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SUMMARY Verification of temporal logic properties plays
a crucial role in proving the desired behaviors of continuous sys-
tems. In this paper, we propose an interval method that veri-
fies the properties described by a bounded signal temporal logic.
We relax the problem so that if the verification process cannot
succeed at the prescribed precision, it outputs an inconclusive
result. The problem is solved by an efficient and rigorous moni-
toring algorithm. This algorithm performs a forward simulation
of a continuous-time dynamical system, detects a set of time in-
tervals in which the atomic propositions hold, and validates the
property by propagating the time intervals. In each step, the con-
tinuous state at a certain time is enclosed by an interval vector
that is proven to contain a unique solution. We experimentally
demonstrate the utility of the proposed method in formal analysis
of nonlinear and complex continuous systems.
key words: continuous-time dynamical systems, interval anal-
ysis, linear temporal logic, falsification method

1. Introduction

Reasoning with the temporal logic properties in con-
tinuous systems is a challenging and important task
that combines computer science, numerical analysis,
and control theory. Various methods for the verification
of continuous and hybrid systems with bounded tem-
poral properties have been developed, e.g., [1]–[4], en-
abling the falsification of various properties (e.g., safety,
stability, and robustness) of large and complex systems.
However, the state-of-the-art tools are based on numer-
ical simulations whose numerical errors frequently yield
qualitatively wrong results, which become problematic
even in statistical evaluations.

Computing rigorously approximated reachable sets
is a fundamental process in formal methods for con-
tinuous systems. Techniques based on interval analy-
sis (Section 3) have proven practical in the reachabil-
ity analysis of nonlinear and complex continuous sys-
tems [5]–[10]. In these frameworks, the computation is
δ-complete [11]: assuming that function values may be
perturbed within a predefined δ ∈ Q>0, many gener-
ically undecidable problems become decidable. How-
ever, δ-complete verification of generic properties other
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than reachability is a challenging topic.
The contribution of this paper is to propose an in-

terval method that verifies (bounded portions of) the
signal temporal logic (STL) properties (Section 5) of a
class of continuous-time dynamical systems (Section 4;
extension to hybrid systems is straightforward). Our
method reliably computes three values: valid, unsat,
and unknown. The method outputs valid or unsat
when the soundness is guaranteed by interval analy-
sis; otherwise, when the verification fails after reaching
a prescribed precision threshold, it outputs unknown.
Our method is based on validated interval analysis,
and therefore it is reliable compared to the existing
simulation-based monitoring tools, e.g., [12]–[15]. We
show that simulation with numerical errors may com-
pute an incorrect signal for a chaotic system. In con-
trast with the existing tools that monitor a single be-
havior of a system, our method monitors a set of possi-
ble behaviors using an interval-based technique; there-
fore, the method can check the validity of the system.
In this sense, our approach can be viewed as an in-
tegration of reachability analysis and simulation-based
monitoring methods. The relaxation allowing unknown
results enables us to generate an efficient monitor for
STL properties that can be regarded as a variant of δ-
complete procedures. We demonstrate efficient and re-
liable monitors for several continuous systems including
a chaotic system.

In Section 6, we present an algorithm for mon-
itoring STL properties based on the forward simula-
tion that encloses a signal with a set of boxes (i.e., in-
terval vectors). For each atomic proposition involved
in a property ϕ to be verified, the algorithm obtains
an inner and outer approximation of the time inter-
vals in which the proposition holds. The interval New-
ton operator is used for the purposes of accelerating
the search of instants where the satisfaction of propo-
sitions changes, and certifying the uniqueness of these
event within their enclosures, eventually certifying the
sequence of consistent/inconsistent time intervals over
time for each proposition. Next, it modifies the set of
time intervals according to the syntax of the property ϕ;
finally, it checks that ϕ holds at the initial time. Using
our implementation, we show that several benchmarks
are verified efficiently, yet non-robust instances with re-
spect to numerical errors are rejected (Section 7). The
implementation reliably analyzes a set of signals and
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provides a foundation for verification and parameter
synthesis of complex systems.

2. Related Work

Many previous studies have applied interval meth-
ods to reachability analyses of continuous and hy-
brid systems [5]–[10]. These methods output an over-
approximation of reachable states as a set of boxes.
Interval analysis often proves the unique existence of a
solution within a resulting interval, and it is also ap-
plicable to interval-based reachability analysis [8], [16].
Our method utilizes the proof in the verification of more
generic temporal properties.

Reasoning of real-time temporal logic has been a
research topic of interest [17], [18]. Numerical method
for falsification of a temporal property is straight-
forward [12]. The algorithm simulates a signal of a
bounded length and checks the satisfiability of the nega-
tion of the property described by a bounded temporal
logic. This paper presents an interval extension of this
falsification method.

To falsify realistic nonlinear models efficiently, re-
searchers have proposed a tree-search method [1], a
Monte-Carlo optimization method [2], and statistical
model checking methods [3], [4]. Despite their suc-
cesses, these methods are compromised by numerical
error. To improve the reliability and practicality of the
falsification, integration with our interval method will
be a promising future direction. An integrated statis-
tical and interval method was also proposed in [19] for
reachability analysis.

To facilitate simulation-based verification of tem-
poral properties, the robustness concept has been pro-
posed [2], [13], [14]. In these works, the degree of ro-
bustness defines the distance between a signal and a
region over which a proposition holds. If the absolute
value of the degree is small, it is likely to be unreliable
because of numerical errors. Our method rigorously
ensures robustness by verifying that every intersection
between a signal and each boundary in the state space
is enclosed with an interval.

There exist several methods for model checking
of temporal logic properties [20], [21]. [20] proposed
a method specialized in stability properties, which is
described as a specific form of temporal logic formula.
[21] proposed a method that translates a verification
problem into a reachability problem with the k-Liveness
scheme, which is incomplete in general settings. Our
method can be viewed as a bounded model checking
method that validates a bounded temporal property
when the property is satisfied by all signals emerging
from the interval parameter value.

3. Interval Analysis

This section introduces selected topics and techniques

based on interval analysis [22], [23].
A (bounded) interval a = [a, a] is a connected set

of real numbers {b ∈ R | a ≤ b ≤ a}. I denotes the set
of intervals. I≥0 denotes the subset {[a, a] ∈ I | a ≤ 0}.
For an interval a, a and a denote the lower and up-
per bounds, respectively; and inta denotes the inte-
rior {b ∈ R | a < b < a}. [a] denotes a point in-
terval [a, a]. The hypermetric between two intervals a
and b, d(a, b) is given by max(|a − b|, |a − b|). For a
set S ⊂ R, 2S denotes the interval [inf S, supS]. All
these definitions are naturally extended to interval vec-
tors; an n-dimensional box (or interval vector) a is a
tuple of n intervals (a1, . . . ,an), and In denotes the
set of n-dimensional boxes. For a ∈ Rn and a ∈ In,
we use the notation a ∈ a, which is interpreted as
∀i∈{1, . . . , n} ai ∈ ai.

In actual implementations, the interval bounds
should be machine-representable floating-point num-
bers, and other real values are rounded in the appro-
priate directions.

Given a function f : Rn → R, f : In → I is
called an interval extension of f if and only if it satis-
fies the containment condition ∀a ∈ In ∀a ∈ a (f(a) ∈
f(a)). This definition is generalizable to function vec-
tors f : Rn → Rm. Given two intervals a, b ∈ I, we
can compute interval extensions of the four operators
◦ ∈ {+,−, ∗, /} as 2{a ◦ b, a ◦ b, a ◦ b, a ◦ b} (assuming
0 6∈ b for division).

For arbitrary intervals a, b,d ∈ I, the extended di-
vision 2{d ∈ d | ∃a∈ a ∃b∈ b a = bd} can be imple-
mented as follows (see Section 4.3 of [23]):

ExtDiv(a, b,d) :=


(a/b) ∩ d if 0 6∈ b

2(d \ (a/b, a/b)) if a>0∈b
2(d \ (a/b, a/b)) if a<0∈b
d if 0 ∈ a, b

In the second and third cases, when b = 0 (resp. b = 0),
we set a/b and a/b as −∞ and ∞ (resp. a/b and a/b
as ∞ and −∞).

Given a differentiable function f(a) : R→ R and a
domain interval a, a root ã ∈ a of f such that f(ã) = 0
is included in the result of the interval Newton operator

â+ExtDiv(−f(â),f ′(a),a−â) ≈
(
â− f(â)

f ′(a)

)
∩a,

where â ∈ a, and f and f ′ are interval extensions of f
and the derivative of f , respectively. The first expres-
sion is always valid while the second expression is valid
only when f ′(a) does not contain 0. Iterative applica-
tions of the operator will converge. Let a′ be the result
of applying the operator to a. If a′ ⊆ inta, a unique
root exists in a′.

4. Continuous-Time Dynamical Systems

We consider dynamical systems whose behaviors are
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described by ordinary differential equations (ODEs).

Definition 1 A continuous-time dynamical system is
a tuple S :=

(
(u, x), U×X,Xinit, F

)
consisting of the

following components:

• A vector of real-valued parameters u = (u1, . . . , um).
• A vector of real-valued variables x = (x1, . . . , xn).
• A domain U×X ⊆ Rm+n for the valuation of the

parameters and variables.
• An initial domain Xinit ⊆ X.
• A vector fields F : U×X → Rn (assuming Lipschitz

continuity).

In this work, we specify domains U and X as boxes.
The behaviors of a system S are formalized as signals.

Definition 2 Given a time interval t = [0, t] ∈ I and
a parameter value ũ ∈ U , a signal of a continuous-time
dynamical system S is a function x̃ : t→ X such that

x̃(0) ∈ Xinit ∧ ∀t̃∈t d
dt x̃(t̃) = F (ũ, x̃(t̃)).

SS t(S) denotes the set of signals of S of length t.

Example 1 An anticlockwise rotation of a 2D particle
can be modeled as a continuous-time dynamical system:

u := (u1), U := ([−0.1, 0.1]),

x := (x1, x2), X := [−10, 10]2,

Xinit := {(1, 0)},

F (u, x) :=

(
u1 −1
1 u1

)(
x1

x2

)
.

A signal of this example is illustrated in Figure 1. The
signal moves on the circle of radius 1 when u1 = 0;
the system is stable when u1 ≤ 0 and is unstable when
u1 > 0.

2 4 6 8 10 12 14
�1.0

1.0

time

x1

x2

Fig. 1 A signal of the rotation system

Example 2 A well-known chaotic dynamical system is
the Lorenz equation:

u := (u1, u2, u3), U := (10, 28, 2.5) + [−1, 1]3,

x := (x1, x2, x3), X := [−50, 50]3,

Xinit := {(15, 15, 36)},

F (u, x) :=

 u1(x2 − x1)
x1(u2 − x3)− x2

x1x2 − u3x3

 .

�10

10

5 10 15 20 25
time

x1

0 5 10 15 20 25
-20

-10

0

10

20

Fig. 2 Signals of the Lorenz system simulated by validated
(upper) and non-validated (lower) numerical methods

A signal of this system is illustrated in the upper part
of Figure 2.

4.1 ODE Integration using Interval Analysis

Using tools based on interval Taylor methods, such as
CAPD† and VNODE [24], we can obtain an interval
extension X : I≥0 → In of signals in SS t(S). Given
t ∈ I≥0, these tools perform stepwise integration of the
flow function F from the initial time 0 to time t, and
output the value X(t). At each step, interval Taylor
methods verify the unique existence of a solution in a
box enclosure using the Picard-Lindelöf operator and
Banach’s fixpoint theorem. Accordingly, when an in-
terval enclosure X(t) is computed by an interval Taylor
method, the following property holds:

∀u∈U ∀xinit∈Xinit ∃!x̃∈SS t(S)

x̃(0) = xinit ∧ ∀t̃∈t d
dt x̃(t̃) = F (u, x̃(t̃)),

where ∃! is interpreted as “uniquely exists.”
In principle, if F is Lipschitz continuous and we

can assume arbitrary precision, we obtain an arbitrarily
narrow interval enclosure X([t]) for t ∈ R≥0. However,
because interval Taylor methods are implemented us-
ing machine-representable real numbers, they may fail
to compute an enclosure when verifying the unique ex-
istence property, even at the smallest step size.

Example 3 Signals of the Lorenz system in Exam-
ple 2 (when u := (10, 28, 2.5)), computed with an in-
terval method (CAPD) and a non-validated numeri-
cal method, are illustrated in Figure 2. Non-validated
numerical methods may compute a wrong signal for a
chaotic system as shown in this figure. On the other
hand, validated simulation of this system over a long
period is difficult with double-precition floating-point
numbers; the width of the interval enclosure computed
by CAPD blows up after 25 time units and the simula-
tion fails.

†http://capd.ii.uj.edu.pl/
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�2

�1

1

5 10 15

¬(x2-1<0)
true U[0,6.284] ¬(x2-1<0)

¬(true U[0,6.284] ¬(x2-1<0))
true U[0,10] ¬(true U[0,6.284] ¬(x2-1<0))

¬(true U[0,10] ¬(true U[0,6.284] ¬(x2-1<0)))

x2-1<0

x2

time

Fig. 3 Monitoring process on the rotation system

5. Signal Temporal Logic

We consider a fragment [12] of the real-time metric tem-
poral logic [17] whose temporal modalities are bounded
by an interval t = [t, t], where the bounds t, t are in
Q≥0. Following [12], we refer to this logic as the signal
temporal logic (STL).

Definition 3 We consider constraints in the real do-
main as atomic propositions. The syntax of the STL
formulae is defined by the grammar

ϕ ::= true | p | ϕ ∨ ϕ | ¬ϕ | ϕUt ϕ

p ::= f(x) < 0

where p belongs to a set of atomic propositions APϕ,
Ut is the “until” operator bounded by a non-empty pos-
itive time interval t ∈ I≥0, x = (x1, . . . , xn) is a vec-
tor of variables, and f : Rn → R. We use the stan-
dard abbreviations, e.g., ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2),
Ftϕ := true Ut ϕ (“eventually”), and Gtϕ := ¬Ft¬ϕ
(“always”).

5.1 Semantics

The necessary length ||ϕ|| of the signals for checking an
STL formula ϕ is inductively defined by the structure
of the formula:

||p|| := 0, ||ϕ1 ∨ ϕ2|| := max (||ϕ1||, ||ϕ2||),
||¬ϕ|| := ||ϕ||, ||ϕ1 Ut ϕ2|| := max (||ϕ1||, ||ϕ2||) + t.

The map O : APϕ → 2X associates each proposition
p ∈ APϕ to a set O(p) = {x∈X | p(x)}.

When we check the satisfiability of ϕ at time t, we
should have a signal of length tmax := ||ϕ||+t (this value
of tmax is used in evaluating all subformulae of ϕ). Let

x̃ ∈ SS tmax
(S) and ϕ be an STL property. Then, we

have a satisfaction relation defined as follows:

x̃, t |= true

x̃, t |= p iff x̃(t) ∈ O(p)

x̃, t |= ϕ1 ∨ ϕ2 iff x̃, t |= ϕ1 ∨ x̃, t |= ϕ2

x̃, t |= ¬ϕ iff x̃, t 6|= ϕ

x̃, t |= ϕ1 Ut ϕ2

iff ∃t′∈(t+ t) x̃, t′ |= ϕ2 ∧ (∀t′′∈ [t, t′] x̃, t′′ |= ϕ1)

At a given time t, ϕ1 Ut ϕ2 intuitively means that ϕ2

holds within the time interval t+t and that ϕ1 always
hold until then. We also have the following validation
relation:

S |= ϕ iff ∀x̃∈SS ||ϕ||(S) x̃, 0 |= ϕ

5.2 Method for Monitoring STL Formulae

Our interval method is based on the monitoring method
proposed in [12], which decides whether a signal satis-
fies an STL property based on the numerical simulation
of signals of bounded lengths. This section explains this
basic method. First, we introduce the notion of consis-
tent time intervals in the STL evaluation.

Definition 4 Let x̃ be a signal of length tmax and ϕ be
an STL formula. We say that a left-closed and right-
open interval [t, t) ⊆ R≥0 is consistent with ϕ iff ∀t∈
(t, t) x̃, t |= ϕ.†

†The original definition [12] involves left-closed right-
open time intervals [t, t) so that they do not overlap and
they can cover [0, tmax]. However, x̃(t) > 1 ≡ 1 − x̃(t) <
0, with x̃(t) := t, is not true in the left-closed right-open
interval [1, 2). In this paper, we only enforce the predicate
to be true in the interior of time intervals (t, t) to regard
[1, 2) consistent. This has no impact on the soundness nor
efficiency of the proposed method, since such bounds will
be approximated by enclosing intervals in Definition 5.
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Next, whether a signal satisfies property ϕ is
checked as follows:

1. For each atomic proposition p in APϕ, monitor the
signal of length ||ϕ|| and identify a non-overlapping
set of consistent time intervals Tp = {t1, . . . , tnp

}.
2. Following the parse tree of ϕ in a bottom-up fash-

ion, obtain a set of consistent time intervals of ϕ.
For each construct of STL, obtain the set that is
consistent with the sub-formula as follows:

T¬ϕ := R≥0 \ Tϕ (1)

Tϕ1∨ϕ2
:= Tϕ1

∪ Tϕ2
(2)

Tϕ1Utϕ2
:=

{Shiftt(t1 ∩ t2) ∩ t1 | t1 ∈ Tϕ1 , t2 ∈ Tϕ2}(3)

where Shiftt(s) := [s− t, s− t) ∩ R≥0.
3. Check whether min Tϕ contains time 0. If yes, ϕ

is satisfied; otherwise, it is not satisfied.

Example 4 We consider the property

G[0,10]F[0,6.284] ¬(x2−1<0) ≡
¬(true U[0,10] ¬(true U[0,6.284] ¬(x2−1<0)))

for the model in Example 1, which describes that, within
the initial 10 time units, the signal x2 increases beyond
1 within every 6.284 time units. Verification with the
monitoring method (extended to an interval method) is
illustrated in Figure 3, when the parameter is set as
u1 := 0.1 + [−10−3, 10−3].

6. Interval-Based Monitoring Method

In this section, we propose a reliable method for mon-
itoring STL properties on continuous-time dynamical
systems. This method is an interval extension of the
monitoring method described in Section 5.2.

Given a system S and an STL property ϕ, the
proposed MonitorSTL algorithm (Algorithm 1) outputs
the following results: valid (implying that S |= ϕ),
unsat (implying that S |= ¬ϕ), or unknown (mean-
ing that the computation is inconclusive). The al-
gorithm implements the method described in Sec-
tion 5.2. The sub-procedures MonitorAP (Section 6.2)
for monitoring atomic propositions, and Propagate and
ConsistentAtInitTime (Section 6.3) for evaluating an
STL formula are rendered rigorous and sound by inter-
val analysis; namely, the precision of every numerical
computation is guaranteed, and the correctness of the
monitoring method is assured by verifying the unique
existence of a solution within its resulting interval. Any
errors introduced by the sub-procedures are captured
by the catch clause at Line 5.

Despite its efficient computational cost (Sec-
tion 6.4), the proposed method has some limitations.

Algorithm 1 MonitorSTL algorithm

Input: S, ϕ
Output: valid, unsat, or unknown

1: try
2: T := MonitorAP(S, ϕ) {Step 1; Section 6.2}
3: T ϕ := Propagate(T , ϕ)) {Step 2; Section 6.3}
4: return ConsistentAtInitTime(T ϕ) {Step 3}
5: catch error return unknown end try

First, the method is incomplete; it allows inconclusive
computations and outputs unknown when the interval
computation is too imprecise to separate several solu-
tions within an interval. In practice, the unknown out-
put is valuable, because a numerically non-robust sig-
nal is rejected as an error in the verification process.
Second, although the algorithm validates system prop-
erties in principle, its success is guaranteed only over
sufficiently small domains U and X0, particularly when
evaluating nonlinear systems. Third, the method is a
bounded model-checking method, in the sense that the
domain U×X and the lengths of the signals are both
bounded.

Our method is targeted at (i) a more generic frame-
work, in which the possible initial and parameter val-
ues can be exhaustively enumerated, and (ii) statistical
methods that treat the parameters as random variables
and evaluate probabilistic STL properties.

6.1 Approximation of Consistent Time Intervals

In this section, we introduce an interval approximation
for the consistent time intervals (Definition 4). The
basic idea is to enclose each bound of the consistent
time intervals within a closed interval.

Definition 5 Given a consistent time interval t =
[t, t) ⊆ [0, ||ϕ||) that is consistent with an STL prop-
erty ϕ, we define an (interval) approximation as a pair
(s, s′) such that s, s′ ∈ I, t ∈ s, and t ∈ s′.

Given an approximation (s, s′) and a continuous signal
x̃, we have ∀t∈ [s, s′) x̃, t |= ϕ.

We now approximate a set of consistent time
intervals {t1, . . . , tnϕ} as a set (or sequence) of
approximations. Instead of the set of pairs
{(s1, s

′
1), . . . , (snϕ

, s′nϕ
)}, we represent a set of ap-

proximations with the set {(s1, true), (s′1, false), . . . ,
(snϕ

, true), (s′nϕ
, false)}, where the tags true and false

represent whether an element corresponds to a lower
or an upper bound. A set of approximations is inter-
preted as both outer and inner approximations; that
is, each consistent time interval ti is enclosed by the
outer approximation [si, s

′
i], and the inner approxima-

tion (si, s
′
i) is contained in ti.

Definition 6 Consider a set T = {(s1, b1), . . . ,
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(s#T , b#T )} where si ∈ I, bi ∈ {true, false}, and
#T ∈ N. The second element of each pair is a polarity
value that represents whether the pair is an enclosure
of a lower or upper bound of a consistent time interval.
We say that T is canonical iff

• the elements can be sorted, i.e.,
∀i∈{1, . . . ,#T−1} si < si+1,

• ∀i∈{1, . . . ,#T } 0 ≤ si,
• ∀i∈{1, . . . ,#T−1} bi 6= bi+1, and
• b1 = true.

We say that T is an (interval) approximation of Tϕ =
{t1, . . . , tnϕ

} iff

• T is canonical,
• ∀t∈Tϕ ∃(s, true)∈T t ∈ s,
• ∀t∈Tϕ t < tmax ⇒ ∃(s, false)∈T t ∈ s,
• ∀(s, true)∈T ∃!t∈Tϕ t ∈ s, and
• ∀(s, false)∈T ∃!t∈Tϕ t ∈ s.

Given a set of consistent time intervals, its canoni-
cal approximation is a disjoint sequence of lower and
upper bound enclosures; the sequence starts with a
lower bound enclosure and ends with either a lower
or an upper bound enclosure. For t ∈ Tϕ such that
t > ||ϕ||, T ϕ may contain only its lower-bound enclo-
sure. T true := {([0], true)} and T false := ∅ are the ap-
proximations of Ttrue = R≥0 and Tfalse = ∅, respectively.

Example 5 Let S be (x, [0, 10], 0, F (x) = 1) such that
the variable x represents the signal x̃(t) = t. Consider a
property ϕ := F[0,2π](cosx < 0 ∧ sinx < 0). ||ϕ|| is 2π,
and the set of consistent time intervals within [0, 2π] is
Tcos x<0 := {[π2 ,

3
2π)}, Tsin x<0 := {[π, 2π)}, and Tϕ :=

{[0, 3
2π)}, respectively. Then, their approximations are

T cos x<0 := {([1.57, 1.58], true), ([4.71, 4.72], false)},
T sin x<0 := {([3.14, 3.15], true), ([6.28, 6.29], false)},

T ϕ := {([0], true), ([4.71, 4.72], false)}.

6.2 Monitoring Atomic Propositions

This section describes the MonitorAP procedure (Algo-
rithm 2) that, given a system S and an STL property
ϕ, computes a set T containing an approximated set
T p of consistent time intervals for each p ∈ APϕ.

The outer loop enumerates each atomic proposi-
tion p of the form f(x) < 0. Lines 3–4 compute the
initial polarity by evaluating the proposition at time
0; the set T p is initialized accordingly. Note that X
represents a solving process for the signals in SS t̄(S)
(see Section 4.1), which can be regarded as a function
I≥0 → In. The inner loop searches for bounds at which
f changes sign. Line 7 invokes the SearchZero procedure
(Algorithm 3), which searches for the earliest bound at
which p switches consistency within the time interval
t, and outputs a sharp enclosure of the bound (or ∅ if

Algorithm 2 MonitorAP algorithm

Input: S, ϕ
Output: T

1: T = ∅
2: for p = f(x) < 0 ∈ APϕ do
3: b := p(X(0))
4: if b then T p := {([0], b)} else T p := ∅
5: t := [0, ||ϕ||]; b := ¬b
6: loop
7: t := SearchZero(X, F, f, t)
8: if t = ∅ then break end if
9: T p := T p ∪ {(t, b)}; t := [t, ||ϕ||]; b := ¬b

10: end loop
11: T := T ∪ {T p}
12: end for

13: return T

there is no solution). This result is stored in the set
T p, and T p is stored in T .

Example 6 For ϕ in Example 5, MonitorAP computes
T as {T cos x1<0,T sin x1<0}.

The evaluation of atomic propositions f(x) < 0
switches between true and false at the root of f : X →
R. The intersection between a signal x̃(t) and a bound-
ary condition f(x) = 0 is searched by Algorithm 3. As
inputs, this algorithm accepts an interval extension of
the signal X : I≥0 → In, a vector field F : X → X,
the function f , and a time interval tinit ∈ I≥0 to be
searched. The algorithm computes the time interval
t ⊆ tinit that encloses the earliest root, i.e.,

t = 2
{

min{t∈tinit | f(x̃(t)) = 0}
| ∀x̃∈SS t̄init(S)

}
. (4)

SearchZero verifies that t encloses a unique bound, i.e.,

∀x̃∈SS tinit(S) ∃!t∈t f(x̃(t)) = 0. (5)

Alternatively, if no bound exists in tinit, SearchZero ver-
ifies the following:

∀x̃∈SS tinit(S) ∀t∈tinit f(x̃(t)) 6= 0. (6)

Theorem 1 (Soundness) If SearchZero returns an
interval t 6= ∅, properties (4) and (5) hold. If it re-
turns ∅, property (6) holds.

To justify the soundness os SearchZero, we describe
some details of Algorithm 3. Lines 2–6 repeatedly filter
the time interval t using the interval Newton operator.
Line 4 (and Line 10) invokes the Dt procedure, which is
given a function f and computes an interval enclosure
of the derivative d

dtf(x̃(t)) over t using the chain rule

d
dtf(x̃(t))= d

dxf(x̃(t)) · ddt x̃(t) ⊆ f ′(X(t)) ·F (X(t)).
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Algorithm 3 SearchZero algorithm

Input: X : I≥0 → In, F : X → X, f : X → R,
tinit ∈ I≥0

Output: t ∈ I
Parameter: ε ∈ Q>0, θ ∈ (0, 1) ⊂ Q

1: t := tinit

2: repeat {Lower bound reduction}
3: tbak := t
4: d := Dt(f,X, F, t)
5: t := t+ ExtDiv(−f(X(t)), d, t− t)
6: until d(tbak, t) ≤ ε
7: if t = ∅ then return ∅ end if

8: t := t; ∆ :=∞
9: loop {Unique solution existence verification}

10: d := Dt(f,X, F, t)
11: if d 3 0 then error end if
12: t′ := t− f(X(t))/d
13: if t′ ⊆ int t then t := t′; break end if
14: ∆bak := ∆; ∆ := d(t, t′)
15: t := tinit ∩ Inflate(t′, 1+θ)
16: if ∆ ≥ (1−θ) ∆bak then error end if
17: end loop

18: return t

Next, at Line 5, the interval Newton operator is applied.
To handle the numerator interval d containing zero, we
implement the interval Newton by the extended divi-
sion described in Section 3. Because we expand the in-
terval Newton on the lower bound t and the extended
division encloses the values in the t − t domain, the
resulting t is filtered its inconsistent portion without
losing the solutions or being expanded. If the interval
Newton returns ∅, SearchZero also returns ∅ to signal
the unsatisfiability (Line 7).

Because t may contain several solutions, Line 8 of
the algorithm resets t to the lower bound as a starting
value for computing the enclosure of the earliest solu-
tion. Then, SearchZero checks that the time interval
contains a unique solution. To this end, it applies the
interval Newton with the inclusion test to prove the
unique existence of a solution within the contracted in-
terval t′ (Lines 9–17). The interval Newton verification
is repeated with an inflation process of the time inter-
val (see [25] for a detailed implementation). If Line 18
is reached with no error, the time interval t is a sharp
enclosure of the first zero of f(x̃(t)) = 0.

When SearchZero is implemented with machine-
representable real numbers or when there is a tangency
between the signal and the boundary condition, an er-
ror may result. Line 11 of SearchZero outputs an error
if the derivative on an (inflated) time interval contains
zero. At Line 16, we limit the number of iterations by
specifying a threshold 1−θ for the inflation ratio be-
tween two consecutive contraction amounts as in [25].

Algorithm 4 Propagate algorithm

Input: ϕ, T = {T p}p∈APϕ

Output: T ϕ

1: switch ϕ
2: case p :
3: return T p

4: case ¬ϕ′ :
5: return Invert(Propagate(ϕ′, T ))
6: case ϕ1 ∨ ϕ2 :
7: T 1 := Propagate(ϕ1, T )
8: T 2 := Propagate(ϕ2, T )
9: return Join(T 1,T 2)

10: case ϕ1Utϕ2 :
11: T 1 := Propagate(ϕ1, T )
12: T 2 := Propagate(ϕ2, T )
13: return ShiftAllt(T 1,T 2)
14: end switch

6.3 Evaluation of STL Properties

We now describe the procedures for evaluating STL for-
mulae at Lines 3 and 4 of Algorithm 1. Propagation of a
set of monitored time intervals that are consistent with
the atomic propositions is implemented as a rigorous
and sound but incomplete procedure.

To evaluate the approximated sets, we extend the
evaluation procedure on sets of consistent time inter-
vals described in Section 5.2. Algorithm 4 implements
Step 2 of the procedure, which propagates the STL for-
mulae over a set of time intervals.

We now handle the approximated sets by extend-
ing the operations (1)–(3) on sets of time intervals.
The procedures for the operations Invert, Join, Intersect,
and ShiftAllt are described in Figure A· 1 in the ap-
pendix. Note that, some operations cause ambiguities
when handling non-canonical approximated time inter-
vals. Such a situation is exemplified below. To avoid
these ambiguities, our implementation results in an er-
ror once a resulting set becomes non-canonical.†

Example 7 Consider the same timer system as in
Example 5, i.e. x̃(t) := t, and the property ϕ :=
F[0,t]¬(x − 1 < 0 ∨ 1 − x < 0), where t ∈ R>0.
The subformula x − 1 < 0 ∨ 1 − x < 0 is consis-
tent at every time except at t = 1, therefore, the set
of consistent time intervals is T := {[0, 1), [1, tmax)}.
Assume T is approximated with a non-canonical set
{([0], true), ([0.95, 1.1], false), ([0.9, 1.05], true)}.†† To
verify ϕ, the procedures Invert and ShiftAll[0,t] should

†To output unknown only due to the insufficient preci-
sion of numerical computation, the procedure should branch
the process and proceed evaluation for both cases; imple-
mentation of such a procedure remains as a future work.
††The bound enclosures are usually very accurate, but

kept large on this example to emphasize their impact.
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be applied. However, as illustrated in Figure 4, we
cannot decide whether the overlapping boundary inter-
vals should be removed and expanded, or separated, and
Propagate results in an error.††† This ambiguous situa-
tion is avoided by using only canonical approximations.
Note that, in some cases, this local ambiguity does not
impact the global consistency. In the case of this exam-
ple, if t < 0.9, both scenarios lead to false, and forking
the resolution process would be able to resolve the local
ambiguity.

[0,1) [1,3)

Fig. 4 Ambiguity caused by overlapping bounds

The following claims state that the procedures are
closed in the canonical approximated sets, and the
Propagate procedure is sound.

Lemma 1 Let T 1 and T 2 be canonical approximated
sets. If T results from Invert(T 1), Join(T 1,T 2),
Intersect(T 1,T 2), or ShiftAllt(T 1,T 2), and if no error
occurs in these procedures, then T is canonical.

Proof. See Appendix A.1.

Theorem 2 (Soundness) Consider an STL formula
ϕ and a set T = {T p}p∈APϕ

of approximated sets of
time intervals that are consistent with atomic proposi-
tions. If T ϕ = Propagate(ϕ, T ), then T ϕ is an approx-
imation of Tϕ.

Proof. See Appendix A.2.

Finally, we obtain T ϕ and conclude that ϕ is valid
if s1 is the smallest interval in T ϕ and s1 ≤ 0 < s′1,
unsat if T ϕ = ∅ or 0 < s1, or unknown if 0 ∈ [s1, s1).
The computation is performed by ConsistentAtInitTime
(see Algorithm 5 in the appendix).

6.4 Computational Cost

The time complexity of Propagate is bounded by the
product of the size (i.e., the number of operators) of
the considered STL formula ϕ and the cost of the pro-
cedures Invert, Join, and ShiftAllt in Figure A· 1. The

†††The property F[2,3]¬(x− 1)2 < 0 is verified in the same
way. The set T is consistent with the atomic proposition
(x − 1)2 < 0. The verification will result in an error when
SearchZero computes an enclosure of T at time 1.

complexity of the procedures on approximated sets is
polynomial in the number of intersections of the signal
and the atomic proposition bounds (see Appendix A.3).
The number of iterations in MonitorAP is bounded by
the product of the size of APϕ and the maximum num-
ber of bounds detected for an atomic proposition, i.e.,
maxp∈APϕ

#T p.
The number of bounds detected depends on the os-

cillations of the ODE solution and the predicate bound.
Although it can be very high in theory, it is usually
quite small. In the generic case of non tangent inter-
section between the ODE solution and the predicate
bound, the SearchZero procedure has a quadratic con-
vergence and therefore a very low computational cost.
The main computational cost of the method is there-
fore the validated simulation of the ODE. This cost is
difficult to foresee: It highly depends on the ODE and
the solver. For example, validated solvers are currently
quite inefficient in solving stiff ODEs, and require to it-
erate many steps leading to a high computational cost.
The complexity of Propagate is bounded by the product
of the size (i.e., the number of operators) of the consid-
ered STL formula ϕ and the cost of the procedures in
Figure A· 1.

7. Experiments

We have implemented the proposed method and exper-
imented on two examples to confirm the effectiveness of
the method. Experiments were run on a 3.4GHz Intel
Xeon processor with 16GB of RAM.

7.1 Implementation

Algorithms 1–5 were implemented in OCaml and
C/C++. ODEs were solved by procedures in the
CAPD library. The configurable parameters tmin, ε,
and θ correspond to the smallest integration step size
that CAPD can take, the threshold used in Figure 3,
and the threshold used in Inflate, respectively. In the
experiments, these parameters were set as tmin :=
10−14, ε := 10−14, and θ := 0.01.

7.2 Verification of the Rotation System

We verified the system in Example 1 on four STL for-
mulae. The specifications and results of this experi-
ment are summarized in Table 1. The first column lists
the STL formulae in which the bound τ of each G op-
erator is parameterized and set to either τ := 100 or
τ := 10. The column “#APϕ” represents the number
of atomic propositions in each ϕ. In each verification,
the parameter value u1 was first randomly selected from
[−0.1, 0.1] and then modified to u1 := u1 + u1, where
u1 was any of [0], [−10−6, 10−6], or [−10−3, 10−3]. The
column “widu1” indicates the interval used in each ver-
ification.
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Table 1 Experimental results (rotation)

ϕ #APϕ τ wid s1 #valid #unsat #unknown time

G[0,τ ]F[0,6.284]¬(x2 − 1 < 0)
100

0 507 493 0+0 0.51s
2 · 10−6 483 508 9+0 0.52s

1 2 · 10−3 0 462 538+0 –

10
0 490 510 0+0 0.03s

2 · 10−3 270 470 260+0 0.02s

G[0,τ ]F[0,6.284]

(¬(x2 − 1 < 0) ∧ F[0,3.142]¬(−x2 − 1 < 0))

100
0 485 515 0+0 1.1s

2 · 10−6 353 505 26+116 1.03s
2 2 · 10−3 0 463 537+0 –

10
0 514 486 0+0 0.05s

2 · 10−3 86 493 421+0 0.06s

G[0,τ ]F[0,6.284](¬(x2 − 1 < 0)∧
F[0,1.571](¬(−x2 < 0)∧
F[0,1.571](¬(−x2 − 1 < 0)∧
F[0,1.571](−x2 < 0) )))

100
0 482 518 0+0 1.7s

2 · 10−6 346 498 18+138 1.6s
3 2 · 10−3 0 0 1000+0 –

10
0 516 484 0+0 0.08s

2 · 10−3 84 0 916+0 0.09s

G[0,τ ]F[0,6.284](¬(x2 − 1 < 0)∧
F[0,0.786]((x2−0.707<0) ∧ F[0,0.786](¬(−x2<0)∧
F[0,0.786](¬(−x2−0.707<0) ∧ F[0,0.786](¬(−x2−1<0)∧
F[0,0.786]((−x2−0.707<0) ∧ F[0,0.786]((−x2<0)∧
F[0,0.786]¬(x2 − 0.707 < 0) )))))))

100
0 490 510 0+0 2.7s

2 · 10−6 352 477 74+97 2.7s
5 2 · 10−3 0 0 1000+0 –

10
0 499 501 0+0 0.14

2 · 10−3 0 0 1000+0 –

The considered STL properties are assumed to
hold if u1 > 0 and not to hold if u1 < 0. Each
STL property was verified for 1000 times. The columns
“#valid”, “#unsat”, and “#unknown” list the numbers
of runs resulting in each output; the “#unknown” out-
puts are separated with ‘+’ according to whether it was
caused by an error in the SearchZero algorithm or an
error in the Propagate and ConsistentAtInitTime algo-
rithms. The column “time” lists the average CPU time
taken for a valid verification.

From the results, we can observe that the rates
of inconclusive runs were related to the simulation
lengths, the uncertainties in the parameter values,
and the size of the formula ϕ. unknown results
were generated by the interval Newton process in
SearchZero and the undecidable situations in Propagate
and ConsistentAtInitTime. In this experiment, verifica-
tion failures increased as the value of u1 approached 0
and the signal and boundary condition became close to
tangent. When the parameter values were exact and
widu1 = 0, all the verifications succeeded even under
near-singular conditions because the considered signals
were always enclosed with tight intervals. As coarser
intervals were appended to the parameter values and
the simulation lengths became longer, the number of
unknown results increased; meanwhile, the number of
valid results decreased more rapidly than the number
of unknown results because a valid verification required
detecting a number of bounds for each atomic proposi-
tion. Any detection failure resulted in unknown.

The bottleneck of the verification process is
the SearchZero algorithm that integrates ODEs and
searches for boundary intervals. The number of calls to
SearchZero depends on the size of APϕ and the num-
ber of bounds as described in Section 6.4. Therefore,
the runtime increased linearly in either the number

of atomic propositions or the simulation length that
should be proportional to the number of bounds. The
cost of evaluation of the STL formulae seemed relatively
small and not affecting the overall timings.

7.3 Verification of the Lorenz System

We verified the system in Example 2 on the following
STL formula:

G[0,15](¬(−x1 − 15 < 0)⇒
F[0.5,5]G[0,1]((x1−10)2+(x2−10)2−150 < 0)) (7)

In each verification, the parameters were set to exact
values randomly selected from the domain. The signal
(x1, x2) oscillates on either the positive or the negative
side. According to the formula, when x1 descends below
−15, (x1, x2) moves into the disk (x1 − 10)2 + (x2 −
10)2 < 150 after some duration in the interval [0.5, 5]
and remains in the disk for at least 1 time unit.

The experimental results are summarized in Ta-
ble 2. As in Table 1, the columns (from left to right)
represent the number of atomic propositions, the num-
bers of valid, unsat, and unknown verification results in
1000 runs, and the average CPU time for a valid verifi-
cation.

Table 2 Experimental results (Lorenz)

#APϕ #valid #unsat #unknown time

2 566 413 21 9.2s

This experiment demonstrated that the proposed
method can handle a chaotic system with a nonlinear
atomic proposition. In such systems, non-validated nu-
merical methods frequently output wrong results be-
cause of rounding errors, as shown in the next section.
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As explained in Example 2, CAPD integration gener-
ated a coarse enclosure of the signal (around 25.8 time
units), which introduced errors in the integration pro-
cess X or the interval Newton process. These errors
would account for the 21 unknown results in Table 2.

7.4 Comparison with Breach Toolbox

For comparative purposes, we ran the above problems
on the Breach Toolbox [15] (built from commit ed1178c
in the Mercurial repository), a tool for STL verification
based on numerical computation with rounding errors.
Breach can check the satisfiability and the robustness,
which is quantified by a positive or negative real value
based on the distance between a considered signal and
the bound in the state space where the satisfaction of
the STL property switches.

For the rotation system, when the parameter value
u1 approached 0 (specifically, at u1 := 0.001), Breach
returned unsat, whereas our implementation returned
valid. This incorrect verification was implied by the
low robustness value. In this example, the robustness
was low for all parameter values because the initial part
of the signal was close to the bounds of the atomic
propositions.

For the Lorenz system, the numerical integration
process of Breach yielded incorrect signals, as explained
in Example 3; therefore, the verification results were
unreliable. For example, when u = (10, 28, 2.5), Breach
reported an unsat verification of property (7), whereas
our method returned certified valid.

Breach ran more quickly than our implementation:
it required less than 0.01s for both problems.

8. Conclusions

We have presented a sound STL validation method for
checking that all initialized signals satisfy the proper-
ties of a system. The proposed method detects a wit-
ness signal and verifies its unique existence using an
interval-based ODE integration and an interval New-
ton method. The experimental results demonstrate the
potential for the method as a practical tool.

In future work, we will improve our method and
implementation to handle hybrid systems and large and
uncertain initial values. Examples in a realistic setting
should be demonstrated with the implementation.
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Appendix: Omitted Procedures and Proofs

Procedures of the operations on approximated sets are
specified in Figure A· 1. Invert, Join, Intersect, and
ShiftAllt implement the operations in Step 2 of Sec-
tion 5.2 as procedures that modify the set of boundary
intervals. ShiftAllt consists of sub-procedures ShiftPairs
and ShiftElem; ShiftPairs computes the intersections
and back-shifting pairwise (Pairs(T ) enumerates ap-
proximations of time intervals in T ); ShiftElem applies
the back-shifting. The results of the procedures may
become non-canonical, so Normalize is applied at last
to make them canonical.

ConsistentAtInitTime is implemented in Algo-
rithm 5. An input T ϕ is either T true, ∅, or an ap-
proximated set; in the last case, the algorithm picks an
earliest approximation with GetFirstElem, and checks
whether it contains 0 or not.

Algorithm 5 ConsistentAtInitTime algorithm

Input: T ϕ

Output: valid, unsat, or unknown
1: if T ϕ = T true then
2: return valid
3: else if T ϕ = ∅ then
4: return unsat
5: else
6: (s, true) := GetFirstElem(T ϕ)
7: if s ≤ 0 then
8: return valid
9: else if s > 0 then

10: return unsat
11: else {0 ∈ s}
12: return unknown
13: end if
14: end if

A.1 Proof of Lemma 4

We check that each condition of a canonical approxi-
mation (Definition 6) is assured by Normalize, the last
sub-process in each procedure:

• During the propagation process, polarity alter-
nation might be inhibited by Join, Intersect, or

ShiftAllt, which locates a boundary interval inside
another consistent time interval. These embedded
bounds are removed by N1. An embodiment can
be determined by checking the difference between
the numbers of lower and upper bounds in the past
since the smallest elements in T 1 and T 2 are al-
ways the lower-bound enclosures.

• The upper bound of each time interval s in T
becomes non-negative because elements with non-
positive upper bounds are filtered out by N2.

• No two elements of T overlap because an overlap-
ping pair with opposite polarity results in an error
(the second branch of Normalize) and an overlap
with the same polarity is joined (N3); thus, the
elements in T can be sorted.

• N4 assures that the polarity value of the smallest
element is true. 2

A.2 Proof of Theorem 2

We perform a structural induction based on the STL
formulae.

For the base case ϕ = p ∈ APϕ, T p exists in T .
For the inductive step, consider STL formulae ϕ1

and ϕ2, and assume as the inductive hypothesis that we
have canonical approximated sets T ϕ1

and T ϕ2
of Tϕ1

and Tϕ2
, respectively. We show that Propagate com-

putes the approximated set properly for each formula
constructed from ϕ1 and ϕ2.

When ϕ = ¬ϕ1, the polarity of each bound of T ϕ1

is switched by Invert to obtain an approximated set
for the complementary time intervals, which is sound
regarding the operation (1) in Step 2 of Section 5.2.
Then, Normalize is applied to canonicalize the result; it
will append or remove the smallest bound. Let (s, false)
be the smallest element in a result of polarity inversion.
We confirm that Normalize is sound in a case analysis:

• if s is non-empty and s 3 0, the computation re-
sults in an error (the first branch of Normalize);

• if s > 0, the element remains and the element
([0], true) is appended by N3;

• if s = [0], the element is removed by N2.

When ϕ = ϕ1 ∨ ϕ2, T ϕ1
and T ϕ2

are modified by
Join, which joins the elements of both approximated
sets; a result might be a non-canonical set when two
approximated time intervals from T ϕ1

and T ϕ2
over-

lap. Then, Normalize is applied to unify two overlapping
approximations so that the result becomes a sound ap-
proximated set with respect to the operation (2). When
two approximated time intervals ((s1, true), (s′1, false))
and ((s2, true), (s′2, false)) overlap, the boundary inter-
val (e.g., s1) either (i) overlaps with another bound-
ary interval, (ii) is included in the inner approximation
(s2, s

′
2), or (iii) is excluded from the outer approxima-

tion [s2, s
′
2]. We confirm the soundness of Normalize
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Invert(T ) :=


∅ if T = T true

T true if T = ∅
Normalize( {(s,¬b) | (s, b) ∈ T } ) otherwise

Join(T 1,T 2) :=

{
T true if T 1 = T true ∨ T 2 = T true

Normalize( T 1 ∪ T 2 ) otherwise

Intersect(T 1,T 2) := Invert( Join(Invert(T 1), Invert(T 2)) )

ShiftAllt(T 1,T 2) :=

{
∅ if T 1 = ∅ ∨ T 2 = ∅
Normalize( ShiftPairst(T1,T2) ) otherwise

ShiftPairst(T1,T2) :=


{
ShiftElemt(P 2) | P 2 ∈ Pairs(T 2)

}
if T 1 = T true{

Intersect( ShiftElemt(P 1), P 1 ) | P 1 ∈ Pairs(T 1)
}

if T 2 = T true{
Intersect( ShiftElemt(Intersect(P 1,P 2)), P 1 ) | P 1 ∈ Pairs(T 1),P 2 ∈ Pairs(T 2)

}
otherwise

ShiftElemt(T ) := Normalize(
{

(s− t, true) | ∃(s, true)∈T
}
∪
{

(s− t, false) | (s, false) ∈ T
}

)

Normalize(T ) :=


error if ∃(s, false)∈T s 6= [0] ∧ s 3 0

error if ∃(s, b), (s′,¬b)∈T s ∩ s′ 6= ∅
N4(N3(N2(N1(T )))) otherwise

N1(T ) :=
{

(s, true) ∈ T | #{(s′, true) ∈ T | s′ < s} −#{(s′′, false) ∈ T | s′′ < s} < 1
}
∪{

(s, false) ∈ T | #{(s′, true) ∈ T | s′ < s} −#{(s′′, false) ∈ T | s′′ < s} < 2
}

N2(T ) :=

{
T true if max T = (s, true) such that s ≤ 0

{(s, b) ∈ T | s > 0} otherwise

N3(T ) :=
{

(s, b) ∈ T | ∀(s′, b)∈T s ∩ s′ = ∅
}
∪
{

(s ∪ s′, b) | ∃(s, b), (s′, b)∈T s ∩ s′ 6= ∅
}

N4(T ) :=

{
T ∪ {([0], true)} if (t, false) = min T

T otherwise

Fig.A· 1 Procedures for approximated sets of consistent time intervals

in another case analysis:

• in case (i), the bound is removed by the second
branch of Normalize and by N3;
• in case (ii), the bound is removed by N1;
• in case (iii), the bound remains since it should be

the bound of the joined time interval.

When ϕ = ϕ1Utϕ2, T ϕ1
and T ϕ2

are modified
by ShiftAllt, which applies Intersect, ShiftPairst and
ShiftElemt, those implement the operation (3). The
soundness of Intersect with respect to the set intersec-
tion is evident because this procedure simply imple-
ments the set operation (T 1 \ R≥0 ∪ T 2 \ R≥0) \ R≥0.
ShiftPairst exhaustively applies ShiftElemt to each pair
of boundary enclosures in T 1 and T 2. ShiftElemt trans-
lates the lower and upper bounds, according to the op-
eration (3); this procedure is sound because an interval
enclosure is assumed for each bound of the consistent
time intervals. Normalize, then, resolves the overlaps
and closes the lowest bound as in the case of ϕ1 ∨ ϕ2.
2

A.3 Computational Complexity of the Operations on
Approximated Sets

Let #T be the number of elements in T ; if the bounds
appear uniformly in a simulation, #T is proportional

to ||ϕ||; in other words, #T is bounded by ||ϕ||/ε∗
where ε∗ is the precision of the floating-point num-
bers. The complexity of Normalize is bounded by
O(#T 2) since the complexities of N1, N2, N3, and
N4 are O(#T 2), O(#T ), O(#T ), and O(1), respec-
tively. Without the Normalize process, the complexi-
ties of Invert and Join are O(#T ) and O(1), respec-
tively; together with Normalize, their complexities are
O(#T 2). The complexity of ShiftAllt is O(#T 4) (let
#T be the larger cardinality for T 1 or T 2) since the
complexities of ShiftElem and ShiftPairs are O(#T 2)
and O(#T 2 ·#T 2), respectively.
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