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Abstract

In this paper, we will present an analysis on the fault erasure BP decoders based on the density evolution. In the fault BP decoder,

messages exchanged in a BP process are stochastically corrupted due to unreliable logic gates and flip-flops; i.e., we assume circuit

components with transient faults. We derived a set of the density evolution equations for the fault erasure BP processes. Our density

evolution analysis reveals the asymptotic behaviors of theestimation error probability of the fault erasure BP decoders. In contrast

to the fault free cases, it is observed that the error probabilities of the fault erasure BP decoder converge to positive values, and that

there exists a discontinuity in an error curve corresponding to the fault BP threshold. It is also shown that an message encoding

technique provides higher fault BP thresholds than those ofthe original decoders at the cost of increased circuit size.

I. I NTRODUCTION

Recent advance of CMOS technology leads to denser VLSI implementation and this trend is continuing [1] In near future,

faulty behaviors of logic gates and flip-flops due to cosmic rays or thermal noises would become more problematic [2] We

should take care of fault tolerant VLSI design to attain highly reliable circuits based on unreliable components [3][4]

In this paper, we call a decoder for an error/erasure correcting code (ECC) composed by unreliable components afault

decoder. Fault tolerance of the decoder is of critical importance because ECC is often exploited for ensuring high reliability of

data memories in a circuit. Therefore, in a digital system based on unreliable components, ECC behaves as a key component

to compose reliable circuits. Another reason for studies onfault decoders comes from thepacket-based communication in a

VLSI chip.A new paradigm of data exchange in CPU,Network on Chip(NoC), is actively studied for replacing conventional

on-chip buses for data/address exchange in a chip [5]. An NoCsystem is based on a packet-based network connecting many

CPU cores and routers for packet switching. If the network iscongested, packet erasures due to collisions at a router mayoccur

and compensation for erased packets is neededErasure correction would be a one of solutions for such packet erasures in achip

[6].

Several works discussing fault decoders forLow-Density Parity-Check(LDPC) codes have been published. In 2011, Varshey

presented an analysis for the fault Gallager-A decoder [7] He assumed a probabilistic model such that independent transient

faults may occur in a circuit of the Gallager-A decoder. A fault causes deterioration of the quality of the messages exchanged in

a decoder and it results in degradation of the decoding performance. Based on these assumptions, analysis based on the density

evolution was presented in [7]. Sadegh et. al showed a similar analysis on the fault Gallaber-B decoder [8] They also derived the

density evolution equations for the fault Gallaber-B decoder and calculated the thresholds forq-ary symmetric channel. Other

related works on the fault decoders can be found in [9][10][11][12].

http://arxiv.org/abs/1601.07239v1
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A goal of this work is to analyze the asymptotic behavior of the fault erasure belief propagation (BP) decoderbased on the

density evolution. It is expected that the results obtainedfor fault erasure BP decoder give us a useful insight for appropriate

design of BP decoders made from unreliable components.

II. FAULT ERASURE BP DECODER

A fault erasure BP decoder is a BP decoder for memoryless erasure channels based on unreliable components such as logic

gates and flip-flops. In this section, we are going to define a fault erasure BP decoder.

A. Fault model for erasure BP decoder

In this paper, we assume independent transient faults of logic gates and flip-flops and do not assume occurrences of the

permanent faults. The occurrence of transient faults are modeled by a probabilistic model. Namely, transient faults are assumed

to be independent events and the probability of occurrencesof the fault does not depend on the places. This model is basedon

the Neumann model [13] and it was used in the related literatures [7] [8].

In order to clarify the definition of the fault model used in the paper, we focus on an erasure correction BP process. Figure1

presents a message flow from a variable nodev to a check nodec in a Tanner graph. Three nodes, calledmessage encoder, fault

node, andmessage decoder, are inserted in between the variable and check nodes. The message encoder encodes a BP message

in the message alphabet{0, 1, e} into a binary (i.e.,{0, 1}) sequence that are stored in flip-flops. The message decoder estimates

a BP message in{0, 1, e} from a given binary sequence that is the read-out symbols from the flip-flops. The precise definition

of the pair of an encoder and a decoder will be given later. We assume that a binary symbol stored in a flip-flop can be flipped

with probability α(0 ≤ α < 1) due to independent transient faults. The fault node in Fig. 1corresponds to the memoryless

binary symmetric channel with the bit-flip probabilityα.

According to Fig.1 (a), we will explain the details of the message encoding and the probabilistic model for transient faults.

The message of a BP process is expressed with the message alphabet{0, 1, e} wheree represents an erasure. The variable node

v encodes a message into a binary sequence of length 2 that is suitable for storing in a 2 flip-flops. Themessage encoding

functionφ : {0, 1, e} → {0, 1}2 is defined by

φ(x)
△
=







00, x = 0,

11, x = 1,

01, x = e.

(1)

The output of the message encoder (two binary symbols) are stored in a pair of flip-flops.

The transient faults are modeled by probabilistic bit flips.A binary information in a flip-flop may alter its value with probability

α and this bit flip events are independent. Thus, the conditional probabilityP (m′|m)(m′ ∈ {0, 1}2,m ∈ {0, 1}2) is given by

P (m′|m) = (1− α)2−dH (m′,m)αdH(m′,m)

wheredH represents the Hamming distance. The symbolm andm′ denote bit sequences of length 2 stored in the flip-flops.

The message decoder tries to estimate a message sent from thevariable nodev from the read-out symbols from the flip-flops
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Fig. 1. A message flow in erasure BP process: (a) variable to check message flow, (b) check to variable message flow.

y ∈ {0, 1}2. The decoding functionψ : {0, 1}2 → {0, 1, e} is given by

ψ(y)
△
=







0, y = 00,

1, y = 11,

e, y ∈ {01, 10}.

(2)

Finally, the check nodec obtains the estimate of a messagex̂ = ψ(y). In the following analysis, it is convenient to derive

the conditional probability of̂x given x, which is denoted byQ(x̂|x). From the definitions of the message encoding and the

probabilistic model for the transient faults, the conditional probability can be immediately derived as






Q(0|0) Q(1|0) Q(e|0)

Q(0|1) Q(1|1) Q(e|1)

Q(0|e) Q(1|e) Q(e|e)




 =






(1− α)2 α2 2α(1− α)

α2 (1− α)2 2α(1− α)

α(1− α) α(1− α) α2 + (1− α)2




 . (3)

Figure 1(b) indicates a message flow in the reverse direction. It includes a nodez representing a received symbol. In this

case, the same encoding function, the decoding function, and the probabilistic fault model are assumed. The dashed box in Fig.

1 (a)(b) corresponding to this conditional probabilityQ(x̂|x) is also called anintermediate nodein a block diagram.

B. Modification of variable node operation

In a conventional erasure BP process, there is no possibility for a variable node to receive contradicting input messages from

adjacent check nodes simultaneously. However, in a fault erasure BP process defined above, a variable node may have messages

containing both 0 and 1 simultaneously. We thus need to modify the variable node process for accepting such contradicting

messages. In this paper, we adopt the following simple modification on the variable node process. If a variable node receives a

set of contracting messages that include both 0 and 1, then the variable node sends the erasure symbol to the neighboring check



3

Fig. 2. Relation of message probability distributions

nodes. The same rule is applied to the process for determination of the estimate symbol.

III. D ENSITY EVOLUTION EQUATIONS

The density evolution (DE) is an important method to unveil the asymptotic behavior of a BP decoding algorithm. In a DE

process, we can track the time evolution of the probability distribution of messages (or the probability density function in a

case where the messages are continuous). The asymptotic probability distributions obtained by iterative computationtell us the

asymptotic quantitative features of the decoding algorithm. In this section, we will derive the DE equations for the fault erasure

BP decoder.

A. Derivation of DE equations

In the following analysis, we will make several assumptionsthat have been commonly used in related works. The channel is

assumed to be a memoryless binary erasure channel (BEC) withthe erasure probabilityǫ(0 ≤ ǫ ≤ 1). In this paper, we consider

a regular LDPC code ensemble with the variable node degreedv and the check node degreedc. The transmitted word is assumed

to be the zero codeword of infinite length.

Suppose thatx represents an input to an intermediate node (correspondingto the conditional probabilityQ(·|·)) and thatx̂

represents the corresponding output from the intermediatenode. Ifx is distributed according to the probability distributiont(·)

over the message alphabet{0, 1, e}, then the probability distribution of the outputx̂ obeyst′(·) given by

t′(x̂) =
∑

x∈{0,1,e}

Q(x̂|x)t(x). (4)

In the following, the details of the probability distributions are introduced according to Fig.2. The probability distribution

corresponding to the message emitted from a check nodec is denote byqi. The indexi represents the discrete time index in

an iterative process. A message from a check node enters an intermediate node, which represents the effect of the probabilistic

faults. The distribution corresponds to the output of the intermediate node is represented byq′i that is given by

q′i(x̂) =
∑

x∈{0,1,e}

Q(x̂|x)qi(x). (5)
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In the following, we will use a convention such that the symbol for the output distribution of the intermediate node is expressed

with the symbol of the input distribution with the prime symbol such ast and t′.

A variable nodev computes a message from the set of messages it receives. The message distribution corresponding to the

message from a variable node to an intermediate node followsthe distributionpi+1. The corresponding output distribution from

the intermediate node is given by

p′i+1(x̂) =
∑

x∈{0,1,e}

Q(x̂|x)pi+1(x). (6)

We also assume that probabilistic faults may occur in a message flow from a received symbol node to a variable node.

A received symbol node send a message in{0, 1, e} to an intermediate node according to its received value. Theprobability

distributionr(·) of the message is given by

r(x)
△
=







1− ǫ, x = 0,

0, x = 1,

ǫ, x = e.

(7)

The message distribution of the corresponding message fromthe intermediate node follows the distribution

r′(x̂) =
∑

x∈{0,1,e}

Q(x̂|x)r(x). (8)

We first derive the DE equations on the check node output. There are two cases depending on the output of the check node.

Firstly, consider the case where the output of the check nodeis 0. The check nodec calculates a message to an adjacent variable

nodev. If and only if the set ofdc − 1 incoming messages received byc except for the one fromv contain even number of

1’s and contains no erasure symbols, then the message fromc becomes 0. Therefore, the distribution of the check node output

qi(0) is given by

qi(0) =

dc−1∑

j:even

(
dc − 1

j

)

p′i(1)
jp′i(0)

dc−1−j

=
(p′i(0)+p

′
i(1))

dc−1

2
+
(p′i(0)−p

′
i(1))

dc−1

2
. (9)

The binomial theorem is used in the derivation above. In a similar manner, we can deriveqi(1). Note that, in this case, the set

of the dc − 1 messages consisting of odd number of 1’s and no erasure symbols leads to the output message 1 from the check

node. We thus have

qi(1) =

dc−1∑

j:odd

(
dc − 1

j

)

p′i(1)
jp′i(0)

dc−1−j

=
(p′i(0)+p

′
i(1))

dc−1

2
−
(p′i(0)−p

′
i(1))

dc−1

2
. (10)

We will then consider the DE equations on the variable node output. Let us assume that an output of a variable node is 0, and

that the variable nodev calculates a message to an adjacent check nodec. Let M be the set of thedv − 1 incoming messages

to v from adjacent check nodes except for the one fromc. The variable node message becomes 0 if and only if the event (A)

y = 0 and 1 /∈ M holds, or the event (B)y = e, 1 /∈ M , and0 ∈ M holds wherey received symbols corresponding to the
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variable nodev.

The probability corresponding to the event (A) becomesProb[A] = r′(0)(1− q′i(1))
dv−1 because all the incoming messages

are independent. The probability of the event (B) is given byProb[B] = r′(e)
(
(1 − q′i(1))

dv−1 − q′i(e)
dv−1

)
. Since these two

events are independent, the probabilitypi+1(0) is the sum of these two probabilities:

pi+1(0) = Prob[A] + Prob[B]

= r′(0)(1− q′i(1))
dv−1

+ r′(e)
(
(1− q′i(1))

dv−1 − q′i(e)
dv−1

)
. (11)

In a similar manner, we can derive the probability corresponding to the variable node message to be1:

pi+1(1) = r′(1)(1− q′i(0))
dv−1

+ r′(e)
(
(1− q′i(0))

dv−1 − q′i(e)
dv−1

)
. (12)

It should be remarked that, for any discrete time indexi, the equalitiespi(0)+pi(1)+pi(e) = 1 andqi(0)+ qi(1)+ qi(e) = 1

hold.

From the arguments above, we have all the DE equations required for the DE analysis of the fault erasure BP decoding.

Namely, Based on Eqs. (4)(7)(9)(10)(11)(12) with the initial condition q0(0) = 0, q0(1) = 0, an iterative calculation on the

message probability functions leads to the asymptotic message distributions.

B. Asymptotic error probability

According to the conventional erasure BP rule, if incoming messages to a variable node contain no 1’s and contain a 0, then

the tentative estimate of the variable node becomes 0. Let usdenote the probability for such an event bysi(0). The probability

si(0) is given by

si(0) = r′(0)(1− q′i(1))
dv + r′(e)

(
(1 − q′i(1))

dv − q′i(e)
dv

)
. (13)

A DE process can evaluate the asymptotic error probability

γ(ǫ, α)
△
= lim

i→∞
(1 − si(0)). (14)

In the following parts of this paper, we will focus on the behavior of the asymptotic error probabilityγ(ǫ, α).

IV. N UMERICAL RESULTS

In the previous section, we derived the DE equations for the fault erasure BP decoder. In this section, numerical results

indicating the asymptotic behavior of the decoder will presented.

A. Effect of transient faults

Figure 3 presents the asymptotic error probabilitiesγ(ǫ, α) for (dv, dc) = (3, 6)-regular LDPC code ensemble. The four curves

depicted in Fig.3 correspond to the fault probabilitiesα = 10−2, 10−3, 10−4, 10−5 from left to right. When the fault probability

α is equal to 0, the system model exactly coincides with the common erasure BP decoder model without transient faults. In

such a case, the asymptotic error probability converges to 0if ǫ is greater than the BP thresholdǫBP = 0.42944 (this value is



6

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
E

rr
o
r 

P
ro

b
a
b
il
it
y
 

Channel Erasure Probability 

Fig. 3. Relationship between erasure probabilityǫ and asymptotic error probabilityγ(ǫ, α) ((3,6)-regular LDPC code ensemble)

also included in Fig. 3). In the case of positiveα, the situations are totally different. Whenα > 0, we can observe thatγ(ǫ, α)

converges to positive values due to the faults occurred in the BP decoder. From this figure, it is also seen that smallerα gives

smallerγ(ǫ, α). Furthermore, each curve has a sudden (vertical) jump at a certain erasure probability. For example, the curve of

α = 10−3 showsγ(ǫ, 10−3) > 10−1 in the regimeǫ > 0.36207. On the other hand, in the regimeǫ < 0.36207, γ(ǫ, 10−3) takes

the values smaller than10−3. The behaviors of the decoder are sharply separated at the erasure probabilityǫ = 0.36207 that is

considered to be a threshold value for the fault erasure BP decoder.

B. BP dynamics of fault erasure BP decoder

Figure 4 indicates the dynamics of the BP processes via the evolutions of the pair of the message probabilitiespi(0) and

pi(1). The ensemble is(3, 6)-regular LDPC code ensemble and the fault probability is assumed to beα = 10−3. Each arrow in

the figure shows a change of the message probabilities from(pi(0), pi(1)) to (pi+1(0), pi+1(1)) and each trajectory corresponds

to an erasure probability in the rangeǫ = 0.01j(10 ≤ j ≤ 50). Since the zero codeword is assumed to be transmitted, the

probability pi(0) represents the probability for the correct decoding. It is immediately recognized that there are two groups of

the trajectories: one group corresponds to the range0.37 ≤ ǫ ≤ 0.5 and the other group corresponds to the range0.1 ≤ ǫ ≤ 0.36.

The trajectories in the first group show the upward movements. This means that the error probability tends to converge to a

higher value. On the other hand, the trajectories in the second group indicate thatpi(0) approaches to 1 as the number of

iterations increases. This numerical results strongly suggest the existence of abifurcationof this DE evolution processes that can

be considered as a non-linear dynamical system. At the erasure probability that corresponds to this bifurcation, we canobserve

sudden drop of the asymptotic error probability in Fig.3.

C. Degree and asymptotic error probability

Figure 5 presents the asymptotic error probabilitiesγ(ǫ, α) for regular-LDPC code ensembles with degrees(dv, dc) =

(2, 4), (3, 6), (4, 8). All the ensembles correspond to the design code rate1/2. The fault probability is set toα = 10−4. From

Fig.5, we can observe that the(dv, dc) = (3, 6) ensemble provides the highest fault BP threshold. It is wellknown that(3, 6)

ensemble gives the highest threshold in the fault free cases. Similar tendency can be seen in the cases where transient faults

exist.
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Fig. 5. Relationship between erasure probabilityǫ and asymptotic error probabilityγ(ǫ, α) ((dv , dc)-regular LDPC code ensembledesign code rate 0.5fault
probability α = 10−4)

V. M ESSAGE ENCODING

In the previous section, we observed numerical results of the DE analysis on the fault erasure BP decoder. According to

the numerical results, it was shown that we must admit non-zero error probability even in the asymptotic regime if the fault

probability is positive. In this section, we discuss and compare two methods for improving the decoding performance of the fault

erasure BP decoding at the cost of increased hardware complexity.

The simplest way to improve the decoding performance is to exploit several identical erasure BP decoders in parallel. By

using the majority votes from the outputs obtained from these component decoders, we can obtain more reliable estimatesof

transmitted symbols. In this paper, the scheme is calledMajority voting scheme. Another way to enhance the reliability is to

use a longer code to protect BP messages. In Section 2, we introduced the message functionφ that encodes a BP message into

2-binary symbols. By replacing the encoding function to an encoding function for a longer code, we can expect that the immunity

against possible faults becomes stronger. We call this scheme message encoding. Of course, both schemes (i.e., majority voting

and message encoding) require increase of the circuit size that can be considered as the cost should be paid for the improvement

of the immunity.
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A. Majority voting scheme

In this subsection, we introduce a simple majority voting scheme that emploiesN -fault erasure BP decoders for improving the

fault immunity. The majority voting scheme determines its output by majority voting based onN -outputs from the component

BP decoders. Although this scheme requiresN -fold circuit size compared with the single fault erasure BPdecoder, it is expected

that the majority voting process improves the asymptotic error probability.

In the following, we will discuss the case whereN = 2. The argument below can be easily extended to general cases where

N > 2. Let x̂(1), x̂(2) ∈ {0, 1, e} be the decoder outputs from the two component decodersD(1) andD(2). The majority voting

process is defined the function

τ(x̂(1), x̂(2)) =







0, (x̂(1), x̂(2)) = (0, 0), (0, e), (e, 0)

e, (x̂(1), x̂(2)) = (0, 1), (1, 0), (e, e)

1, (x̂(1), x̂(2)) = (1, 1), (1, e), (e, 1),

where the functionτ represents the output from the majority voting decoder. We denote the asymptotic error probability for the

majority voting scheme byγmaj(ǫ, α).

In the following, a lower bound onγmaj(ǫ, α) will be discussed. Throughout the following argument, we assume that

s(0, 0) ≥ (s(0))2 (15)

holds where the quantitys(0) in the righthand side is the asymptotic value ofs0(x); i.e., s(0) = limi→∞ si(0), which can

be evaluated by the density evolution. The quantitys(0, 0) is the asymptotic joint probability corresponds to the event that

two decoder outputs take the value(0, 0). This is a natural assumption because the outputs from the the component decoders

D(1), D(2) are expected to be highly correlated. Under the assumption of (15), we can easily derive a lower bound ofγmaj(ǫ, α)

γmaj(ǫ, α) ≥ (1− s(0))2. (16)

B. Details of message encoding

In this subsection, we will introduce a simple message encoding scheme based on a binary code of lengthn. The parametern

is referred to asmessage code length. In the following, we redefine the encoding and decoding functions. The encoding function

φ : {0, 1, e} → {0, 1}n is an encoding function now defined by

φ(x) =







n
︷ ︸︸ ︷

00 · · · 0, x = 0,
n

︷ ︸︸ ︷

11 · · · 1, x = 1,
n/2

︷ ︸︸ ︷

00 · · · 0

n/2
︷ ︸︸ ︷

11 · · · 1, x = e.

(17)

There are several possibilities for choosing decoding functions corresponding to the encoding function defined above.One simple

choice is to define a decoding functionφ as

ψ(y) =







0, wH(y) = 0

1, wH(y) = n

e, otherwise,

(18)
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Fig. 6. Relationship between erasure probabilityǫ and asymptotic error probabilityγ(ǫ, α)((3, 6)-regular LDPC code ensemble, fault probabilityα = 10−4

message length in message encodingn = 4the number of component decoders in majority logic decoderN = 2)

wherewH represents the Hamming weight function. In this case, the conditional probabilityQ(x̂|x) corresponding to the

intermediate node is given by






(1− α)n αn 1− (1− α)n − αn

αn (1 − α)n 1− (1− α)n − αn

α
n

2 (1− α)
n

2 α
n

2 (1− α)
n

2 1− 2α
n

2 (1 − α)
n

2






.

Plugging this condition probability into the DE equations,we can evaluate the asymptotic error probabilities.

C. Asymptotic error probabilities for message encoding

Figure 6 presents the asymptotic error probabilities of themajority voting decoder (two decoders in parallel,N = 2) and a

fault erasure BP decoder with message encoding(n = 4). The (3, 6)-regular LDPC code ensemble is assumed and the fault

probability is set toα = 10−4. Both schemes can be considered to have comparable circuit sizes. In Fig. 6, the curve of the

majority voting decoder corresponds to the lower bound (16). From Fig.6, we can observe that the BP decoder with message

encoding archives a higher threshold that those of the single BP decoder and the majority logic decoder. This observation implies

that the message encoding has a potential advantage over themajority logic decoder in terms of the decoding performanceclose

to the threshold.

D. Choice of message decoding functionψ

In a design of an appropriate message encoding scheme, a choice of message decoding function is critical. Whenn becomes

large, we have freedom to choose a message decoding function. In this subsection, we will discuss choices for a message decoding

function.

We redefine the message decoding function as

ψ(y) ,







0, 0 ≤ wH(y) ≤ k − 1,

1, n− k + 1 ≤ wH(y) ≤ n,

e, otherwise.

(19)
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Fig. 7. Relationship between erasure probabilityǫ and asymptotic error probabilityγ(ǫ, α) ((3, 6)-regular LDPC code ensemblefault probabilityα = 10−4

code lengthn = 8)
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Fig. 8. Relationship between erasure probabilityǫ and asymptotic error probabilityγ(ǫ, α). ((3, 6)-regular LDPC code ensemble, fault probabilityα = 10−4

code lengthn = 2, 4, 8)

The parameterk(1 ≤ k ≤ n/2, k ∈ N) controls the decision region for the messages{0, 1, e}. For example, Ask gets large,

the decision region ofe become narrower. Figure 7 presents relationships between the parameterk and the asymptotic error

probability γ(ǫ, α). The message code length is assumed to ben = 8 and the fault probability is set toα = 10−4. From Fig.7,

we can see that the asymptotic erasure probabilities depends on the parameterk. In this setting, the worst case isk = 4 and

the best case isk = 2. This result implies that appropriate choice of the messagedecoding function is important to attain better

asymptotic BP decoding performance.

E. Relationship between code length and asymptotic error probability

Figure 8 presents the asymptotic error probabilities for message code lengthn = 2, 4, 8. Note that we used the optimum

parameter for each case such ask = 1(n = 2), k = 1(n = 4), andk = 2(n = 8). The regular LDPC code ensemble with

(dv, dc) = (3, 6) is assumed and the fault probability is set toα = 10−4. From Fig.8, it is observed that the asymptotic error

probabilities decreases as code lengthn increases. However, comparing two casesn = 4 andn = 8, we can obtain only small

improvement in terms of the fault BP threshold. This means that the major benefit of longer message codes is lowering the error

floor of the asymptotic error probability whenn is sufficiently large.
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VI. CONCLUSION

In this paper, we proposed a model for the fault erasure BP decoders with transient faults. Based on the model, the DE

equations were derived and used for numerical evaluation. The DE analysis shows the asymptotic behaviors of the fault erasure

BP decoder. The most notable result revealed via the DE analysis is that the asymptotic error probability converges to a positive

value in contrast to the the fault free case. The sudden drop of error probability at a certain erasure probability is considered to

be a consequence of a bifurcation of the DE dynamical system.In order to improve the decoding performance, we presented

two schemes: the message encoding scheme and the majority voting scheme. The result of the DE analysis indicates that the

message encoding scheme has clear advantage over the majority voting scheme in terms of the fault erasure BP threshold.
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