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Abstract

In this paper, we will present an analysis on the fault e@8R decoders based on the density evolution. In the faultégBder,
messages exchanged in a BP process are stochasticallpteordue to unreliable logic gates and flip-flops; i.e., welass circuit
components with transient faults. We derived a set of theitieavolution equations for the fault erasure BP procesdes density
evolution analysis reveals the asymptotic behaviors ofeftemation error probability of the fault erasure BP decsd&n contrast
to the fault free cases, it is observed that the error prdiiabiof the fault erasure BP decoder converge to positalees, and that
there exists a discontinuity in an error curve correspapdinthe fault BP threshold. It is also shown that an messagedamgy
technique provides higher fault BP thresholds than thosthefriginal decoders at the cost of increased circuit size.

I. INTRODUCTION

Recent advance of CMOS technology leads to denser VLS| imgattation and this trend is continuirlg [1] In near future,
faulty behaviors of logic gates and flip-flops due to cosmigsrar thermal noises would become more problematic [2] We
should take care of fault tolerant VLSI design to attain higieliable circuits based on unreliable componenid[3][4]

In this paper, we call a decoder for an error/erasure congatode (ECC) composed by unreliable componentaudt
decoder Fault tolerance of the decoder is of critical importanceduse ECC is often exploited for ensuring high reliabilify o
data memories in a circuit. Therefore, in a digital systerseldaon unreliable components, ECC behaves as a key component
to compose reliable circuits. Another reason for studiedawit decoders comes from thgacket-based communication in a
VLSI chip.A new paradigm of data exchange in CPNetwork on Chip(NoC), is actively studied for replacing conventional
on-chip buses for data/address exchange in a ¢hip [5]. An Biafem is based on a packet-based network connecting many
CPU cores and routers for packet switching. If the networkoisgested, packet erasures due to collisions at a routeoo@y
and compensation for erased packets is neededErasuretmmreould be a one of solutions for such packet erasurescina
[el.

Several works discussing fault decoders lfomw-Density Parity-CheckLDPC) codes have been published. In 2011, Varshey
presented an analysis for the fault Gallager-A decoder [&]adsumed a probabilistic model such that independentigrans
faults may occur in a circuit of the Gallager-A decoder. Alfaauses deterioration of the quality of the messages exgthin
a decoder and it results in degradation of the decoding peence. Based on these assumptions, analysis based onnsigy de
evolution was presented inl[7]. Sadegh et. al showed a similalysis on the fault Gallaber-B decoder [8] They alsowaetithe
density evolution equations for the fault Gallaber-B demrodnd calculated the thresholds fpary symmetric channel. Other
related works on the fault decoders can be found i [9][ZT]2].
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A goal of this work is to analyze the asymptotic behavior of thult erasure belief propagation (BP) decodeased on the
density evolution. It is expected that the results obtaiftedfault erasure BP decoder give us a useful insight for appate
design of BP decoders made from unreliable components.

Il. FAULT ERASURE BP DECODER

A fault erasure BP decoder is a BP decoder for memorylessierahannels based on unreliable components such as logic
gates and flip-flops. In this section, we are going to defineu#t &xasure BP decoder.

A. Fault model for erasure BP decoder

In this paper, we assume independent transient faults of lggtes and flip-flops and do not assume occurrences of the
permanent faults. The occurrence of transient faults aréeted by a probabilistic model. Namely, transient faulis assumed
to be independent events and the probability of occurreatése fault does not depend on the places. This model is based
the Neumann model [13] and it was used in the related liteeat[if] [8].

In order to clarify the definition of the fault model used irethaper, we focus on an erasure correction BP process. [Egure
presents a message flow from a variable node a check node in a Tanner graph. Three nodes, calfadssage encodgiault
node andmessage decodeare inserted in between the variable and check nodes. Thsage encoder encodes a BP message
in the message alphabfi, 1, e} into a binary (i.e. {0, 1}) sequence that are stored in flip-flops. The message decsiitaates
a BP message ifi0, 1, e} from a given binary sequence that is the read-out symbofs ftee flip-flops. The precise definition
of the pair of an encoder and a decoder will be given later. ¥é&ime that a binary symbol stored in a flip-flop can be flipped
with probability «(0 < o < 1) due to independent transient faults. The fault node in [Higottesponds to the memoryless
binary symmetric channel with the bit-flip probability.

According to Fid.lL (a), we will explain the details of the mage encoding and the probabilistic model for transienitfau
The message of a BP process is expressed with the messagbetfih 1, e} wheree represents an erasure. The variable node
v encodes a message into a binary sequence of length 2 thaitébleuor storing in a 2 flip-flops. Thenessage encoding
function¢ : {0,1,e} — {0,1}? is defined by

00, x=0,
o) 28 11, z=1, (1)
01, z=e

The output of the message encoder (two binary symbols) aredsin a pair of flip-flops.

The transient faults are modeled by probabilistic bit flfasdinary information in a flip-flop may alter its value with grability
« and this bit flip events are independent. Thus, the conditiprobability P(m'|m)(m’ € {0,1}2,m € {0,1}?) is given by

P(m'|m) _ (1 _ Q)Q—dH(m',m)adH(m/,m)

wheredy represents the Hamming distance. The symboand m’ denote bit sequences of length 2 stored in the flip-flops.
The message decoder tries to estimate a message sent fromridiele nodev from the read-out symbols from the flip-flops
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Fig. 1. A message flow in erasure BP process: (a) variable éokchmessage flow, (b) check to variable message flow.

y € {0,1}% The decoding function : {0,1}? — {0, 1, ¢} is given by

0, y=00,
L, y=11, (@)
e, ye€{01,10}.

Finally, the check node obtains the estimate of a message= ¥ (y). In the following analysis, it is convenient to derive
the conditional probability ofi: given z, which is denoted by)(i|xz). From the definitions of the message encoding and the
probabilistic model for the transient faults, the conditbprobability can be immediately derived as

(1—-a)? a? 2
a? (1-a)? 20

a(l—a) ol —a) o®+

(3)

Figure[d(b) indicates a message flow in the reverse directioncludes a node: representing a received symbol. In this
case, the same encoding function, the decoding functiah tfa probabilistic fault model are assumed. The dashed m&xg.
[ (a)(b) corresponding to this conditional probabilijy:|z) is also called arintermediate nodén a block diagram.

B. Modification of variable node operation

In a conventional erasure BP process, there is no posgifiita variable node to receive contradicting input messdgem
adjacent check nodes simultaneously. However, in a faaiuge BP process defined above, a variable node may havegegssa
containing both 0 and 1 simultaneously. We thus need to mddi variable node process for accepting such contradictin
messages. In this paper, we adopt the following simple nuadifin on the variable node process. If a variable nodevesel
set of contracting messages that include both 0 and 1, tleemattiable node sends the erasure symbol to the neighbdreukc
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nodes. The same rule is applied to the process for deterigninet the estimate symbol.

Fig. 2. Relation of message probability distributions

IIl. DENSITY EVOLUTION EQUATIONS

The density evolution (DE) is an important method to unved asymptotic behavior of a BP decoding algorithm. In a DE
process, we can track the time evolution of the probabilistrdbution of messages (or the probability density fuotin a
case where the messages are continuous). The asymptdiighility distributions obtained by iterative computatitail us the
asymptotic quantitative features of the decoding algoritin this section, we will derive the DE equations for thelfawasure
BP decoder.

A. Derivation of DE equations

In the following analysis, we will make several assumptitimet have been commonly used in related works. The channel is
assumed to be a memoryless binary erasure channel (BEC}heitbrasure probability(0 < e < 1). In this paper, we consider
a regular LDPC code ensemble with the variable node degread the check node degrége The transmitted word is assumed
to be the zero codeword of infinite length.

Suppose that represents an input to an intermediate node (corresponditize conditional probability)(-|-)) and thatz
represents the corresponding output from the intermediadke. If 2 is distributed according to the probability distributiof)
over the message alphalbé} 1, e}, then the probability distribution of the outpiitobeyst’(-) given by

t@= > Q). (4)
z€{0,1,e}

In the following, the details of the probability distribatis are introduced according to [Eig.2. The probabilityritigtion
corresponding to the message emitted from a check mddedenote byg;. The indexi represents the discrete time index in
an iterative process. A message from a check node enterdeaamadiate node, which represents the effect of the prabtidbi
faults. The distribution corresponds to the output of thterimediate node is represented djythat is given by

@) = > QElr)g(x). (5)



In the following, we will use a convention such that the syinfioo the output distribution of the intermediate node is egsed
with the symbol of the input distribution with the prime syailsuch ast and¢'.

A variable nodev computes a message from the set of messages it receives. &3sage distribution corresponding to the
message from a variable node to an intermediate node follogvslistributionp; 1. The corresponding output distribution from

the intermediate node is given by
Pin@) = Y Q@z)pis (). (6)
z€{0,1,e}

We also assume that probabilistic faults may occur in a ngesfiaw from a received symbol node to a variable node.
A received symbol node send a messagd(inl,e} to an intermediate node according to its received value. robability

distributionr(-) of the message is given by

1—¢ =0,
r@) £ 0, =1, (7)
€, r=e

The message distribution of the corresponding message tirermtermediate node follows the distribution

r@) =Y Q@l)r(x). (8)
z€{0,1,e}

We first derive the DE equations on the check node output.eTher two cases depending on the output of the check node.
Firstly, consider the case where the output of the check mBeThe check node calculates a message to an adjacent variable
nodew. If and only if the set ofd. — 1 incoming messages received byexcept for the one fromv contain even number of
1's and contains no erasure symbols, then the messagecftmnomes 0. Therefore, the distribution of the check nodputut

qi(0) is given by

de—1 — . .
a(0) = (dc- 1>p§(1)Jp§(0)d“‘l‘J

J

_ @O+p@)*t (pé(O)—pé(l))dcfl_

2 2

Jreven

(9)

The binomial theorem is used in the derivation above. In dlairmanner, we can derivg (1). Note that, in this case, the set
of thed. — 1 messages consisting of odd number of 1's and no erasure $ymelads to the output message 1 from the check
node. We thus have

de—1

do —1 . ‘
(1) = ¢ L(1)7pl(0)de =13
! j:%d< J >p P
_ WO+ @O -p) (10)

2 2

We will then consider the DE equations on the variable nodpuulet us assume that an output of a variable node is 0, and
that the variable node calculates a message to an adjacent check notet M be the set of thel, — 1 incoming messages
to v from adjacent check nodes except for the one frorithe variable node message becomes 0 if and only if the e¥gnt (
y=0andl ¢ M holds, or the event (By = ¢, 1 ¢ M, and0 € M holds wherey received symbols corresponding to the



variable nodev.

The probability corresponding to the event (A) beconiesb|A] = 7/(0)(1 — ¢/(1))4*~! because all the incoming messages
are independent. The probability of the event (B) is givenfbyb[B] = r/(e) ((1 — ¢}(1))%~* — ¢}(e)?™ ') . Since these two
events are independent, the probability; (0) is the sum of these two probabilities:

pi+1(0) = Prob[A] + Prob[B]
= r(0)(1 —gi(1)"
+ (o) (=g W)™ —di(e)™ ). (11)

In a similar manner, we can derive the probability correstiog to the variable node message tolbe

pi+1(1) = 7”(1)(1 _ qé(O))d”_l
+ () (L= gi ()™ —gie) ). (12)

It should be remarked that, for any discrete time indetke equalitie®; (0) + p; (1) +pi(e) = 1 andg;(0) + ¢ (1) + gi(e) = 1
hold.

From the arguments above, we have all the DE equations ezhjfr the DE analysis of the fault erasure BP decoding.
Namely, Based on EqdJ(B)[@@MION1I)(12) with the alittonditiongo(0) = 0,40(1) = 0, an iterative calculation on the
message probability functions leads to the asymptotic agesslistributions.

B. Asymptotic error probability

According to the conventional erasure BP rule, if incomingssages to a variable node contain no 1's and contain a 0, then
the tentative estimate of the variable node becomes 0. Ldenste the probability for such an event by0). The probability
$;(0) is given by

5:(0) = ' (0)(1 — (1)) " +#'(e) (1 = g(1))" — gi(e)™). (13)

A DE process can evaluate the asymptotic error probability

v(e,a) £ lim (1 — 5;(0)). (14)

17— 00

In the following parts of this paper, we will focus on the beiloa of the asymptotic error probability(e, ).

IV. NUMERICAL RESULTS

In the previous section, we derived the DE equations for thdt ferasure BP decoder. In this section, numerical results
indicating the asymptotic behavior of the decoder will prasd.

A. Effect of transient faults

Figure[3 presents the asymptotic error probabilitiés «) for (d,,d.) = (3, 6)-regular LDPC code ensemble. The four curves
depicted in Fid.B correspond to the fault probabilities- 1072,1073,10%,10~° from left to right. When the fault probability
« is equal to 0, the system model exactly coincides with themom erasure BP decoder model without transient faults. In
such a case, the asymptotic error probability convergesifoc@s greater than the BP threshald p = 0.42944 (this value is
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Fig. 3. Relationship between erasure probabititgnd asymptotic error probability (e, ) ((3,6)-regular LDPC code ensemble)

also included in Figl13). In the case of positiwe the situations are totally different. When> 0, we can observe that(e, o)
converges to positive values due to the faults occurredenBR decoder. From this figure, it is also seen that smallgives
smallerv(e, ). Furthermore, each curve has a sudden (vertical) jump attaicerasure probability. For example, the curve of
a = 1073 showsy(e, 107%) > 10! in the regimer > 0.36207. On the other hand, in the reginae< 0.36207, v(e, 10~3) takes
the values smaller than0—3. The behaviors of the decoder are sharply separated at @sarerprobability = 0.36207 that is
considered to be a threshold value for the fault erasure BBd#e.

B. BP dynamics of fault erasure BP decoder

Figure[4 indicates the dynamics of the BP processes via thkitewns of the pair of the message probabilitie$0) and
pi(1). The ensemble i$3, 6)-regular LDPC code ensemble and the fault probability isi@esl to ben = 1072, Each arrow in
the figure shows a change of the message probabilities fpoff), p;(1)) to (p;+1(0), p;+1(1)) and each trajectory corresponds
to an erasure probability in the range= 0.015(10 < j < 50). Since the zero codeword is assumed to be transmitted, the
probability p; (0) represents the probability for the correct decoding. Inisniediately recognized that there are two groups of
the trajectories: one group corresponds to the rangie < ¢ < 0.5 and the other group corresponds to the rafige< ¢ < 0.36.
The trajectories in the first group show the upward moveméris means that the error probability tends to converge to a
higher value. On the other hand, the trajectories in the rebgroup indicate thap;(0) approaches to 1 as the number of
iterations increases. This numerical results stronglygsagthe existence ofl@ifurcation of this DE evolution processes that can
be considered as a non-linear dynamical system. At the ergsobability that corresponds to this bifurcation, we céserve
sudden drop of the asymptotic error probability in Eig.3.

C. Degree and asymptotic error probability

Figure [® presents the asymptotic error probabiliti€s, o) for regular-LDPC code ensembles with degrdds,d.) =
(2,4),(3,6),(4,8). All the ensembles correspond to the design code ra?e The fault probability is set tav = 10~*. From
Fig[E, we can observe that tié,,d.) = (3,6) ensemble provides the highest fault BP threshold. It is Wedwn that(3,6)
ensemble gives the highest threshold in the fault free c&eslar tendency can be seen in the cases where transigltd fa
exist.
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Fig. 5.  Relationship between erasure probabiitand asymptotic error probability (e, ) ((d, dc)-regular LDPC code ensembledesign code rate 0.5fault
probability o = 10~%)

V. MESSAGE ENCODING

In the previous section, we observed numerical results efDE analysis on the fault erasure BP decoder. According to
the numerical results, it was shown that we must admit noo-eeror probability even in the asymptotic regime if thelfau
probability is positive. In this section, we discuss and pane two methods for improving the decoding performancéeffault
erasure BP decoding at the cost of increased hardware cxityple

The simplest way to improve the decoding performance is fdoéxseveral identical erasure BP decoders in parallel. By
using the majority votes from the outputs obtained from ¢hesmponent decoders, we can obtain more reliable estirétes
transmitted symbols. In this paper, the scheme is cadllegbrity voting schemeAnother way to enhance the reliability is to
use a longer code to protect BP messages. In Section 2, veelucied the message functignthat encodes a BP message into
2-binary symbols. By replacing the encoding function to acogling function for a longer code, we can expect that theumity
against possible faults becomes stronger. We call thisnselneessage encodin@®f course, both schemes (i.e., majority voting
and message encoding) require increase of the circuitlseecan be considered as the cost should be paid for the i@mewv
of the immunity.



A. Majority voting scheme

In this subsection, we introduce a simple majority votingesoe that emploied’-fault erasure BP decoders for improving the
fault immunity. The majority voting scheme determines itgput by majority voting based ofv-outputs from the component
BP decoders. Although this scheme requitégold circuit size compared with the single fault erasureddoder, it is expected
that the majority voting process improves the asymptotiorgorobability.

In the following, we will discuss the case whele = 2. The argument below can be easily extended to general casaew
N > 2. Let 2™, 2 € {0,1, e} be the decoder outputs from the two component decaBérsand D(?). The majority voting
process is defined the function

@D, 2@ ={ e (30, 2?) = (0,1),(1,0), (e, e)
1, (@M, 2@ =(1,1),(,e), (e

—_
~—

where the functionr represents the output from the majority voting decoder. &feotk the asymptotic error probability for the
majority voting scheme by, (¢, @).
In the following, a lower bound oR,,,; (¢, o) will be discussed. Throughout the following argument, wsuase that

5(0,0) > (s(0)) (15)

holds where the quantity(0) in the righthand side is the asymptotic value sgfz); i.e., s(0) = lim;,~ s;(0), which can
be evaluated by the density evolution. The quantit9,0) is the asymptotic joint probability corresponds to the évirat
two decoder outputs take the val(& 0). This is a natural assumption because the outputs from #nedmponent decoders
DM D® are expected to be highly correlated. Under the assumpfi@B), we can easily derive a lower boundgf..; (e, o)

Ymaj (€, @) > (1 — 3(0))2. (16)

B. Details of message encoding

In this subsection, we will introduce a simple message eingostheme based on a binary code of lengtffhe parameten
is referred to asnessage code lengtin the following, we redefine the encoding and decoding fions. The encoding function
¢:{0,1,e} = {0,1}" is an encoding function now defined by

00.--0, 2 =0,
o) =9 11---1, =1, a7
n/2 n/2

There are several possibilities for choosing decodingtfans corresponding to the encoding function defined abowe. simple
choice is to define a decoding functignas

0, wu(y)=0
Py) =9 1, wu(y)=n (18)
, otherwise
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Fig. 6. Relationship between erasure probabiitgnd asymptotic error probability (e, a)((3, 6)-regular LDPC code ensemble, fault probability= 104
message length in message encoding: 4the number of component decoders in majority logic decader 2)

where wy represents the Hamming weight function. In this case, theditonal probability Q(z|x) corresponding to the

intermediate node is given by

(1—a)™ a™ 1—-(1—a)”—a"
a™ l-a) 1—-(1-a)"—a"
az(l—a)? a?(l—a)? 1-2a%(1—a)?

Plugging this condition probability into the DE equatiom&g can evaluate the asymptotic error probabilities.

C. Asymptotic error probabilities for message encoding

Figure[® presents the asymptotic error probabilities ofrtiggority voting decoder (two decoders in paralldl,= 2) and a
fault erasure BP decoder with message encoding-= 4). The (3, 6)-regular LDPC code ensemble is assumed and the fault
probability is set toor = 10~%. Both schemes can be considered to have comparable cizedt $n Fig.[6, the curve of the
majority voting decoder corresponds to the lower bound.(E6dm Fig.6, we can observe that the BP decoder with message
encoding archives a higher threshold that those of theeiBBl decoder and the majority logic decoder. This obsenvatiplies
that the message encoding has a potential advantage overajbety logic decoder in terms of the decoding performaciose
to the threshold.

D. Choice of message decoding function

In a design of an appropriate message encoding scheme, @adbfanessage decoding function is critical. Whebecomes
large, we have freedom to choose a message decoding furlctitiis subsection, we will discuss choices for a messagedirg
function.

We redefine the message decoding function as

0, 0<wy(y) <k-1,
VW) ES 1, n—k+1<wg(y) <n, (19)
otherwise
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The parametek(1 < k < n/2,k € N) controls the decision region for the messagesl, ¢}. For example, Ask gets large,
the decision region ot become narrower. Figufd 7 presents relationships betweempdrametet and the asymptotic error
probability y(e, o). The message code length is assumed ta be8 and the fault probability is set ta = 10~*. From Fid.T,
we can see that the asymptotic erasure probabilities depemdhe parametek. In this setting, the worst case ks= 4 and

the best case i85 = 2. This result implies that appropriate choice of the messig®ding function is important to attain better
asymptotic BP decoding performance.

E. Relationship between code length and asymptotic errobatility

Figure[8 presents the asymptotic error probabilities fossage code length = 2,4, 8. Note that we used the optimum
parameter for each case suchkas= 1(n = 2), k = 1(n = 4), andk = 2(n = 8). The regular LDPC code ensemble with
(dy,d.) = (3,6) is assumed and the fault probability is setdo= 10~*. From Fid.8, it is observed that the asymptotic error
probabilities decreases as code lengtincreases. However, comparing two cages 4 andn = 8, we can obtain only small
improvement in terms of the fault BP threshold. This meaas tihe major benefit of longer message codes is lowering tiog er
floor of the asymptotic error probability whenis sufficiently large.
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VI. CONCLUSION

In this paper, we proposed a model for the fault erasure B®di¥s with transient faults. Based on the model, the DE
equations were derived and used for numerical evaluatiba.OE analysis shows the asymptotic behaviors of the faakuze

BP decoder. The most notable result revealed via the DE sigalythat the asymptotic error probability converges tmsitive
value in contrast to the the fault free case. The sudden direpror probability at a certain erasure probability is ddased to

be a consequence of a bifurcation of the DE dynamical syshkerorder to improve the decoding performance, we presented
two schemes: the message encoding scheme and the majdiitg ¥cheme. The result of the DE analysis indicates that the
message encoding scheme has clear advantage over thetymagding scheme in terms of the fault erasure BP threshold.
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