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PAPER Special Section on Information Theory and Its Applications

New Non-Asymptotic Bounds on Numbers of Codewords for the
Fixed-Length Lossy Compression∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY In this paper, we deal with the fixed-length lossy compres-
sion, where a fixed-length sequence emitted from the information source is
encoded into a codeword, and the source sequence is reproduced from the
codeword with a certain distortion. We give lower and upper bounds on
the minimum number of codewords such that the probability of exceed-
ing a given distortion level is less than a given probability. These bounds
are characterized by using the α-mutual information of order infinity. Fur-
ther, for i.i.d. binary sources, we provide numerical examples of tight upper
bounds which are computable in polynomial time in the blocklength.
key words: finite blocklength, non-asymptotic bound, rate-distortion func-
tion, source coding

1. Introduction

The fixed-length lossy compression is a typical source cod-
ing, where a fixed-length sequence emitted from the infor-
mation source is encoded into a codeword, and the source
sequence is reproduced from the codeword with a certain
distortion. One of the most important parameter of the
fixed-length lossy compression is the rate of code such that
the distortion between the source and the reproduction se-
quences is less than a given distortion level. Especially, the
limit of the minimum rate as the blocklength tends to in-
finity is frequently called the rate-distortion (RD) function.
There are a lot of studies dealing with the RD function (see
e.g. [3]–[5]).

On the other hand, recently, non-asymptotic behav-
ior of the minimum rate (i.e., the minimum rate for finite
blocklengths) becomes an active target of the study [6]–[9].
Especially, Kostina and Verdú [7] reported a lot of non-
asymptotic results of the minimum rate. They considered
the minimum number of codewords such that the probabil-
ity of exceeding a given distortion level is less than a given
probability. This distortion criterion is known as the excess
distortion criterion [7] or ϵ-fidelity criterion [3]. Since the
minimum rate is easily calculated by the minimum number
of codewords, they focus on it instead of the rate. Then, they
gave an achievability bound (i.e., upper bound) and a con-
verse bound (i.e., lower bound) to the minimum number of
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codewords.
In this paper, we also deal with the fixed-length lossy

compression for the ϵ-fidelity criterion, and give a new
achievability bound and a converse bound to the minimum
number of codewords. Our bounds are characterized by us-
ing a quantity equivalent to the α-mutual information of or-
der inifinity [10], where the α-mutual information is a gener-
alized version of the mutual information and has many inter-
esting properties (see [10], [11]). Our achievability bound is
derived by using a slightly generalized covering lemma. We
show that our converse bound is tighter than that of Kostina
and Verdú [7]. By using these bounds, we attempt to charac-
terize the limit of the minimum rate, and give several cases
where the limit can be characterized by the α-mutual in-
formation of order infinity. We also show numerical exam-
ples of two achievability bounds which are induced by our
achievability bound and computable in polynomial time in
the blocklength. Then, we demonstrate that there exist cases
where these two bounds are tighter than that of Kostina and
Verdú [7].

The rest of this paper is organized as follows. In
Sect. 2, we provide a precise definition of the fixed-length
lossy compression and the minimum number of codewords.
In Sect. 3, we give our achievability and converse bounds.
In Sect. 4, we prove our main results. In Sect. 5, we give
several cases where the limit of the minimum rate can be
characterized by the α-mutual information. In Sect. 6, we
provide numerical examples of two polynomial-time com-
putable achievability bounds. In Sect. 7, we conclude the
paper.

2. Preliminaries

In this section, we provide some notation, definitions, and a
known result for the fixed-length lossy compression.

Unless otherwise stated, we will use the following no-
tations. Let X and Y be finite or countably infinite sets
which represent the source alphabet and the reproduction al-
phabet, respectively. We will denote the set of all probability
distributions over X by P(X), and the set of all conditional
distributions from Y to X byW(X|Y). The probability dis-
tribution of a random variable (RV) X will be denoted by the
subscripted notation PX , and the conditional distribution for
X given an RV Y will be denoted by PX|Y .

Let X be an RV on X which represents a single source
symbol. When we consider X and Y as n-fold Cartesian
products of finite or countably infinite setsA and B, respec-
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tively, we can identify the source symbol X with the n-length
source sequence. Thus, for the sake of the brevity, we only
deal with the single source symbol unless otherwise stated.

For the lossy compression, the encoder is a map f :
X → Y. The decoder is implicitly employed in this encod-
ing procedure. In fact, the encoder outputs a codeword, and
the decoder outputs a reproduction symbol using a one-to-
one mapping from the set of codewords to Y.

In order to measure the distortion between the source
symbol and the reproduction symbol, we introduce the dis-
tortion measure defined by a map d : X ×Y → [0,∞).

For this setting, we want to know the minimum number
of the cardinality of the image of encoder f (i.e., the number
of codewords) for the ϵ-fidelity criterion. To this end, we
introduce the following definitions.

Definition 1. For a given source X, a distortion level D ≥
0, and a specified provability 0 ≤ ϵ ≤ 1, we say f is an
(M,D, ϵ) code if and only if ∥ f ∥ = M and Pr{d(X, f (X)) >
D} ≤ ϵ, where ∥ f ∥ denotes the cardinality of the image of f .

Definition 2. For D ≥ 0 and ϵ ≥ 0,

M∗(D, ϵ) ≜ min{M : ∃(M,D, ϵ) code}.

When X = An and Y = Bn, 1
n log2 ∥ f ∥ is called as

the rate of the code, where An and Bn are n-fold Carte-
sian products of alphabets A and B, respectively. Then,
the minimum of rates of (M,D, ϵ) codes (say, R(n,D, ϵ)) is
sometimes called the finite blocklength RD function (with
ϵ-fidelity criterion), i.e.,

R(n,D, ϵ) =
1
n

log2 M∗(D, ϵ).

For the minimum number M∗(D, ϵ), Kostina and Verdú
[7] gave the following converse bound.

Theorem 1. For any given source X, distortion measure d,
constant D ≥ 0, and 0 ≤ ϵ ≤ 1, we have

sup
PX̃∈P(X)

inf
y∈Y

β1−ϵ(PX , PX̃)
E[1{d(X̃, y) ≤ D}]

≤ M∗(D, ϵ),

where X̃ is an RV subject to the distribution PX̃ on X, E[·]
denotes the expectation operator, 1{·} denotes the indicator
function, and

β1−ϵ(PX , PX̃) ≜ min
ϕ:X→[0,1],∑

x∈X PX (x)ϕ(x)≥1−ϵ

∑
x∈X

PX̃(x)ϕ(x). (1)

3. Main Results

In this section, we give a new achievability bound and a con-
verse bound, and show the relation between our converse
bound and Theorem 1.

The next theorem shows our achievability bound.

Theorem 2. For any given source X, distortion measure d,
constant D ≥ 0, and 0 ≤ δ < ϵ ≤ 1, we have

M∗(D, ϵ) ≤ min
PY |X∈W(Y|X):

Pr{d(X,Y)>D}≤δ

⌈
µ(PXY ) ln

1 − δ
ϵ − δ

⌉
, (2)

where PXY (x, y) = PX(x)PY |X(y|x), ⌈·⌉ denotes the ceiling
function, and

µ(PXY ) ≜
∑
y∈Y

sup
x∈X:PX (x)>0

PY |X(y|x).

The next theorem shows our converse bound.

Theorem 3. For any given source X, distortion measure d,
constant D ≥ 0, and 0 ≤ ϵ ≤ 1, we have

min
PY |X∈W(Y|X):

Pr{d(X,Y)>D}≤ϵ

⌈µ(PXY )⌉ ≤ M∗(D, ϵ). (3)

We postpone the proof of these theorems to Sect. 4.

Remark 1. Since the ceiling function returns an integer
value, the right-hand side (RHS) of (2) and the left-hand
side of (3) can be minimized. Hence, we write min instead
of inf.

Remark 2. µ(PXY ) is equivalent to the α-mutual informa-
tion [10] of order infinity I∞(X; Y). In fact, we have

I∞(X; Y) = log µ(PXY ).

A conditional distribution PY |X ∈ W(Y|X) is equiva-
lent to a stochastic encoder. In fact, if we consider Pr{y is
a reproduction symbol of x} as PY |X(y|x), a stochastic en-
coder gives a conditional distribution and vice versa, where
the probability is induced by the stochastic encoder. Espe-
cially, a deterministic encoder f gives a distribution PY |X as
a special case. In fact, if we consider 1{y is a reproduc-
tion symbol of x} as PY |X(y|x), it gives a conditional dis-
tribution. Then, supx∈X:PX (x)>0 PY |X(y|x) is equivalent to 1{y
is a reproduction symbol of some source symbols}. Hence,
for the conditional distribution representing a deterministic
encoder, µ(PXY ) is just counting the number of codewords.
Now, for stochastic encoder, since PY |X(y|x) can also be con-
sidered as the expected number of choosing y as a repro-
duction symbol of x, supx∈X:PX (x)>0 PY |X(y|x) can be consid-
ered as the worst expected number of choosing y as a re-
production symbol. Hence, µ(PXY ) can be considered as the
worst expected number of codewords of the stochastic en-
coder. According to this perspective, our achievability and
converse bounds may be considered as a characterization of
the minimum number of codewords of deterministic encoder
from a viewpoint of the minimum expected number of code-
words of stochastic encoder.

The next theorem shows that our converse bound is
tighter than the bound of Theorem 1.

Theorem 4. For any given source X such that PX(x) > 0
for all x ∈ X, distortion measure d, constant D ≥ 0, and
0 ≤ ϵ ≤ 1, we have

sup
PX̃∈P(X)

inf
y∈Y

β1−ϵ(PX , PX̃)
E[1{d(X̃, y) ≤ D}]

≤ min
PY |X∈W(Y|X):

Pr{d(X,Y)>D}≤ϵ

⌈µ(PXY )⌉ .
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Proof. For PY |X ∈ W(Y|X) satisfying

Pr{d(X,Y) > D} ≤ ϵ, (4)

let ϕ : X → [0, 1] be a map defined by

ϕ(x) ≜
∑
y∈Y

PY |X(y|x)1{d(x, y) ≤ D}, ∀x ∈ X. (5)

Then, due to (4), we have∑
x∈X

PX(x)ϕ(x) ≥ 1 − ϵ. (6)

On the other hand, for any PX̃ ∈ P(X), we have

⌈µ(PXY )⌉
(

sup
y∈Y

E[1{d(X̃, y) ≤ D}]
)

≥
∑
y∈Y

(
sup

x:PX (x)>0
PY |X(y|x)

)(∑
x∈X

PX̃(x)1{d(x, y) ≤ D}
)

≥
∑
y∈Y

∑
x∈X

PX̃(x)PY |X(y|x)1{d(x, y) ≤ D}

(a)
≥ β1−ϵ(PX , PX̃),

where (a) comes from (1), (5), and (6). Thus, we have

β1−ϵ(PX , PX̃)
supy∈Y E[1{d(X̃, y) ≤ D}]

≤ ⌈µ(PXY )⌉ .

Since this inequality holds for any PX̃ ∈ P(X), and any
PY |X ∈ W(Y|X) satisfying (4), we have the theorem. □

In order to employ our converse bound, we need to
compute µ(PXY ). If we compute this quantity straightfor-
wardly, the time complexity will be O(|X||Y|) in general.
Further, we also need to solve the optimization problem
over the set W(Y|X) of conditional probability distribu-
tions. Hence, computing our bound will be rather difficult
especially when cardinalities of alphabets X and Y are very
large. For example, if X = An and Y = Bn, the time com-
plexity grows exponentially in the blocklength n even if the
source is stationary and memoryless. On the other hand, ac-
cording to Theorem 1, for an arbitrarily fixed PX̃ ∈ P(X),
we have the next converse bound.

inf
y∈Y

β1−ϵ(PX , PX̃)
E[1{d(X̃, y) ≤ D}]

≤ M∗(D, ϵ).

According to [7], if we choose PX̃ properly, this converse
bound is tight and can be computed in polynomial time in
the blocklength. Hence, although the bound of Theorem 1
is looser than our converse bound, it will be somewhat more
tractable than ours.

Now, according to Theorems 2 and 3, we have the next
slightly loose bounds:

inf
PY |X∈W(Y|X):

Pr{d(X,Y)>D}≤ϵ

µ(PXY ) ≤ M∗(D, ϵ)

≤ inf
PY |X∈W(Y|X):

Pr{d(X,Y)>D}≤δ

µ(PXY ) ln
1 − δ
ϵ − δ + 1.

Since µ(PXY ) is a convex function on PY |X ∈ W(Y|X), and
{PY |X ∈ W(Y|X) : Pr{d(X,Y) > D} ≤ ϵ} is a closed con-
vex set, computing the above bounds is equivalent to solve
the convex optimization problem. Thus, these slightly loose
bounds may be easily computed when cardinalities of alpha-
bets X and Y are small.

4. Proof of Theorems

In this section, we prove Theorem 2 and Theorem 3.

4.1 Achievability Bound

First, we prove Theorem 2. To this end, we introduce the
generalized covering lemma.

Lemma 1 (Generalized covering lemma). Let X, Y , and Ỹ
be RVs respectively on X, Y, and Y. For an integer M > 0,
let Ỹ1, Ỹ2, · · · , ỸM be RVs which are independent of each
other and of X, and each distributed according to PỸ . Then,
for any subset F ⊆ X×Y, any function ψ : X×Y → [0, 1],
and any constant 0 ≤ α ≤ 1 such that

PX(x)PỸ (y) ≥ αψ(x, y)PXY (x, y),∀(x, y) ∈ X × Y, (7)

we have

Pr
{ M∩

i=1

{(X, Ỹi) < F }
}

≤ 1 − (
E[ψ(X,Y)] − Pr{(X,Y) < F })(1 − e−αM). (8)

Proof. We have

Pr
{ M∩

i=1

{(X, Ỹi) < F }
}

=
∑
x∈X

PX(x)
(
1 −

∑
y:(x,y)∈F

PỸ (y)
)M

(a)
≤

∑
x∈X

PX(x)
(
1 − α

∑
y:(x,y)∈F

ψ(x, y)PY |X(y|x)
)M

(b)
≤ 1 −

∑
(x,y)∈F

ψ(x, y)PXY (x, y)(1 − e−αM)

≤ 1 − (
E[ψ(X,Y)] − Pr{(X,Y) < F })(1 − e−αM),

where (a) comes from (7), and (b) follows since (1− xy)M ≤
1 − x(1 − e−yM) for 0 ≤ x, y ≤ 1 and M > 0 (cf. e.g. [12,
Lemma 10.5.3]). □

By changing function ψ and constant α, we can obtain
many types of covering lemma (e.g., [13, Lemma 5] , [14,
Lemma 3.3] , [9, Lemma 4] ) as corollaries of Lemma 1,
which is the reason why we call it “generalized”. Due to
space limitation, we only show a corollary used to prove
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Theorem 2.

Corollary 1. For any integer M > 0, any subset F ⊆ X×Y,
and any PỸ ∈ P(Y), we have

Pr
{ M∩

i=1

{(X, Ỹi) < F }
}

≤ 1 − Pr{(X,Y) ∈ F }(1 − e− exp(−D∞(PXY ,PỸ ))M)
,

where D∞(PXY , PỸ ) is the Rényi divergence of order infinity
[15] defined as

D∞(PXY , PỸ ) ≜ ln sup
(x,y):PX (x)>0

PY |X(y|x)
PỸ (y)

.

Proof. Let ψ(x, y) = 1 for all (x, y) ∈ X × Y, and α =
exp(−D∞(PXY , PỸ )). Since ψ(x, y) and α satisfy (7), by sub-
stituting these into (8), we have the corollary. □

We use the above corollary to prove the next theorem
which implies our achievability bound.

Theorem 5. For any D > 0, 0 ≤ δ < ϵ ≤ 1, PỸ ∈ P(Y), and
PY |X ∈ W(Y|X) such that

Pr{d(X,Y) > D} ≤ δ, (9)

there exists an (M,D, ϵ) code which satisfies

M ≤
⌈

exp(D∞(PXY , PỸ )) ln
1 − δ
ϵ − δ

⌉
.

Proof. We generate ỹ1, ỹ2, · · · , ỹM ∈ Y independently sub-
ject to the probability distribution PỸ , and define the set
C ≜ {ỹ1, ỹ2, · · · , ỹM}. For a given set C and a given x ∈ X,
we define f (x) = ỹi0 , where the index i0 is determined by
i0 = arg min1≤i≤M d(x, ỹi). Then, we define the probability
Pe(C) ≜ Pr{d(X, f (X)) > D}. By taking the average over
the random selection of C, the average probability Pe(C) is
bounded as follows:

E[Pe(C)]

= Pr
{ M∩

i=1

{d(X, Ỹi) > D}
}

(a)
≤ 1 − Pr{d(X, Y) ≤ D}(1 − e− exp(−D∞(PXY ,PỸ ))M)
(b)
≤ 1 − (1 − δ)(1 − e− exp(−D∞(PXY ,PỸ ))M)

= δ + (1 − δ)e− exp(−D∞(PXY ,PỸ ))M ,

where (a) comes from Corollary 1, and (b) comes from (9).
Thus, for the integer M > 0 such that

M =
⌈

exp(D∞(PXY , PỸ )) ln
1 − δ
ϵ − δ

⌉
, (10)

we have

E[Pe(C)] ≤ ϵ.

Hence, for any PỸ ∈ P(Y), any PY |X satisfying (9), and any
integer M > 0 satisfying (10), there exists an encoder f such
that ∥ f ∥ = M, and Pr{d(X, f (X)) > D} ≤ ϵ. □

The next lemma shows that D∞(PXY , PỸ ) can be opti-
mized with respect to PỸ ∈ P(Y).

Lemma 2.

inf
PỸ∈P(Y)

D∞(PXY , PỸ ) = ln µ(PXY ). (11)

Proof. We have

inf
PỸ∈P(Y)

D∞(PXY , PỸ ) = inf
PỸ∈P(Y)

ln sup
y∈Y

supx:PX (x)>0 PY |X(y|x)

PỸ (y)

≤ ln sup
y∈Y

supx:PX (x)>0 PY |X(y|x)
supx:PX (x)>0 PY |X (y|x)

µ(PXY )

= ln µ(PXY ), (12)

where the inequality comes from the fact that
supx:PX (x)>0 PY |X (y|x)

µ(PXY )
∈ P(Y), i.e.,

supx:PX (x)>0 PY |X(y|x)

µ(PXY )
≥ 0, ∀y ∈ Y,

and ∑
y∈Y

supx:PX (x)>0 PY |X(y|x)

µ(PXY )
= 1.

On the other hand, we have for any PỸ ∈ P(Y),

ln sup
y∈Y

supx:PX (x)>0 PY |X(y|x)

PỸ (y)
≥ ln µ(PXY ), (13)

where the inequality comes from the fact [12, Lemma
16.7.1] that for non-negative real valued functions f (y) and
g(y),

sup
y∈Y

f (y)
g(y)

≥
∑
y∈Y f (y)∑
y∈Y g(y)

,

and settings f (y) = supx:PX (x)>0 PY |X(y|x) and g(y) = PỸ (y).
Thus, by taking infimum on both sides (13) over PỸ ∈ P(Y),
we have the opposite inequality

inf
PỸ∈P(Y)

D∞(PXY , PỸ ) ≥ ln µ(PXY ). (14)

By combining (12) and (14), we have (11). □

Remark 3. The bound in [7, Theorem 21] was not opti-
mized with respect to the corresponding probability of the
above PỸ . This might be a reason why, in later numeri-
cal examples, our achievability bound is tighter than their
bound.

Now, we prove Theorem 2.

Proof of Theorem 2. By using the optimal PỸ ∈ P(Y) that
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achieves the equality (11) to Theorem 5, we can show for
any PY |X ∈ W(Y|X) satisfying Pr{d(X,Y) > D} ≤ δ, the
existence of an (M,D, ϵ) code such that

M ≤
⌈
µ(PXY ) ln

1 − δ
ϵ − δ

⌉
.

Hence, by choosing PY |X ∈ W(Y|X) minimizing the RHS
of this inequality, we have the theorem. □

4.2 Converse Bound

Finally, we prove Theorem 3.

Proof of Theorem 3. For an (M,D, ϵ) code, we define the
conditional distribution PŶ |X ∈ W(Y|X) as

PŶ |X(y|x) =

1 if y = f (x),
0 otherwise.

Then, by letting PXŶ (x, y) = PX(x)PŶ |X(y|x), we have⌈
µ(PXŶ )

⌉
=

∑
y∈Y

sup
x:PX (x)>0

1{y = f (x)}

≤
∑
y∈Y

sup
x∈X

1{y = f (x)}

= M.

On the other hand, by the definition, we have

Pr{d(X, Ŷ) > D} = Pr{d(X, f (X)) > D} ≤ ϵ.

Thus, any (M,D, ϵ) code must satisfy

min
PŶ |X∈W(Y|X):

Pr{d(X,Ŷ)>D}≤ϵ

⌈
µ(PXŶ )

⌉ ≤ M.

This completes the proof. □

5. The Limit of the Minimum Rate

In this section, we will deal with n-length source sequences,
and characterize the limit (superior) of the minimum rate
defined by

R∗(D, ϵ) ≜ lim sup
n→∞

R(n,D, ϵ).

In the following, by abuse of notation, we treat the
n-fold Cartesian product Xn (resp. Yn) as the alphabet X
(resp. Y). We will denote an n-length sequence of symbols
(a1, a2, · · · , an) by an. By considering the n-length source
sequence Xn (resp. Yn) as the source symbol X (resp. Y),
and the distortion measure dn for each blocklength n as the
distortion measure d, our main results can be directly ap-
plied to n-length source sequences. Then, we have the next
upper and lower bounds to R∗(D, ϵ).

Theorem 6. For any given source {Xn}, sequence of distor-
tion measures {dn}, constant D ≥ 0, and 0 ≤ δ < ϵ ≤ 1, we
have

ρ(D, ϵ) ≤ R∗(D, ϵ) ≤ ρ(D, δ),

where

ρ(D, ϵ) ≜ lim sup
n→∞

1
n

log2 min
PYn |Xn∈W(Yn |Xn):
Pr{dn(Xn,Yn)>D}≤ϵ

µ(PXnYn )

= lim sup
n→∞

min
PYn |Xn∈W(Yn |Xn):
Pr{dn(Xn,Yn)>D}≤ϵ

1
n

I∞(Xn; Yn).

Since this theorem can be easily proved by Theorems 2
and 3, we omit the proof.

By using this theorem, we can characterize R∗(D, ϵ) for
some special cases as shown in the following corollaries.

Corollary 2. When ρ(D, ϵ) is upper semicontinuous (cf. e.g.
[16] or [17]) at ϵ ∈ (0, 1), i.e., lim supδ→ϵ ρ(D, δ) ≤ ρ(D, ϵ),
we have

R∗(D, ϵ) = ρ(D, ϵ) = lim
δ↑ϵ

ρ(D, δ).

Corollary 3. When R∗(D, ϵ) is upper semicontinuous at ϵ ∈
(0, 1), we have,

R∗(D, ϵ) = lim
δ↑ϵ

ρ(D, δ). (15)

When R∗(D, ϵ) is lower semicontinuous (cf. e.g. [16] or
[17]) at ϵ ∈ (0, 1), i.e., lim infδ→ϵ R∗(D, δ) ≥ R∗(D, ϵ), we
have,

R∗(D, ϵ) = ρ(D, ϵ). (16)

Corollary 4. When the source satisfies the strong converse
property [3], i.e.,

R∗(D, ϵ) = lim
δ↓0

R∗(D, δ), ∀ϵ ∈ (0, 1),

we have for any ϵ ∈ (0, 1),

R∗(D, ϵ) = ρ(D, ϵ) = lim
δ↑ϵ

ρ(D, δ).

Proof. According to the assumption of this corollary,
R∗(D, ϵ) is lower and upper semicontinuous at ϵ ∈ (0, 1).
Hence, the corollary follows from Corollary 3. □

Remark 4. This corollary holds for i.i.d. sources, because
they satisfy the strong converse property (cf. [3] or [7])

Since Corollaries 2 and 3 can be proved easily from a
simple property of semicontinuity, we give proofs of these
corollaries in Appendix A.

In the above theorem, we attempt to characterize the
limit of the minimum rate of codes such that the error prob-
ability must be less than ϵ for every blocklength n. Since
this condition is somewhat rigid, we fail to characterize
the limit in general. So, instead of characterizing R∗(D, ϵ)



MATSUTA and UYEMATSU: NEW NON-ASYMPTOTIC BOUNDS ON NUMBERS OF CODEWORDS FOR THE FIXED-LENGTH LOSSY COMPRESSION
2121

directly, we consider “pessimistic” and “optimistic” lim-
its, i.e., lim supδ→ϵ R∗(D, δ) and lim infδ→ϵ R∗(D, δ), respec-
tively.

Theorem 7. For any given source {Xn}, sequence of distor-
tion measures {dn}, constant D ≥ 0, and 0 ≤ ϵ ≤ 1, we
have

lim sup
δ→ϵ

R∗(D, δ) = lim
δ↑ϵ

ρ(D, δ), (17)

lim inf
δ→ϵ

R∗(D, δ) = lim
δ↓ϵ

ρ(D, δ). (18)

Since this theorem can be also proved easily from a
simple property of semicontinuity, we give the proof in Ap-
pendix A.

Remark 5. The RD function R∗(D) can be defined by (cf.
[3])

R∗(D) ≜ lim
δ↓0

R∗(D, δ).

According to Lemma 8 (in Appendix A) and Theorem 7, the
RD function can be characterized as

R∗(D) = lim
δ↓0

ρ(D, δ).

6. Polynomial-Time Computable Achievability Bounds
for i.i.d. Binary Sources

In order to demonstrate the tightness of our results, we show
numerical examples of our achievability bound for i.i.d.
sources.

In this section, we once again deal with n-length source
sequences. Especially, we consider the binary case Xn =

Yn = {0, 1}n, and the i.i.d. binary source sequence Xn on Xn

such that PXn (xn) =
∏n

i=1 PX(xi), where PX(0) = 1 − p and
PX(1) = p for a certain constant 0 ≤ p ≤ 1. Throughout this
section, we assume that 0 ≤ D < p ≤ 1/2.

We use the Hamming distance par blocklength as a dis-
tortion measure, i.e., d(xn, yn) = 1

n dn
H(xn, yn),where dn

H is the
Hamming distance defined as dn

H(xn, yn) ≜
∑n

i=1 1{xi , yi}.
For an ∈ {0, 1}n, let w(an) be the Hamming weight of an,
i.e., w(an) = dn

H(an, 0n), where 0n denotes the n-length all-
zero sequence. Then, for an ∈ {0, 1}n and r ≥ 0, we define
the ball Br(an) of radius r centered at an as Br(an) ≜ {bn ∈
{0, 1}n : dn

H(an, bn) ≤ r}, and define the sphere Sr of the ball
Br(0n) as Sr ≜ {an ∈ {0, 1}n : w(an) = r}.

Since our achievability bound involves optimization
problem over conditional probability distributions, it is hard
to compute directly in general. Hence, instead of finding the
optimal distribution, we fix a conditional distribution, and
use a somewhat loose bound. Specifically, instead of using
the bound of Theorem 2 (i.e., the following (19)), we use the
following loose bound (20) for a fixed conditional distribu-
tion P̃Yn |Xn ∈ {PYn |Xn ∈ W(Yn|Xn) : Pr{d(Xn,Yn) > D} ≤ δ}:

M∗(D, ϵ) ≤ min
PYn |Xn∈W(Yn |Xn):
Pr{d(Xn,Yn)>D}≤δ

⌈
µ(PXnYn ) ln

1 − δ
ϵ − δ

⌉
(19)

≤
⌈
µ(PXn · P̃Yn |Xn ) ln

1 − δ
ϵ − δ

⌉
, (20)

where PXn · P̃Yn |Xn ∈ P(Xn ×Yn) is a joint probability distri-
bution such that PXn · P̃Yn |Xn (xn, yn) = PXn (xn)P̃Yn |Xn (yn|xn).
Although this bound (20) does not involve the optimization
problem, it may be looser than that of Theorem 2 and it still
needs to compute µ(PXn · P̃Yn |Xn ). Hence, we need to choose
a “good” distribution P̃Yn |Xn such that the above bound (20)
becomes tight and µ(PXn · P̃Yn |Xn ) can be easily computed.

In the following two subsections, we will give two such
good distributions. But before we give them, we consider
two simple distributions

P̃(1)
Yn |Xn (yn|xn) = 1{yn = xn},

P̃(2)
Yn |Xn (yn|xn) =

1{d(xn, yn) ≤ D}∑
yn∈Yn 1{d(xn, yn) ≤ D}

for a better understanding of the bound (20). Since these
distributions satisfy Pr{d(Xn,Yn) > D} = 0, these can be
used to the bound (20). Then, one can easily check that

µ(PXn · P̃(1)
Yn |Xn ) = 2n, (21)

µ(PXn · P̃(2)
Yn |Xn ) =

2n⟨
n
⌊nD⌋

⟩ , (22)

where we use the notation⟨n
k

⟩
≜

k∑
i=0

(
n
i

)

and the fact that
∑
yn∈Yn 1{d(xn, yn) ≤ D} =

⟨
n
⌊nD⌋

⟩
, where ⌊·⌋

denotes the floor function, and
(

n
i

)
denotes the binomial co-

efficient. These can be easily computed, but the bound using
(21) is trivial, and the bound using (22) does not depend on
the probability distribution of the i.i.d source. Hence, these
distributions give loose bounds in general.

6.1 Uniform Weighting Distribution

For the probability distribution PXn of an i.i.d. binary source,
and the equiprobable distribution UXn on Xn = {0, 1}n, i.e.,
UXn (xn) = 1

2n for all xn ∈ Xn, Kostina and Verdú [7] showed
that β1−δ(PXn ,UXn ) can be optimized by the function ϕ∗ :
Xn → [0, 1] such that

ϕ∗(xn) =


1 if w(xn) ≤ r∗δ ,
αδ if w(xn) = r∗δ + 1,
0 if w(xn) ≥ r∗δ + 2,

where

r∗δ = max
{
r :

r∑
k=0

(
n
k

)
pk(1 − p)n−k ≤ 1 − δ

}
,

and αδ ∈ [0, 1) is a solution to
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r∗δ∑
k=0

(
n
k

)
pk(1 − p)n−k + αδ

(
n

r∗δ + 1

)
pr∗δ+1(1 − p)n−r∗δ−1 = 1 − δ.

On the other hand, let us recall that, in the proof of
Theorem 4, we set

ϕ∗(xn) =
∑
yn∈Yn

PYn |Xn (yn|xn)1{d(xn, yn) ≤ D}.

This implies that PYn |Xn satisfying this equality may be a
good distribution of our achievability bound. For this rea-
son, we consider the conditional probability distribution
P̃[u]

Yn |Xn ∈ W(Yn|Xn) defined as

P̃[u]
Yn |Xn (yn|xn)

=



1{d(xn, yn) ≤ D}⟨
n
⌊nD⌋

⟩ if w(xn) ≤ r∗δ ,

αδ
1{d(xn, yn) ≤ D}⟨

n
⌊nD⌋

⟩
+(1 − αδ)

1{d(xn
max, y

n) ≤ D}⟨
n
⌊nD⌋

⟩ if w(xn) = r∗δ + 1,

1{d(xn
max, y

n) ≤ D}⟨
n
⌊nD⌋

⟩ if w(xn) ≥ r∗δ + 2,

(23)

where

xn
max ≜ argmax

x̃n∈Xn:w(x̃n)≤⌊nD⌋
d(xn, x̃n). (24)

If there are more than one sequences maximizing d(xn, x̃n),
choose any one of them as xn

max. Note that xn
max is a function

of xn.
According to Lemma 3 given below, this distribution

is well-defined when r∗δ ≥ ⌊nD⌋. When r∗δ + 1 ≤ ⌊nD⌋ for
0 ≤ δ < ϵ ≤ 1, we employ the encoder that encodes all
sequences xn ∈ Xn into 0n. Then, we have ∥ f ∥ = 1 and

Pr{d(Xn, f (Xn)) ≤ D} ≥
r∗δ+1∑
k=0

(
n
k

)
pk(1 − p)n−k ≥ 1 − ϵ.

This implies that M∗(D, ϵ) = 1. Hence, our main interest is
the case where r∗δ + 1 > ⌊nD⌋, i.e., r∗δ ≥ ⌊nD⌋.

From a viewpoint of the usual random coding method
(which we also use to give the achievability bound), a con-
ditional distribution PYn |Xn plays a role of weighting to can-
didates of reproduction sequences for a given source se-
quence. Intuitively, the above conditional distribution P̃[u]

Yn |Xn

uniformly maps each high probability source sequence to re-
production sequences within the distortion D, and each low
probability source sequence to reproduction sequences near
the origin 0n. In other words, this distribution uniformly
weights all reproduction sequences within the distortion D
for possible source sequences.

By employing this distribution to the bound (20), we
have the next upper bound for i.i.d. sources.

Theorem 8. Let PXn (xn) =
∏n

i=1 PX(xi) be the probability
distribution for the i.i.d. binary source, where PX(1) = p.
Then, for 0 ≤ D < p ≤ 1

2 , and 0 ≤ δ < ϵ ≤ 1, if r∗δ ≥ ⌊nD⌋,
we have

M∗(D, ϵ) ≤


⟨

n
r∗δ+⌊nD⌋

⟩
+ αδ

(
n

r∗δ+1+⌊nD⌋

)
⟨

n
⌊nD⌋

⟩ ln
1 − δ
ϵ − δ

 .
Remark 6. Since the time complexity of binomial coeffi-
cient

(
n
k

)
is O(nk), the time complexity of

⟨
n
k

⟩
is O(nk2).

Hence, this bound can be computed in polynomial time at
most O(n3) because time complexity of each component of
the bound is at most O(n3).

Remark 7. By using the same argument of the proof of
[7, Theorem 23] , the RHS of the above inequality will be
asymptotically characterized by exp(nh(p + D) − nh(D) +
o(n)). Thus, this bound is not asymptotically optimal, but as
will be later shown, there exist some cases where it is tight
for small blocklengths.

To prove Theorem 8, we use the following two lemmas.
We give proofs of these lemmas in Appendix B.

Lemma 3. Suppose that r∗δ ≥ ⌊nD⌋. Then, for any given
(xn, yn) ∈ Xn × Yn with w(xn) ≥ r∗δ + 1, if d(xn

max, y
n) ≤ D,

then we have d(xn, yn) > D.

Lemma 4. Suppose that r∗δ ≥ ⌊nD⌋. Then, we have

sup
xn∈Xn

P̃[u]
Yn |Xn (yn|xn)

=



1⟨
n
⌊nD⌋

⟩ if w(yn) ≤ r∗δ + ⌊nD⌋, (25)

αδ⟨
n
⌊nD⌋

⟩ if w(yn) = r∗δ + 1 + ⌊nD⌋, (26)

0 if w(yn) ≥ r∗δ + 2 + ⌊nD⌋. (27)

Now, we prove Theorem 8.

Proof of Theorem 8. For the distribution P̃[u]
Yn |Xn defined by

(23), we have

Pr{d(Xn,Yn) ≤ D}
=

∑
xn∈Xn

PXn (xn)
∑

yn∈Yn:d(xn,yn)≤D

P̃[u]
Yn |Xn (yn|xn)

(a)
=

∑
xn∈Xn:w(xn)≤r∗δ

PXn (xn)
∑

yn∈Yn:d(xn,yn)≤D

1⟨
n
⌊nD⌋

⟩
+

∑
xn∈Xn:w(xn)=r∗δ+1

PXn (xn)
∑

yn∈Yn:d(xn,yn)≤D

αδ⟨
n
⌊nD⌋

⟩
=

∑
xn∈Xn:w(xn)≤r∗δ

PXn (xn) + αδ
∑

xn∈Xn:w(xn)=r∗δ+1

PXn (xn)

= 1 − δ,

where (a) comes from Lemma 3.
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On the other hand, we have∑
yn∈Yn

sup
xn∈Xn

P̃[u]
Yn |Xn (yn|xn)

=
∑

yn∈Yn:w(yn)≤r∗δ+⌊nD⌋

1⟨
n
⌊nD⌋

⟩ + ∑
yn∈Yn:w(yn)=r∗δ+1+⌊nD⌋

αδ⟨
n
⌊nD⌋

⟩
=

⟨
n

r∗δ+⌊nD⌋

⟩
+ αδ

(
n

r∗δ+1+⌊nD⌋

)
⟨

n
⌊nD⌋

⟩ ,

where the first equality comes from Lemma 4. Thus, by
using the bound (20), we have the theorem. □

6.2 Spherical Weighting Distribution

Let rδ be an integer such that

rδ∑
k=0

(
n
k

)
pk(1 − p)n−k ≥ 1 − δ, (28)

and wδ be an integer such that

wδ = max
{⌊nD⌋,min{rδ, ⌊(1/D − 1)⌊nD⌋⌋ − 1}}.

Then, we employ the next distribution as a good distribution.

P̃[s]
Yn |Xn (yn|xn)

=


1{yn ∈ Ak(w(xn),D)

⌊nD⌋ (xn)}
|Ak(w(xn),D)
⌊nD⌋ (xn)|

if ⌊nD⌋ < w(xn) ≤ wδ,

1{yn = xn} if wδ < w(xn) ≤ rδ,
1{yn = 0n} otherwise,

(29)

whereAk
w(xn) ≜ Bw(xn) ∩ Sk,

k(r,D) ≜

 f (r,D) if f (r,D) = r − ⌊nD⌋ (mod 2),
f (r,D) + 1 otherwise,

and f (r,D) ≜
⌊

r−⌊nD⌋
1−2D

⌋
.

Intuitively, this conditional distribution uniformly
maps each high probability source sequence to reproduc-
tion sequences within the distortion D on the partial sphere
Ak

w(xn), and each low probability source sequence to the ori-
gin 0n. Thus, for possible source sequences, this distribution
uniformly weights all reproduction sequences in the partial
sphere Ak

w(xn). Dumer et al. [18] used this kind of distri-
bution to derive an upper bound to the minimum number of
balls of radius r covering a ball of radius s(> r), and they
showed the bound is asymptotically tight.

For Ak
w(xn) defined above, we have the following two

lemmas.

Lemma 5. For integers r, k, w ∈ {0, 1, · · · , n}, and any xn ∈
Sr, we have

|Ak
w(xn)| = Ak

w(r, n), (30)

where

Ak
w(r, n) ≜


0 if max{0, r − k} >

⌊
w+r−k

2

⌋
,

min{r,n−k,⌊ w+r−k
2 ⌋}∑

i=max{0,r−k}

(
r
i

)(
n − r

i + k − r

)
otherwise.

Lemma 6. Ak(w(xn),D)
⌊nD⌋ (xn) is not empty for any xn ∈ {0, 1}n

satisfying ⌊nD⌋ < w(xn) ≤ ⌊(1/D − 1)⌊nD⌋⌋ − 1.

We give proofs of these lemmas in Appendix C. We
note that, according to Lemma 6, distribution P̃[s]

Yn |Xn is well-

defined because |Ak(w(xn),D)
⌊nD⌋ (xn)| ≥ 1 if xn satisfies ⌊nD⌋ <

w(xn) ≤ wδ.
By employing the above distribution P̃[s]

Yn |Xn to the
bound (20), we have the next upper bound for i.i.d. sources.

Theorem 9. Let PXn (xn) =
∏n

i=1 PX(xi) be the probability
distribution for the i.i.d. binary source, where PX(1) = p.
Then, for any 0 ≤ D < p ≤ 1

2 , 0 ≤ δ < ϵ ≤ 1, and any n > 0,
we have

M∗(D, ϵ) ≤

1 + rδ∑

k=wδ+1

(
n
k

)
+

wδ∑
r=⌊nD⌋+1

(
n

k(r,D)

)
Ak(r,D)
⌊nD⌋ (r, n)

 ln
1 − δ
ϵ − δ

 .
Remark 8. Since the time complexity of binomial coeffi-
cient

(
n
k

)
is O(nk), the time complexity of Ak(r,D)

⌊nD⌋ (r, n) is at

most O(n3). Hence,
∑wδ

r=⌊nD⌋+1
( n

k(r,D))
Ak(r,D)
⌊nD⌋ (r,n)

can be computed in

polynomial time at most O(n4), and also this achievability
bound can be computed in the same order.

Remark 9. Since the RHS of the above inequality is almost
same as [18, RHS of (14)] , it will be asymptotically char-
acterized by exp(nh(p) − nh(D) + o(n)). Thus, this bound
may be asymptotically optimal. In fact, for later numerical
examples, this bound is very tight.

To prove Theorem 9, we use the following lemma. The
proof of the lemma is shown in Appendix D.

Lemma 7. We have

sup
xn∈Xn

P̃[s]
Yn |Xn (yn|xn)

=



1 if yn ∈ {0n} ∪ Srδ
wδ+1,

1

Ak(r,D)
⌊nD⌋ (r, n)

if yn ∈ Sk(r,D) ∩
[
{0n} ∪ Srδ

wδ+1

]c

for some r ∈ {⌊nD⌋ + 1, · · · , wδ} ,

0 otherwise ,

where [·]c denotes the complement of the set, and Srδ
wδ+1 =∪

wδ+1≤k≤rδ Sk.

Now we prove Theorem 9.

Proof of Theorem 9. For the distribution P̃[s]
Yn |Xn defined by

(29), we have
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Pr{d(Xn,Yn) ≤ D}
≥

∑
xn:w(xn)≤⌊nD⌋

PXn (xn) +
∑

xn:⌊nD⌋<w(xn)≤wδ

PXn (xn)

×
∑

yn∈Ak(w(xn ),D)
⌊nD⌋ (xn):d(xn,yn)≤D

1

|Ak(w(xn),D)
⌊nD⌋ (xn)|

+
∑

xn:wδ<w(xn)≤rδ

PXn (xn)

=
∑

xn∈Xn:w(xn)≤rδ

PXn (xn)

≥ 1 − δ,

where the last inequality comes from the property (28) of rδ.
On the other hand, according to Lemma 7, we have∑
yn∈Yn

sup
xn∈Xn

P̃[s]
Yn |Xn (yn|xn)

≤ 1 +
rδ∑

k=wδ+1

|Sk | +
wδ∑

r=⌊nD⌋+1

∑
yn∈Sk(r,D)

1

Ak(r,D)
⌊nD⌋ (r, n)

= 1 +
rδ∑

k=wδ+1

(
n
k

)
+

wδ∑
r=⌊nD⌋+1

(
n

k(r,D)

)
Ak(r,D)
⌊nD⌋ (r, n)

,

where the last equality comes from the fact that |Sk | =
(

n
k

)
.

Thus, by using the bound (20), we have the theorem. □

6.3 Numerical Examples

In this section, we show numerical examples for our
two polynomial-time computable achievability bounds, and
compare our bounds to Kostina and Verdú’s achievability
and converse bounds [7, Theorems 20 and 21].

Figure 1 shows bounds to the rate R(n,D, ϵ) for a less
biased source, i.e., p is close to a half. As shown in this
figure, the achievability bound of Theorem 8 is tighter than
other achievability bounds for small blocklengths. Unfor-
tunately, this bound is looser than other bounds for large
blocklengths. On the other hand, the achievability bound
of Theorem 9 is tighter than other achievability bounds for
large blocklengths, where we use r∗δ + 1 as rδ.

Figure 2 shows bounds to the rate R(n,D, ϵ) for a bi-
ased source, i.e., p is close to zero. Unlike the previous ex-
ample, the achievability bound of Theorem 8 is looser than
other achievability bounds for almost all blocklengths. On
the other hand, the achievability bound of Theorem 9 is very
tight for almost all blocklengths.

It is confirmed by several experiments that the achiev-
ability bound of Theorem 9 has more advantage over
Kostina and Verdú’s bound as ϵ becomes smaller. On the
other hand, it is also confirmed that for large ϵ (roughly over
0.01), our bound almost coincides to their bound.

In these examples, we set δ = 0.9ϵ. According to
our several experiments, this value tightens our achievabil-
ity bounds. In fact, when δ is increased or decreased from

Fig. 1 Bounds to R(n,D, ϵ) in the case where p = 0.4, D = 0.11, ϵ =
10−8, and δ = 9 · 10−9.

Fig. 2 Bounds to R(n,D, ϵ) in the case where p = 0.1, D = 0.05, ϵ =
10−8, and δ = 9 · 10−9.

0.9ϵ, these bounds become loose in most cases.

7. Conclusion

This paper has dealt with the fixed-length lossy com-
pression, and gave achievability bound (Theorem 2) and
converse bound (Theorem 3) for the minimum number
M∗(D, ϵ) of codewords by using µ(PXY ) and equivalently
the α-mutual information of order infinity. By using these
bounds, in Corollaries 2–4, we have shown that there ex-
ist several cases where R∗(D, ϵ) is characterized by the α-
mutual information of order infinity. On the other hand,
in Theorem 7, we have shown that lim supδ→ϵ R∗(D, δ) and
lim infδ→ϵ R∗(D, δ) are completely characterized by the α-
mutual information of order infinity. We have also gave
numerical examples of two polynomial-time computable
achievability bounds for i.i.d. binary sources in Sect. 6. Each
of these bounds is induced by our achievability bound (i.e.,
Theorem 2) by choosing a good conditional distribution.
Then, we have shown that there exist cases where these
achievability bounds are tighter than that of Kostina and
Verdú [7].
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Appendix A:

In this appendix, we give proofs of Corollary 2, Corollary 3,
and Theorem 7.

Before we give the proofs, we show the next funda-
mental lemma.

Lemma 8. For a real-valued non-increasing function f , we
have

lim sup
x→x0

f (x) = lim
x↑x0

f (x), (A· 1)

lim inf
x→x0

f (x) = lim
x↓x0

f (x), (A· 2)

where

lim sup
x→x0

f (x) = lim
ϵ↓0

sup{ f (x) : 0 < |x − x0| < ϵ},

lim inf
x→x0

f (x) = lim
ϵ↓0

inf{ f (x) : 0 < |x − x0| < ϵ}.

Proof. From the definition of the limit superior, we have

lim sup
x→x0

f (x) = lim
ϵ↓0

sup{ f (x) : x ∈ (x0 − ϵ, x0 + ϵ)\{x0}}

= lim
ϵ↓0

sup{ f (x) : x ∈ (x0 − ϵ, x0 − ϵ/2)}.

where the second equality comes from the fact that f is a
non-increasing function, and

sup{ f (x) : x ∈ (x0 − ϵ, x0 + ϵ)\{x0}}
= sup{ f (x) : x ∈ (x0 − ϵ, x0 − ϵ/2)}.

On the other hand, we have

f (x0 − ϵ/2) ≤ sup{ f (x) : x ∈ (x0 − ϵ, x0 − ϵ/2)}
≤ f (x0 − ϵ).

By taking the right hand limit on both sides, we have

lim
ϵ↓0

sup{ f (x) : x ∈ (x0 − ϵ, x0 − ϵ/2)} = lim
ϵ↓0

f (x0 − ϵ).

This completes the proof of (A· 1). The proof of (A· 2) can
be done similarly. □

Now, we give proofs of Corollaries 2 and 3.

Proof of Corollary 2. Since ρ(D, ϵ) is upper semicontinu-
ous at ϵ, we have

lim sup
δ→ϵ

ρ(D, δ) ≤ ρ(D, ϵ) ≤ R∗(D, ϵ) ≤ lim
δ↑ϵ

ρ(D, δ),

(A· 3)

where the left-most inequality comes from the definition of
the upper semicontinuity, and right two inequalities come
from Theorem 6. On the other hand, since ρ(D, ϵ) is a non-
increasing function for ϵ ∈ (0, 1), we have

lim
δ↑ϵ

ρ(D, δ) = lim sup
δ→ϵ

ρ(D, δ), (A· 4)
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where the equality comes from Lemma 8. By combining
(A· 3) and (A· 4), we have the corollary. □

Proof of Corollary 3. First, we show (15). According to
Theorem 6, we have

R∗(D, ϵ) ≤ lim
δ↑ϵ

ρ(D, δ) ≤ lim
δ↑ϵ

R∗(D, δ). (A· 5)

On the other hand, since R∗(D, ϵ) is upper semicontinuous
at ϵ and a non-increasing function, we have

lim
δ↑ϵ

R∗(D, δ) = lim sup
δ→ϵ

R∗(D, δ) ≤ R∗(D, ϵ), (A· 6)

where this equality comes from Lemma 8, and the inequality
comes from the definition of the upper semicontinuity. Now,
by combining (A· 5) and (A· 6), we have (15).

Next, we show (16). According to Theorem 6, we have

lim
δ↓ϵ

R∗(D, δ) ≤ ρ(D, ϵ) ≤ R∗(D, ϵ). (A· 7)

On the other hand, since R∗(D, ϵ) is lower semicontinuous
at ϵ and a non-increasing function, we have

R∗(D, ϵ) ≤ lim inf
δ→ϵ

R∗(D, δ) = lim
δ↓ϵ

R∗(D, δ), (A· 8)

where the equality comes from Lemma 8, and the inequality
comes from the definition of the lower semicontinuity. Now,
by combining (A· 7) and (A· 8), we have (16). □

The proof of Theorem 7 is as follows.

Proof of Theorem 7. Since R∗(D, δ) is a non-increasing
function for δ, we have

lim sup
δ→ϵ

R∗(D, δ) = lim
δ↑ϵ

R∗(D, δ)

= lim
γ↓0

R∗(D, ϵ − γ).

On the other hand, according to Theorem 6, we have for any
γ > 0,

ρ(D, ϵ − γ) ≤ R∗(D, ϵ − γ) ≤ ρ(D, ϵ − 2γ).

Now, by taking the right hand limit on both sides, we have

lim
γ↓0

R∗(D, ϵ − γ) = lim
γ↓0

ρ(D, ϵ − γ).

This implies (17).
The equality (18) can be proved in a similar way. □

Appendix B:

In this appendix, we give proofs of Lemmas 3 and 4.
In the proofs of the lemmas, for a sequence xn ∈ {0, 1}n

and a permutation ρ : {1, 2, · · · , n} → {1, 2, · · · , n}, we de-
note the permuted sequence of xn as ρ ◦ xn, i.e., ρ ◦ xn =

(xρ(1), xρ(2), · · · , xρ(n)).
Now, we give proofs of the lemmas.

Proof of Lemma 3. Let w(xn) = β (≥ r∗δ + 1). For xn, let ρ
be the permutation such that ρ ◦ xn = (1, · · · , 1︸   ︷︷   ︸

β

, 0, · · · , 0). In

other words, ρ permutes xn so that the first β elements are
all 1. On the other hand, if β ≤ 2⌊nD⌋ + 1, we consider the
sequence x̃n ∈ Xn such that

x̃n = (0, · · · , 0︸   ︷︷   ︸
β

, 1, · · · , 1︸   ︷︷   ︸
2⌊nD⌋−β+1

, 0, · · · , 0).

Since r∗δ ≥ ⌊nD⌋ and β ≥ r∗δ + 1, we have w(x̃n) ≤
⌊nD⌋. Equivalently, for a permuted sequence ρ−1 ◦ x̃n =

(x̃ρ−1(1), x̃ρ−1(2), · · · , x̃ρ−1(n)), we have w(ρ−1 ◦ x̃n) ≤ ⌊nD⌋,
where ρ−1 is the inverse function of ρ. Hence, if β ≤
2⌊nD⌋ + 1, we have

d(xn, xn
max) ≥ d(xn, ρ−1 ◦ x̃n)

= d(ρ ◦ xn, ρ ◦ (ρ−1 ◦ x̃n))

= d(ρ ◦ xn, x̃n) =
2⌊nD⌋ + 1

n
, (A· 9)

and if β > 2⌊nD⌋ + 1, we have

d(xn, xn
max) ≥ d(xn, 0n) =

β

n
>

2⌊nD⌋ + 1
n

. (A· 10)

Thus, for any yn ∈ Yn such that d(xn
max, y

n) ≤ D, we have

d(xn, yn)
(a)
≥ d(xn, xn

max) − d(xn
max, y

n)
(b)
≥ ⌊nD⌋ + 1

n
> D,

where (a) comes from the triangle inequality of the distance,
and (b) comes from (A· 9) and (A· 10). This completes the
proof. □

Proof of Lemma 4. First, we show (25). Let w(yn) = β1 (≤
r∗δ + ⌊nD⌋), and ρ be the permutation such that first β1 ele-
ments of ρ ◦ yn are all 1. Then, for x̃n ∈ Xn such that first
β1 − ⌊nD⌋ elements are all 1 and the rest are all 0, we have
w(ρ−1 ◦ x̃n) ≤ r∗δ and d(ρ−1 ◦ x̃n, yn) = d(x̃n, ρ ◦ yn) ≤ D.
Thus, by the definition (23) of P̃[u]

Yn |Xn , we have (25).
Next, we show (26). Since w(yn) = r∗δ + 1 + ⌊nD⌋, for

any xn ∈ Xn such that w(xn) ≤ r∗δ , we have

d(xn, yn) ≥ d(yn, 0n) − d(xn, 0n)

≥ ⌊nD⌋ + 1
n

> D.

Further, for any xn ∈ Xn, we have

d(xn
max, y

n) ≥ d(yn, 0n) − d(xn
max, 0

n)
(a)
≥

r∗δ + 1
n

(b)
≥ ⌊nD⌋ + 1

n
> D,

where (a) comes from the definition (24) of xn
max, and (b)

comes from the assumption of this lemma. On the other
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hand, let w(yn) = β2 (= r∗δ +1+ ⌊nD⌋), and ρ be the permuta-
tion such that first β2 elements of ρ ◦ yn are all 1. Then,
for x̃n ∈ Xn such that first β2 − ⌊nD⌋ elements are all 1
and the rest are all 0, we have w(ρ−1 ◦ x̃n) = r∗δ + 1 and
d(ρ−1 ◦ x̃n, yn) = d(x̃n, ρ ◦ yn) ≤ D. Thus, by the definition
(23) of P̃[u]

Yn |Xn , we have (26).
Finally, we show (27). For any yn ∈ Yn such that

w(yn) ≥ r∗δ + 2 + ⌊nD⌋, we have for any xn ∈ Xn such that
w(xn) ≤ r∗δ + 1,

d(xn, yn) ≥ d(yn, 0n) − d(xn, 0n)

≥
r∗δ + 2 + ⌊nD⌋ − r∗δ − 1

n

=
⌊nD⌋ + 1

n
> D, (A· 11)

and for any xn ∈ Xn,

d(xn
max, y

n) ≥ d(yn, 0n) − d(xn
max, 0

n)
(a)
≥

r∗δ + 2
n

(b)
> D, (A· 12)

where (a) comes from the definition (24) of xn
max, and (b)

comes from the assumption of the lemma. According to
(23), inequalities (A· 11) and (A· 12) imply (27). □

Appendix C:

In this appendix, we give proofs of Lemmas 5 and 6.

Proof of Lemma 5. For any given xn ∈ Sr, any yn ∈ Ak
w(xn)

(= Bw(xn) ∩ Sk) can be obtained from xn if and only if we
replace i ones in xn with zeros and i + k − r zeros in xn with
ones, where 0 ≤ i ≤ r, 0 ≤ i+k−r ≤ n−r, and 2i+k−r ≤ w,
i.e., max{0, r − k} ≤ i ≤ min

{
r, n − k,

⌊
w+r−k

2

⌋}
. This means

that

Ak
w(xn) =

min{r,n−k,⌊ w+r−k
2 ⌋}∪

i=max{0,r−k}
Ãi, (A· 13)

where

Ãi = {yn ∈ {0, 1}n : yn is a sequence obtained by replacing
i ones in xn with zeros and i + k − r zeros in xn with
ones}.

According to (A· 13), Ak
w(xn) is empty if and only if

max{0, r − k} >
⌊
w+r−k

2

⌋
. Hence, by noting that Ãi ∩ Ã j = ∅

for any i , j and |Ãi| =
(

r
i

)(
n−r

i+k−r

)
, we have (30). □

Proof of Lemma 6. According to Lemma 5, Ak
w(xn) is not

empty if max{0, r − k} ≤
⌊
w+r−k

2

⌋
. Hence, in order to show

the emptiness of Ak(w(xn),D)
⌊nD⌋ (xn), we show that 0 ≤

⌊
w+r−k

2

⌋
and r − k ≤

⌊
w+r−k

2

⌋
for r = w(xn), w = ⌊nD⌋, and k = k(r,D)

such that w < r ≤ ⌊(1/D−1)w⌋−1. For this setting, we note
that k(r,D) ≤ w/D ≤ n.

First, we show that 0 ≤
⌊
w+r−k

2

⌋
. To this end, we only

have to show that w + r − k ≥ 0. We have

w + r − k
(a)
≥ w + r −

⌊ r − w
1 − 2D

⌋
− 1

≥ (2 − 2D)w − 2Dr
1 − 2D

− 1

(b)
>

(2 − 2D)w − 2D(1/D − 1)w
1 − 2D

− 1

= −1,

where (a) follows since k = k(r,D) ≤
⌊

r−w
1−2D

⌋
+ 1, and (b)

comes from the fact that r < (1/D − 1)w. Since w + r − k is
an integer, w + r − k > −1 implies that w + r − k ≥ 0.

Next, we show that r − k ≤
⌊
w+r−k

2

⌋
. We have⌊

w + r − k
2

⌋
− r + k >

w + r − k
2

− 1 − r + k

=
w − r + k

2
− 1.

Since
⌊
w+r−k

2

⌋
− r+ k is an integer, we only have to show that

w − r + k ≥ 0. Now, we have

w − r + k
(a)
≥ w − r +

⌊ r − w
1 − 2D

⌋
>

2D(r − w)
1 − 2D

− 1

(b)
> −1,

where (a) follows since k = k(r,D) ≥
⌊

r−w
1−2D

⌋
, and (b) comes

from the fact that r > w. Since w − r + k is an integer,
w − r + k > −1 implies that w − r + k ≥ 0.

Therefore, we have max{0, r − k} ≤
⌊
w+r−k

2

⌋
, and hence

Ak(w(xn),D)
⌊nD⌋ (xn) is not empty. □

Appendix D:

In this appendix, we prove Lemma 7.
Before we give the proof, we show the next lemma.

Lemma 9. For integers r > 0 and r′ > 0, we have k(r,D) ,
k(r′,D) if and only if r , r′.

Proof. We only show that r , r′ ⇒ k(r,D) , k(r′,D), be-
cause the opposite direction is trivial. Without loss of gen-
erality, we assume that r ≥ r′ + 1. Then, we have

f (r,D) − f (r′,D) >
(

r − ⌊nD⌋
1 − 2D

− 1
)
− r′ − ⌊nD⌋

1 − 2D
≥ r − r′ − 1.

Since both sides are integers, this inequality implies

f (r,D) ≥ f (r′,D) + r − r′. (A· 14)
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According to this inequality (A· 14), and the definition of
k(r,D), we have

k(r,D) ≥ k(r′,D).

Hence, in what follows, we show that k(r,D) > k(r′,D) in
order to prove that k(r,D) , k(r′,D).

First, we assume that

f (r,D) = r − ⌊nD⌋ (mod 2),
f (r′,D) = r′ − ⌊nD⌋ (mod 2),

or

f (r,D) , r − ⌊nD⌋ (mod 2),
f (r′,D) , r′ − ⌊nD⌋ (mod 2).

In these cases, according to (A· 14), we have

k(r,D) − k(r′,D) = f (r,D) − f (r′,D) ≥ 1. (A· 15)

Secondly, we assume that

f (r,D) = r − ⌊nD⌋ (mod 2),
f (r′,D) , r′ − ⌊nD⌋ (mod 2).

Then, we will have

f (r,D) ≥ f (r′,D) + 2.

In order to show this inequality, we only consider the case
where r = r′ + 1. This is because if r ≥ r′ + 2, from (A· 14),
we immediately have

f (r,D) ≥ f (r′,D) + r − r′ ≥ f (r′,D) + 2.

Since r = r′ + 1 and f (r,D) = r − ⌊nD⌋ (mod 2), both of
f (r,D) and r − ⌊nD⌋ are even or odd. If we assume that
r − ⌊nD⌋ is even (resp. odd), then r′ − ⌊nD⌋ is odd (resp.
even), and hence f (r′,D) is even (resp. odd). Thus, both
f (r,D) and f (r′,D) are even (resp. odd). On the other hand,
according to (A· 14), f (r,D) > f (r′,D). Thus, we have

f (r,D) ≥ f (r′,D) + 2.

Now, we have

k(r,D) − k(r′,D) = f (r,D) − f (r′,D) − 1 ≥ 1. (A· 16)

Finally, we assume that

f (r,D) , r − ⌊nD⌋ (mod 2),
f (r′,D) = r′ − ⌊nD⌋ (mod 2).

Then, we have

k(r,D) − k(r′,D) = f (r,D) + 1 − f (r′,D) ≥ 2. (A· 17)

Therefore, combining (A· 15)–(A· 17), we have k(r,D) >
k(r′,D). □

By using this lemma, we prove Lemma 7.

Proof of Lemma 7. First, we consider the case where yn ∈
{0n} ∪ Srδ

wδ+1. Then, by the definition (29), we have

sup
xn∈Xn

P̃[s]
Yn |Xn (yn|xn) = 1. (A· 18)

Secondly, we consider the case where yn ∈ Sk(r,D) ∩[
{0n} ∪ Srδ

wδ+1

]c
for some r ∈ {⌊nD⌋ + 1, · · · , wδ}. Then,

for any xn ∈ Ar
⌊nD⌋(y

n), we have yn ∈ Ak(r,D)
⌊nD⌋ (xn) =

Ak(w(xn),D)
⌊nD⌋ (xn). Thus, by the definition (29), for any xn ∈
Ar
⌊nD⌋(y

n), we have

P̃[s]
Yn |Xn (yn|xn) =

1

Ak(r,D)
⌊nD⌋ (r, n)

. (A· 19)

On the other hand, for any xn < Ar
⌊nD⌋(y

n), we will have

P̃[s]
Yn |Xn (yn|xn) = 0. (A· 20)

In order to show this equality (A· 20), we separately consider
two cases: One is xn < B⌊nD⌋(yn) and the other is xn < Sr.
If xn < B⌊nD⌋(yn), then yn < B⌊nD⌋(xn), and hence obviously
yn < Ak(w(xn),D)

⌊nD⌋ (xn). Thus, P̃[s]
Yn |Xn (yn|xn) = 0 holds in this

case. If xn < Sr, then xn ∈ Sr′ for some r′ , r. According to
Lemma 9, we have k(r,D) , k(r′,D). Then, by recalling the
fact that yn ∈ Sk(r,D), it holds that yn < Sk(r′,D) = Sk(w(xn),D),
and hence we have yn < Ak(w(xn),D)

⌊nD⌋ (xn). Since yn < {0n} ∪
Srδ
wδ+1, P̃[s]

Yn |Xn (yn|xn) = 0 also holds in this case. Hence, from

(A· 19) and (A· 20), for any yn ∈ Sk(r,D)∩
[
{0n} ∪ Srδ

wδ+1

]c
, we

have

sup
xn∈Xn

P̃[s]
Yn |Xn (yn|xn) =

1

Ak(r,D)
⌊nD⌋ (r, n)

. (A· 21)

Finally, we consider the case where yn < {0n} ∪Srδ
wδ+1 ∪∪

r∈{⌊nD⌋+1,··· ,wδ} Sk(r,D). Then, by the definition, we have

sup
xn∈Xn

P̃[s]
Yn |Xn (yn|xn) = 0. (A· 22)

By combining (A· 18), (A· 21) and (A· 22), we have the
lemma. □
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