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Off-grid DOA Estimation Based on Analysis of the
Convexity of Maximum Likelihood Function

Liang Liu and Ping Wei

Abstract—Spatial compressive sensing (SCS) has recently beenestimation with snapshot deficient scenario or coherengdsg
applied to direction-of-arrival (DOA) estimation owing to ad- [21-[4).
vantages over conventional ones. However the performancef o Recently, the research on DOA estimation has been ad-

compressive sensing (CS)-based estimation methods demes d ina to the d | t of thods b d
when true DOAs are not exactly on the discretized sampling vanced owing 1o the development of methods based on com-

grid. We solve the off-grid DOA “estimation problem using the Pressed sensing (CS) or sparse signal reconstruction (SSR)
deterministic maximum likelihood (DML) estimation method. [L10] by exploiting the spatial sparsity in the array model.
In this work, we analyze the convexity of the DML function The CS-based DOA estimation approaches are extremely
in the vicinity of the global solution. Especially under the attractive for their ability to resolve closely spaced s@s;

condition of large array, we search for an approximately cowex
range around the ture DOAS to guarantee the DML function few snapshots and correlated sources. Some CS-based DOA

convex. Based on the convexity of the DML function, we propes €Stimation methods have been presentedoptimization (or
a computationally efficient algorithm framework for off-grid called basis pursuit, BP) [11]-[13], matching pursuit (MP)
DOA estimation. Numerical experiments show that the rough [14], [15], and sparse Bayesian inference/learning (SBB){
convex range accords well with the exact convex range of the r1g] are proposed in the case of a single measurement vector
DMfL function \:C\Iltl’rll large arraé/ andhdzmqnstrate the]c superior (SMV). In the case of multiple measurement vectors (MMV)
performance of the proposed methods in terms of accuracy, /- AN \ '
robustness and speed. the simultaneous sparse approximation problem arises, and
. . o _ _singular value decomposition (SVD) is introduced to reduce
Index Terms—Compressive sensing, direction-of-arrival esti- complexity and sensitivity against noise [19]. A natural
mation, off-grid model, convexity, deterministic maximum likeli- ) p Yy - > y ag - : A )
hood. sion of basis pursuit is convex relaxation algorithms, whic
employ mixed nornv, , optimization in this case [19]-[23].
Simultaneous orthogonal matching pursuit (S-OMP) [20] or
. INTRODUCTION multiple response model orthogonal matching pursuit (M-

., ... OMP) [24], is a multiple response variant of matching pursui
HIS paper addresses the problem of off-grid d'reCt'o'kdd't' I B ian | ina for MMV :
T of-arrival (DOA) estimation through analysis of th riona’y, sparse Sayesian fearning for guarantees

. . - . e[25] the simultaneous sparsity by assuming the same sparse
convexity of the maximum likelihood (ML) function. The rior, such as a Laplace signal prior, for the signals at all

ML criterion has drawn much attention due to its attractiv napshots.

I ; . .
bfef_nt_—zﬂts ['LL 5], suchthas Nclzlt_)nsw;tencty, asymptotlﬁ normallltl All these CS-based DOA estimation methods employ fixed
eflciency. However, the estimation approach genera gampling grid and assume that all the true DOAs are exactly
requires a multidimensional search at a great computdtio

. . i . Wtated on the selected grid. When the true DOAs are be-
cost in practical multi-target scenarios. Fortunatelymeo

iterative algorithms, such as the Newton type algorithm [Giond the fixed grid, their performance will degrade due to

- lied t q tai tH th iscretization error. There are still difficulties to see thrid

.[ ] are applied to reduce computation cost. HOWEVET, NOgfta ) in practical situations where the true DOAs are not
iterative algorithms need a good initial value, which must bOn the sampling grid. On one hand, a dense sampling grid
5 necessary for accurate DOA estimation to reduce the gap
. . ; . ttJ tween the true DOA and its nearest grid point since the
find out a convergence region by analyzing the convexity B5timated DOAs are constrained on the grid. But on the agher
the ML function. dense sampling grid leads to high computational complefity

Array processing for_ DOA eSt'mat'on has been a top covery algorithm and a highly coherent matrix that vietat
of intensive research interest during the past two deca 8 condition for the sparse signal recovery

[€]. Since the ML apprqach is often deemed exceedingyln [26], an off-grid model for DOA estimation is introduced
complex, several suboptimal meth_ods are proposed_, such 3 a sparse total least squares (STLS) method based on
subspace based methods, especially MUSIC algorithm [gle Gayssian assumption of off-grid distance is proposed.

which exchange the multidimensional search problem for ong, ever. the Gaussian condition cannot be satisfied in the
dimensional _searc_h problem. Whereas, the perfo_rmanceoﬂa‘_grid DOA estimation problem. In[[27], a new off-grid
MUSIC algorithm is not good as ML estimation in DOAalgorithmtermed OGSBI-SVD from a Bayesian perspective is
The authors are with the School of Electronic Engineeringivelsity of presented by assuming the off-grid distance satisfies umifo
Electronic Science and Technology of China, Chengdu 611CBiha (e-mail: distribution. As shown in [27]* OGSBI-SVD can ex.ceed a
liu_yinliang@outlook.com; pwei@uestc.edu.cn). lower bound of root mean squared error (RMSE) that is shared
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among all on-grid model based methods. But its performanise written as|[B]
is not ideal especially with high signal to noise ratio (SNR)
or large snapshots. Besides, this approach is not robubegin t x(t)=A(0)s(t)+n(t),t=1,---,T, (1)

case of large grid interval. .
ge 9 ea/vherex(t) is the measurement vector at thid snapshot,

This work proposes a deterministic ML (DML) bas .
- o . 0)=1[a(#), ---,a(f denoted asA for convenience
approach to mitigate CS-based DOA estimation biases. Tlﬁil‘s(th)e a[rraEyl)steering(n}faeri(m (6,) is the steering vecto)r

approach presents the same performance as DML, whose ]T is the

. . . . orresponding to théth source,® = [0y, - ,0k
asymptotic estimation performance often able to achieee t\ﬁector containing the DOAs of all source, is the DOA of

Cramer-Rao bound (CRB). So this approach is no Iongt%re kth source,s (t) is the vector of all signal values at the

“.m'ted by the density of sampl_mg gno_l. Th'.s work can beﬂh snapshot] is the total number of temporal measurements,
viewed from two aspects, one is that it mitigates CS-based . . :
o ; o andn (t) is the M x 1 noise vector following the zero-mean
DOA estimation biases through ML estimation, the other IS ) S . : .
. : Y ircular complex Gaussian distribution with covariancdnra
that it realizes the ML estimation through CS-based DO o 9 9 : . :
S . : . . {n(t)n" (t)} = 0°I, o* is noise power. With the further
estimation and Newton iteration. It is the key issue to make .
. I . assumption that (¢t) and n (¢) are uncorrelated, the array
the approach convergent. The main contributions of thliwocr;ovariance matrix is aiven b
are listed as follows. Firstly, we prove that the DML functio 9 y
for DOA estimation is a convex function in the vicinity of R = ASAH 4 521, )
the global minimum. Secondly, we come to a conclusion that
an approximate convex range of the likelihood function camhereX is the source covariance matriR. can be estimated
be obtained under certain conditions, which to some extent R ~ %ZtT:lX(t) xH (1).
suggests how “sufficiently close” to the global minimum the
iterations must be initialized. Therefore, we decide thesity |
of sampling grid for CS-based DOA estimation algorithms by
our result instead of empiric value. In addition, we propose
a class of algorithms for off-grid DOA estimation based on |n this section we review two kinds of methods for DOA
the convexity of the DML function. The proposed algorithmgstimation, as we will take advantage of their conclusiaons i
consist of two stages. In the first stage, by setting the grifir context.

interval according to our result, CS-based DOA estimation

approaches obtain coarse DOA estimates. In the second, we

initialize the Newton type iteration with these estimatedAs A. CSbased DOA Estimation

to realize the DML estimation. Because of the convexity & th  gjyce DOAs are sparse in the spatial domain, the source

DML function, our proposed methods are likely to converggcajization problem is formulated as a sparse representat

to the global minimum of the DML fur_lct|0n. . problem, or spatial compressive sensing (SCS) problem [19]
Ilhe following notations are used in the papg)” and T cast the DOA estimation problem in a SCS framework,

()" denote the transpose and Hermitian transpose, respg§-overcomplete representati@ in terms of all possible

II. DOA ESTIMATION: CSBASED DOA ESTIMATION
AND MAXIMUM LIKELIHOOD ESTIMATION

tively. |- z. E(:), Tr(-) and R (-) stand for the Frobenius source locations was introduced. L& = [Oy,---,0x]
norm, expectation, trace, and real part operators, réspict be a sampling grid of all source locations of interest and
diag (A) denotes a column vector composed of the diagongl — [a(©,), -+ ,a(Oy)] is the array manifold matrix cor-

elements of a matri, anddiag (x) is a diagonal matrix with responding to the DOA®. The number of potential source
x being its diagonal elements; is the jth entry of a vector |ocationsN will typically be much greater than the number of
x. A;, A’ and 4;; are thejth column,ith row and (i, j)th  sourcesk or even the number of sensat$. Assuming that
entry of a matrixA, respectivelyz’ (9), z” (¢) are the 1st, the true source direction® are contained ir®, formulation

2nd-order derivative of: () with respect to9 , respectively. () is reformulated using an overcomplete representat®n a
© denotes the Hadamard produkt, stands for anV/ x M the following form,

identity matrix.

The remainder of the paper is organized as follows. We x(t)=ws(t)+n(t). ()
present the measurement models in Section I, and review . o .
CS-based and ML for DOA estimation in Section Ill. WeVNere;s (¢) is a N x 1 vector containingk’ non-zero entries,
analyze the convexity of the DML function in Section IvWhere thenth elements,, (t) = s (1) if ©,, = 0 for k =
and derive our CSDML algorithms in Section V. Numerical: "~ » &+ otherwises,, (1) = 0.

examples appear in Section VI. We give our conclusions in !N effect, model[(B) allows us to exchange the DOA estima-
Section VILI. tion problem for the problem of recovering the sparse signal

s from the array outpukk. When the number of snapshots
T > 1, this problem is a simultaneous sparse approximation
Il. MEASUREMENT MODELS problem, which has received a lot of attention recently. And
several computationally feasible methods have been pesten
Consider K narrowband far-field signals impinging on arfor estimating the sparse signal, such as matching pursuit
array composed o¥ (M > K) sensors. The array output can(MP), convex relaxation, sparse Bayesian learning (SBL).
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B. Maximum Likelihood DOA Estimation where

T

The ML approach is a standard technique in statistical C= (DHPLD) © (BTRBTH) (8a)
estimation theory. The ML estimation is calculated as the — (D"P'RP'D) ® (BTBTH)T (8b)
values of the unknown parameters that maximize the likeli- T
hood function. This can be interpreted as selecting the fset o T (BTD) © (BTRPLD) (8¢)
parameters that make the observed data most probable. ML +(BTD)T ® (B'RP+D) (8d)
techniques for the sensor array problem have been studied by T
a number of researchers, see for examgle [5], [13], [28]. Whe C (BTRPLF) ’ (8e)
applying the ML technique to the sensor array problem, twohereD = [Dy,--- ,Dg|, F = [Fy,--- ,Fg], D; = a’ (v;),
main methods have been considered, depending on the maeek a” (¥,).
assumption on the signal waveforms. When the emitter signal Since this paper needs to analyze the convexity of the
are modeled as Gaussian random processes, a stochasticOMAL function, it is necessary to use accurate Hessian matrix
(SML) method is obtained. On the other side,if the emittesxpression. For the expression of Hessians matrix of bdth [1
signals are modeled as unknown deterministic quantities, tand [2] is asymptotic, that of our paper differs from them.
resulting estimator is referred to as the deterministic ML
(DML) estimator. According tol[29], we know that the DML |V, THE CONVEXITY OF THE LIKELIHOOD FUNCTION
criterion depends o0f in a simpler way than does the SMLA. Motivation
criterion. So we prefer the DML estimator in this paper.

The DML DOA estimator is shown as follovi[2] [29] Although the Newton method can quickly converge to a

local extremum, the quality of the convergence point depend
on the shape of the criterion function in question. \if

9 = argmaintr (P'R), (4) possesses several minima, the iteration must be initélize
“sufficiently close” to the global minimum in order to preven
L B P ] ) convergence to a local extremum.

where P~ = 1 — P, P = BB, in which B is the  p,, “sufficiently close” to the global minimum will the
array steering matrix corresponding to the DOAs estimatigRyration converge? A sufficient condition is that the likebd

¥ = [0y, ,¥x], B = (BYB) B" is the pseudo- fynction is convex in this area near the global minimum. So we

inverse of B. However, it is important to note thatl(4) is ay;l| analyze the convex of the DML function in this section.
non-linear multidimensional minimization problem, anc th

criterion function often possesses a large number of |OC§’1| The Convexity of the Likelihood Function near the True

minima. DOAS
All methods considered herein require a multidimensional The followi its about aradient and Hessi trik wil
non-linear optimization for computing the signal paramete € following results about gradient and Hessian matrix wi

estimates. Usually, analytical solutions are not avadland show that the likelihood function is a convex function ndsa t

one has to resort to numerical search techniques. Sevdfdf DOAs.
optimization methods have appeared in the array processkfgnma 1. D'P+D > 0.

literature, including different Newton-type techniqués.is Proof: See AppendixB. [ |
well-known that the Newton-type method gives locally &naorem 1.

: . lim V =0, lim H > 0.
guadratic convergence. So Newton-type algorithms for the 96 96

DML techniques are described in this subsection. The estima  Proof: See Appendix . u
is iteratively calculated as Remark 1. Theorem[l indicates tha® is a minimum of
likelihood function. Note that DML function is a continuous
I — 9 _H 'Y, (5) function in terms o0#, thus there is a rang@ around the true

DOAs 0, whereVd € , H > 0.

where 9" is the estimate at iteratiok, H represents the
Hessian matrix of the criterion function, afdis the gradient.
The Hessian and gradient are evaluated’at

The DML gradient is given by [1],[]2].

C. The Convex Range of the Likelihood Function

The likelihood function is a convex function in the vicinity
of the global minimum according to subsectibn TV-B. As
long as the initial value is in the convex vicinity of the
DML solution, the Newton iteration is feasible. It is necass

V = —2% (diag (B'RP*D)). (6) to determine the convex range of the DML function. To

determine the convex range of the DML function, we need
The DML Hessian matrix can be expressed as (See AppenHixanalyze the positive definiteness it Unfortunately, this
&) analysis is rather complicated becailbés a multidimensional
nonlinear matrix function in terms of}. We consider a

simply scene where array is a uniform linear array (ULA),

H =2R(C), (") which is one of the most common array. Without loss of
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generality, the norm of the steering vector is normalizedeglecting[(8e)H = 2% (C) can be approximated as follows
For arbitrary ULAs, whose sensors are locateddat - - -,
g Py C~Ead+ @D

dys, we havea (0) = —L exp (—jQ—’Tsin ©)[dy - dM]H),
VM A _ Hpl + HpptH\ T
a' (0) = —j% cos(0)[dy - du]F ©a(b). = (D"P'D) o (BTAXAMB™) ]
For simplicity, we assume that: (1) the number of sensor — (D"P-ASA"P'D) e (B'B™)
elementsV/ is large enough; (2) The interval between adjacent Ho | mT
. . . . — T T
true DOAs® is large enough with fixed/; (3) The interval =((D"P'D)oT) o (((B A)oI)X((B'A) oT) )
between the estimated DOA$ and the true DOAs is much Hpl Hpl H
) X . —(((D"P-A)oI) X((D"P-A) 01 I. (16
smaller comparing to the interval between adjacent DOAs, ((( )Q ) (( )Q ) )® (16)
namely [¥; — 0;] < |0; — 6;], |9; — 6;] < |9; =], i # j, SoC is an approximately diagonal matrix, whoidk diagonal
whered; is the estimation ob;. Acc%rding to the agsumption element is
(1), (2) and (3), we havdBFA;|” > |BFA;|” ~ 0, ; . \H
¢ v R TPA A Hplp.
IDHA;|” > |DHA,|” ~ 0, |IDID,* > |DHD,|” ~ 0.  Cu = X (B"'a;) (B"'A;) DIP'D;
Those expression_s are shown in APRENDIX Glof [2]. We can _y,,DH (PJ_Ai) (PLAZ-)HDZ-
reformulate them in the form of matrix as follows 9
= E”BZD?PLDZ — Eii HPLAZHF D? (eieH) Dl

i

B"A~ (B"A) ol 9 =%, (BDYPID; — (1 - 8) D! (eie?) D), (17)
DA ~ (DY"A) o1 (10) 2 A pL

’ _ ) .2 _PA, 112 —
DD~ (D'D) oL () Where S = [BIAL e = o, [PRAG = 1 -

IBEA; | = 1- 5.
Based on[(9)[(TI0)(11) and after some matrix manipulationsemma 3. P+ — e,eH = 0.
we further haveBB =1, BB = I, BfA = (BfA) o1, -

Proof: See AppendiXE. ]
Hpl _ Hpl
DTP A = (,D P A) oL ) According to Lemmal3, we have
Lemma 2. B"AXAHPLD, is real, whereBf" denotesith
row vector of BT, D;'P*D;, — D' (eie;') D; > 0. (18)
Proof: See AppendiXD. m f B >0.5 5 = 1-p;. Substitutings; > 1—3;, 3;; > 0
Substituting [[R) into[{8c), we have and [18) into[(1l7), we hav€;; > 0. Note that bothC andH

are approximately diagonal matrices, we have the following
B = ((B'D)oI) o (BTAZAHPLD)T, (12) result

. . . . - HA? > 05,0 = K.
From [12) we knowl[(8c) is an approximately diagonal matrix, H 2 0, when ‘BZ Az’ 205,i=1,2,---, K (19)

whoseith diagonal element is Remark 2. Since we use the approximatidn (9X10J(11) and
_ . neglect [[8e) to obtain (19), the convex range given by (19)

(Bd)]:; = (BI'D,)(BI'ASATPID,). (13) is a rough range. Even so, the result is often useful to

] ) ] ] roughly determine convex range of the DML function. In
Since a; = —J2mcos (¥:)/X is & pure imaginary number, fact, the rough range accords well with the real range, as
Bi'D; = §>0,_,dx is a pure imaginary number. Notejong as the hypothesis conditions are fully satisfied. This

that B'D, ~ BI'D;, BI'D; is an approximately imaginary will be shown by simulations. The significance of the result
number. Combining Lemmel Z(8d)];; is an approximately lies in its giving some guidance for the iterative algorithm
imaginary number. Namely[ (Bc) is an approximately diagdnitialization in practice. As long as the initial value ftine
nal matrix with approximately imaginary numbers being itigerative algorithm is in the above convex range, the athari

diagonal elements. So, will converge to the global minimum of the DML function.
The approximate convex range is acquired through solving
R(BJ) ~ 0. (14)  the inequation\B?Ai\2 > 0.5 using the numerical method.

In this way, the range is slightly different whép varies. The

range is almost same as long @sis not a big angle. So,
R (&) ~ 0. (15) we takg the width where; = 0 as the range. Namely, the

approximately convex range is about half of 3dB (half-pgwer

Note that the formula(Be) includds,, the second deriva- P€amwidthBW, 5 of the array around the true DOAs.
tive of the steering vecter (), it is more difficult to take this
term into the analysis of formul&l(8). We will ignore thisiter V- CSDML: OFF-GRID DOA ESTIMATION BASED ON THE
without proof. There are two underlying reasons for doikg li CONVEXITY OF DML FUNCTION
this. Firstly, the analysis of the positive definitenesdbivill CS-based DOA estimation methods based on on-grid model
become easier. Secondly, the influence of neglecfin (8e)can provide estimated DOAs which are on its nearest gridtpoin
nearly negligible in terms of the positive definitenesskf since the estimated DOAs are constrained on the grid. And the
in practice. Therefore, after using the formulal(14)} (16 a estimated DOAs can be uesd to initialize Newton iteration.
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TABLE | V1. SIMULATION

ALGORITHM CSDML . . . .
This section includes two parts. Firstly, we compare the

1)  Set grid intervalr according to[[I0) and20), obtai® and ¥ convex rou.gh range of ours with convex exact range qf the

2) Calculate8. through the on-grid methods such as MP, convex DML function. Secondly’ we present the numerical simu-
relaxation, SBL and so on; lation results to illustrate the performance of the propose

3) Set9® = 6, for Newton iteration; algorithm. In our experiments, we considé&f = 2 nar-

4) At 9", calculateV andH according to[(B) and17), respectively;  rowband far-field non-coherent signals with the equal power

5)  Updated**+! according to[(b); impinging on a ULA composed of\/ sensors which are

6) Check the convergence crite}irion for thih iteration. Terminate  separated by a half wavelength of the signal. The SNR is
the process Wheﬂﬂ 19 ||2 < 7 or the maximum number defined asSNR, = 1010g10(E(|si(t)|2)/02), where SNR;

of iterations is reached, where is a predefined small value. . . ) ; . 7
Otherwise, return to step (4) and continue the whole process denotesith S|gnals SNR. The RMSE is defined BMSE =

. . ~ 2 .
again. N it Soer (0 — 0)", where the superscriptefers
to theith trial, V,,, denotes the number of Monte Carlo tests.

The simulations are performed using MATLAB2012B running

Since the result{19) indicates that by and large the conv@R @n Intel Core 2 Duo, 3.20 GHz processor with 3 GB of
range of the likelihood function is half of the 3dB beamwidtf"€mory, under Windows7 32bit.

of the array, we can set grid intervalfor the CS-based DOA

estimation as A. Convexity of the Likelihood Function

In order to measure the similarity of the range based on the
(20) (19) and the exact one, We define two measures as

IRR = %/M ()/M (Qr), (21)
wherey < 1 is a small regulation parameter. When the DOAs

are more adjacent, is set_ toa _smaller pumber. We recommend IAR = /M (Q7)/M (2a), (22)
to sety = 0.5 usually since it can give an accurate yet fast

DOA estimation. Then the DOA#. estimated by the CS- where,QQg represents a set, which subjects/h € Qr, H =~
based DOA estimation methods are most likely in the convéxand is obtained from experimef?.,4 represents another set,
range of the DML function so that Newton iteration alwaysvhich approximately subjects t¢9 € Q4, H > 0, and is
converge to the global minimum rather than a local extremumwbtained from[(19). And2; = Qr N Q4. M (Q) represents

Based on the above ideas, we propose a class of algoritHffs measure of2. Taking K-th root of the ratio is to eliminate
for off-grid DOA estimation, outlined in Tab[ I. The promas the influence of the dimensioR. Obviously,0 < IRR < 1,
algorithms consist of two stages. By setting the grid irerv0 < IAR < 1. When(2, is closer tof2g, both IRR and IAR
according to our resul{{19), CS-based DOA estimation apte closer to 1, and it means that the estimated range and the
proaches obtain coarse DOA estimates in the first stage, Né@@tual range is consistent. Otherwise, they are closer to 0.
we initialize the Newton type iteration with these estinate In the simulations, to acquire th@p, firstly, we divide
DOASs to realize the DML estimation. the area near the real DOAs into uniformly-spaced grid, then
we calculate the eigenvalues Hf corresponding to the value

Rer_nark. 3. It is worthy to note tha-t all kipds of DOA f the DOAs grid. If the eigenvalues & at a grid are all
estimation methods can be applied in the first stage of t 8n-negative, the ML function is convex at this grid, which

proposed approach, including the CS-based methods, suc @kcjngs tof. We regard the number of elements@f, as

MP, convex relaxation, SBL. As long as their DOA estimateﬁ[ (QR). We can easily obtai2, and M (€,) through the
are already in the convex vicinity of the DML solution, th dB beamwidtiBW

Newton type iteration will converge to the global minimum o
the DML function and achieve the same performance in t%;

BWoy 5
2 )

T =

We carry out 3 experiments in this subsection. The number
shapshots is fixed d' = 200 in each experiment. 500
onte Carlo trials are simulated except the first one [FFig.1 i
e result of an experiment with SNR = 10 dB/ = 8 and
0 = [0° 30°]T. BWq 5 ~ 12.8° when M = 8. It intuitively

We assumeV > M > K, where N denotes the number shows the convex rough range and the exact range of the DML
of sampling grid. Note that each iteration of both M-BRunction. Despite that the rough range basedoh (19) istligh
and M-SBL can also be computed (N M?) using the different, two ranges still agree well.
implementation as[[25]. After SVD is introduced, each M- Fig[d depicts the IRR and IAR versus SNR, with =
OMP iteration can be computed i)(NMK) using the [—7.5°7.5°]" and M = 8. It is shown that the mean of
implementation as[[24] and standard techniques for leatRR and IAR slightly increase with the increasing of SNR,
squares problems (see [30], Chapter 5, for extensive detaibut nearly remains 0.73 and 0.84, respectively. As long as
Each Newton iteration can be computed®iM2K), which (@) is satisfied strictly, the convex rough is always invialéa
is not significant compared to M-BP, M-SBL or M-OMPBut IRR and IAR fluctuate more remarkably around the mean
iteration. value with low SNR.

final. We can choose the computationally effective metho
in practice. Usually, OMP is decidedly less costly than &ll 9
these methods.
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Fig. 1. The rough and exact convex range of the DML function. Fig. 3. ICR and IAR versus the number of sensors.

085 ; ; ; ; ; kinds of the CS-based methods are optional in the first stage
Y T e - -u of our proposed approach. In our simulations, we take OMP
}—\’\' - -RR| | [24] and SBL [25] as representatives of on-grid model based
‘=== AR methods. There are two underlying reasons for doing like thi
Firstly, OMP is computationally effective method. Secagndl
0.75} 1 both SBL and OGSBI-SVD are from a Bayesian perspective.
,} e L *-----9 We do not choosé;-SVD because it costs too much usually.
.7 Since OGSBI-SVD uses the SVD to reduce the computational
] workload of the signal recovery process and the sensittaity
noise. For the sake of fair, the SVD is introduced for OMP
065} . and SBL, too. We compare OGSBI-SVD, SBL, OMP with
our proposed algorithms ,CSDML(SBL) and CSDML(OMP),
in terms of RMSE and computational time with respect to

0.8f

Value

0.7F &

10 o 10 20 20 SNR, snapshots and grid interval, where CSDML(SBL) and
SNR(dB) CSDML(OMP) denote our proposed algorithms using SBL
and OMP in the first stage, respectively. 1000 Monte Carlo
Fig. 2. IRR and IAR versus SNR. trials for each experiment are simulated in this subsection

It should be noted that there exists a Lower Bound for

Fig[3 shows the IRR and IAR versus the number of sensdf$ RMSE of the on-Grid methods (GLB) regardless of the
M , with SNR fixed at 10 dB, DOA fixed dt-10°, 10°]. Fig[3 SNR since the best DOA estimate that those methods can
shows that by and large the mean of IRR and IAR increas@8tain is the grid point nearest to the true DOA. In fact,
with the number of sensors. Namely, the convex rough ran lower bound is shared among all on-grid model based
and the exact range of the DML function agree better withethods including/,-SVD, SBL, OMP and so on. In the
more sensors. In FIg.3, the means of both IRR and IAR af@se of the uniformly distributed DOA, the lower bound is

and the exact range of the DML function agree very Weﬂé GLB = /LS (9. — B 2 whered. is the arid point
when DOA interval is larger thaR.5BW, 5 (BWg 5 ~ 8° nearest tcﬁ\k/K 2= (O £ F anep

when M = 12). In the first two experiments, we consider that =
o [2.37°,30.82°] andr = 2°, which is equal to that\ is set
B. DOA Estimation Performance 0.313 sinceBW, 5 ~ 12.8° for M = 8. Fig[4 depicts the
In this subsection, we consider the uniform sampling grid &MV SE versus SNR, with the number of snapshots fixed at
{=90°,-90° + r, —90° + 2r,-- - ,90°}, with r being the grid T = 200, and Fid.b shows the RMSE versus the number
interval. We fix the number of sensors of ULA &f = 8. We of snapshots, with SNR fixed at 10 dB. It is shown that the
set the parameters of OGSBI-SVD as|[27]. It's worth pointingerformance of the off-grid based methods, OGSBI-SVD and
out that it is necessary to set the origin at the middle poi@SDML, are superior to that of the on-grid method, SBL and
of the ULA to reduce the approximation error for OGSBIOMP, in terms of RMSE in Figl4 arld 5. The performance of
SVD, however is unnecessary for our proposed algorithimbe on-grid model will degrade due to discretization errbew
We assume thak is known in our simulation. Note that all the true DOAs are beyond the fixed sampling grid.[Fig.4[dnd 5




SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 7

—&— OGSBI
- A -SBL [ -
=X=" CSDML(SBL) [
omP [
CSDML(OMP) [ 17 X

[
w
)
=
x
10
- A -SBL
+ =X~ CSDML(SBL) |’
OMP
CSDML(OMP)
10° T T . L ; ; 107 L
-10 -5 o 5 10 15 20 25 30 1 2 3 4 5 6
SNR (dB) Grid Interval ¢)
Fig. 4. RMSE of DOA estimates versus SNR. Fig. 6. RMSE of DOA estimates versus the grid interval.
TABLE Il
10° f AVERAGED CPUTIMES OFOGSBI-SVDAND CSDML WITH RESPECT TO
r. TIME UNIT: Sec.
“““““ r 10 20 30 40 50 60
“““““““““““““““““““““““““““““““““““““““““““ OGSBI-SVD 1.1e+0 1.3e-1 5.1e-2 33e-2 28e-2 2le-2
- SBL 1.6e-1 1l.6e-2 7.7e-3 6.1e-3 5.0e-3 3.8e-3
C¥ 4
Wl S : o o ] DML 5.0e-4 6.0e-4 59e-4 6.2e-4 6.2e-4 6.3e-4
=R R CSDML(SBL) 1.6e-1 1.7e-2 8.3e-3 6.7e-3 5.6e-3 4.4e-3
“““ S OMP 43e-4 34e-4 34e-4 32e-4 32e4 32e4
“““ : R DML 5.5e-4 5.6e-4 5094 6.2e-4 6.6e-4 6.3e4
“a-oo : RE T CSDML(OMP)  9.8e-4 9.0e-4 9.3e-4 9.4e-4 9.8e-4 9.5e-4
S =X= CSDML(SBL) |+ oo foerrrreeens D s
OMP : : :
. CSDML(OMP) : : :
1025 50 100 200 200 800 1600 averaged CPU times of OGSBI-SVD and CSDML (excluding
T the SVD process) with respectto Their CPU times decrease
as the grid gets coarser for both OGSBI-SVD and CSDML.
Fig. 5. RMSE of DOA estimates versus the number of snapshots. However, CSDML, especially CSDML(OMP), is many times

faster than OGSBI-SVD especially in the case of very fine grid

, interval. Additionally, the CPU times of Newton iterationea
show that although SBL and OMP have different performanq%,uch less comparing with SBL or OGSBI-SVD, for Newton

CSDML(SBL) and CSDML(OMP) have same perform"’m“fteration gives locally a quadratic convergence. The talde

which outperforms OGSBI-SVD under the same simulatiogqOWS that CSDML(OMP) is less costly than CSDML(SBL)
conditions, especially with high SNR or large snapshot&neh si}qce OMP is less costly than SBL

OGSBI-SVD has the constant performances, however bot
CSDML(SBL) and CSDML(OMP) are almost able to achieve
the CRB. VII. CONCLUSIONS

The sensitivity to grid interval of different methods is In this work, we analyzed the convexity of the DML
studied in the third experiment. The SNR and the numbf&mction in the vicinity of the global solution and found out
of snapshots are fixed at 10 dB and 200, respectively. Whanrough range with large array, which is the half of 3dB
M = 8, we haveBWy; =~ 12.8°. Therefore the grid beamwidth around the true DOAs to generally guarantee the
interval r is selected froml® to 6° with an interval of1°. DML function convex. It to some extent answered the question
It is equal to that) is set from 0.156 to 0.938 with anthat how close it should be to the global minimum to make sure
interval of 0.156. In each trial = 2 directions off,, 5 the iteration feasible. After that, we proposed algoritHiors
are uniformly generated within direction intervels3°,3°] off-grid DOA estimation based on the convexity of the DML
and [27°, 33°] respectively. The RMSE versus different gridunction. We illustrated by simulations that the approxieha
intervals is depicted in Figl.6, which shows that CSDML hasonvex range agrees well with the exact convex range of the
superior performance than OGSBI-SVD. This simulation alddML function with large array. The simulations demonstdate
demonstrates that CSDML is more robust than OGSBI-SVIhat the proposed approaches outperform standard CS nsethod
even in the case of very coarse grid. Table Il presents thased on on-grid model and the OGSBI-SVD based on off-
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grid model. The performance of the proposed approaché&sand only if Dx is the eigenvector oP' corresponding
is close to the CRB, and exceeds that of the OGSBI-SVIy the smallest eigenvalue @D PLDx = 0. Otherwise,
especially with high SNR and large snapshots. MoreoverDHP+Dx >0 .
the proposed approaches are robust in the case of larg8ince PAB = 0, thena(¥;) , column vector ofB, is
grid interval, whereas the OGSBI-SVD is not. Besides, theigenvector of P corresponding to eigenvalue 0. If and
proposed approaches are many times faster than OGSBI-S¥ffly if Dx € R(B), where R(B) denotes the column space
in all case of grid interval. of B, (Dx)HPL (Dx) = 0. However,D; = a’(4;) and
From a new perspective, this work provided a comput®; = a (9;), thusDx € R(B) is usually not satisfied, and
tionally efficient algorithm framework including initialalue (Dx)"P+ (Dx) > 0. Namely,vx # 0, (Dx)" P+ (Dx) > 0.
calculation and Newton iteration to realize DML estimaThereforeDEPLD - 0 .
tion. Unlike other approaches, our algorithms do not need
a global/multidimensional search and the convex analysis
of the DML function would guarantee the Newton iteration
convergence. This algorithm frame can be applied to DOA

APPENDIXC
PrROOF OFTHEOREM[

Considering [(R) and after some matrix manipulations, we

estimation, frequency estimation and so on.

APPENDIXA
DERIVATION OF THE HESSIAN MATRIX

For convenience, the following matrices are defined as

A OB
Ei:a_ﬁi:[ODiO]v
A B [ [0F;0,j=i
ST 99,00, _{ 0 ,j#i
According to the results ir_[31][ [32], we have
o0*P
019,09

= 2R (-P'E,B'E;Bf

+ P E,B'BME!'P+
- BME]'PTE,B"
- P E,B'E,;Bf
+P*G, ;BT).
Therefore, we have
o &’tr (P*R)  9’tr (PR)
T a000; 0 09,00
= 2R [tr (+B'RB™E}JP'E;
- B'BME!PRPE;
+B'RPLE,B'E;
+B'RPLE,B'E;
-B'RP*G,;)].
By comparison,[{[7) is the matrix form df_(23).

(23)

APPENDIX B
PROOF OFLEMMA [T]
Suppose arbitrary vectox # 0. Pt = I — BB' is
the orthogonal projector matrix and the rank Bfis K ,

have
B'RP+ = BITAXAUP,
®a) + BB = (D"P'D) o (BIAZABIM)"
— (D"PLASA"P'D) & (BIB™M)(25)

(24)

Taking the limit of [24) and(25), respectively, and notettha

lim AHPL = 0, we have
9—0

(26)
(27)

lim BIRPY =0 = lim V=0,

9—0 9—0

Jlim (€a) + @) = (DP'D)o =T
—

According to the theorem on Hadamard productlin! [33],

combining Lemma 1 an&™ > 0, we obtain
(DPD) o =T ~ 0. (28)

Note thatDEP-D @ X7 is a Hermitian matrix, thus we have

R(D"PID) o =) = 0. (29)
Combining the results of (26) and (27), we obtain
: _ Hpl T
A%H_Q%((DPD)®E)>O. (30)

We thus prove Theorefd 1.

APPENDIXD
PROOF OFLEMMA 2]

In this subsectionA _;, A~* and 4;_;) are thejth to last
column,ith to last row andith row jth to last column of a
matrix A, respectively. LetX = BFAXAHPL o BT, we
have X;, = (BTAXAH (PL)kB’“)ii.

For arbitrary ULA, whose sensors are located a4t
.-+, dy, we make a transformation oA = UG, where
G is a diagonal matrix, whoséth diagonal element is

therefore its eigenvalues are composed of ones and zewms, @ ((—j7 (d1 + dar)sin (0;)) / (2A)), and U is an array
the number of them is\/ — K and K , respectively. Thus steering matrix, whose origin is at the middle point of the
Amin (P1) = 0. ULA. Therefore,U = JU*, GEG! = (GEGH)", whereJ

Obviously, DHPLD is a Hermitian matrix. And accord- is the M x M exchange matrix whose entries all are zero ex-
ing to the definition of the Rayleigh quotient and Min-maxept the one in théi, A/ — i + 1)th position for; = 1,--- , M.
theorem in[[33], we have Substituting them intA XA, we have

xTDIPLDx = (Dx)"P* (Dx) > Apin (P1) | Dx|°. ASAR = J(AZAT)" . (31)
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Similarly, we letB = VH and we havé&/ = JV*. According
to the above results and after some matrix manipulations, We,
obtain

(2]

Bf =H VT, (32)
VE = (V7R (33) g

viy = (V) (34)
JpL, = (PLy)" (35) 4

Substituting [(3R) intaX;; and X;_y, and considering the
form of H, we have

X = (VIAZAT(PH), VF) (36)
Xy = (VIAZAR(PY) VH) @7 U
kA2 [8]
Substituting [(BLI(33)(34)(35) intd_(B6), we have
[9]
Xy = (VTAEAH(PL)%V"“)“ (38) g

Comparing [(3B) with[(37), we hav&, ;) = X}.. So we 1]
obtain [12]

R (Xi(—k)) =R (Xz ) . (39) [13]

SinceP+B =0, Y31, (P), By =0, 330, X =0,y

M

Zkzl R(X5) = 0.

Note thatdy, ---, dy; is a arithmetic progression, and
according to[(39) and_(40), we acquire

n (3

Namely,z,i”:1 di X; is a pure imaginary number.

Since Dy; = «;dByi, wherea; = —j2mcos (9;)/A\ is a  [20]
pure imaginary number. And combinirig {41), we have proved
that BI' ASAHPLD, = a; Y1, di. X1, is real number. 21]

(40) 15

[16]
[17]

[18]
1 deik) = 0. (41)

[19]

APPENDIXE [22]

PROOF OFLEMMA [3]

[23]

The eigenvalues dP+ are composed of/ — K ones and

K zeros. Becaus®'le; = e;, e; is normalized eigenvector
of P+ corresponding to eigenvalue 1. Therefd®; can be
eigendecomposed inB+ = > % q,q!, whereq; = e;.
Thus,PL —e;el'= "% q;q!. So the eigenvalues &~ —
e;ell are composed off — K — 1 ones andK + 1 zeros.

Therefore P+ — e;el! = 0.

[26]

2
[27]
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