · , dM , we make a transformation ofA = UG, where
G is a diagonal matrix, whoseith diagonal element is
exp ((−jπ (d1 + dM ) sin (θi)) / (2λ)), and U is an array
steering matrix, whose origin is at the middle point of the
ULA. Therefore,U = JU∗, GΣGH =

(
GΣGH

)∗
, whereJ

is theM ×M exchange matrix whose entries all are zero ex-
cept the one in the(i,M − i+ 1)th position fori = 1, · · · ,M .
Substituting them intoAΣAH, we have

AΣAH = J
(
AΣAH

)∗
J. (31)
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Similarly, we letB = VH and we haveV = JV∗. According
to the above results and after some matrix manipulations, we
obtain

B† = H−1V†, (32)

Vk =
(
V−k

)∗
, (33)

V†J =
(
V†)∗, (34)

JP⊥
k =

(
P⊥

−k

)∗
. (35)

Substituting (32) intoXik andXi(−k), and considering the
form of H, we have

Xik =
(
V†AΣAH

(
P⊥)

k
Vk

)
ii
, (36)

Xi(−k) =
(
V†AΣAH

(
P⊥)

−k
V−k

)
ii
. (37)

Substituting (31)(33)(34)(35) into (36), we have

Xik =
(
V†AΣAH

(
P⊥)

−k
V−k

)∗

ii
. (38)

Comparing (38) with (37), we haveXi(−k) = X∗
ik. So we

obtain

ℜ
(
Xi(−k)

)
= ℜ (Xik) . (39)

SinceP⊥B = 0,
∑M

k=1 (P
⊥)kBki = 0,

∑M

k=1 Xik = 0,

∑M

k=1
ℜ(Xik) = 0. (40)

Note that d1, · · · , dM is a arithmetic progression, and
according to (39) and (40), we acquire

ℜ

(∑M

k=1
dkXik

)
= 0. (41)

Namely,
∑M

k=1 dkXik is a pure imaginary number.
SinceDki = αidkBki, whereαi = −j2π cos (ϑi)/λ is a

pure imaginary number. And combining (41), we have proved
thatB†iAΣAHP⊥Di = αi

∑M
k=1 dkXik is real number.

APPENDIX E
PROOF OFLEMMA 3

The eigenvalues ofP⊥ are composed ofM −K ones and
K zeros. BecauseP⊥ei = ei, ei is normalized eigenvector
of P⊥ corresponding to eigenvalue 1. Therefore,P⊥ can be
eigendecomposed intoP⊥ =

∑M−K

i=1 qiq
H
i , whereq1 = ei.

Thus,P⊥−eie
H
i =

∑M−K

i=2 qiq
H
i . So the eigenvalues ofP⊥−

eie
H
i are composed ofM − K − 1 ones andK + 1 zeros.

Therefore,P⊥ − eie
H
i � 0.
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