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Event-Triggered and Self-Triggered Control for Networked Control
Systems Using Online Optimization

SUMMARY  Event-triggered and self-triggered control methods are an
important control strategy in networked control systems. Event-triggered
control is a method that the measured signal is sent to the controller (i.e., the
control input is recomputed) only when a certain condition is satisfied. Self-
triggered control is a method that the control input and the (non-uniform)
sampling interval are computed simultaneously. In this paper, we propose
new methods of event-triggered control and self-triggered control from the
viewpoint of online optimization (i.e., model predictive control). In self-
triggered control, the control input and the sampling interval are obtained
by solving a pair of a quadratic programming (QP) problem and a mixed
integer linear programming (MILP) problem. In event-triggered control,
whether the control input is updated or not is determined by solving two
QP problems. The effectiveness of the proposed methods is presented by
numerical examples.

key words: event-triggered control, self-triggered control, networked con-
trol systems, model predictive control

1. Introduction

In recent years, much attention has been paid to analysis and
synthesis of networked control systems (NCSs) [1], [4]. An
NCS is a control system where components such as plants,
sensors, controllers, and actuators are connected through
communication networks. In each component, messages
about the control input or the measured output are sent and
received (see Fig. 1). In distributed control systems, subsys-
tems are frequently connected via communication networks,
and it is important to consider analysis and synthesis of such
systems from the viewpoint of NCSs. In design of NCSs,
there are several technical issues such as packet losses,
transmission delays, communication constraints. However,
it is difficult to consider these issues in a unified way, and it
is suitable to discuss an individual issue. From this view-
point, several results have been obtained so far (see e.g.,
[10]-[13]).

In this paper, we focus on the technical issue on sam-
pling intervals. The sampling interval is chosen based on
CPU processing time, communication bandwidth, and so
on. Then, transmissions from the controller (the sensor) to
the actuator (the controller) occur at each sampling time.
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Fig.1 Illustration of networked control systems. Actuators and sensors
may be located in a distributed way.

However, in NCSs, it is desirable that sending and receiving
messages should occur, only when there exists important in-
formation. In this sense, uniform sampling intervals are not
necessarily suitable.

From this viewpoint, event-triggered control and self-
triggered control have been proposed so far (see e.g., [2],
[3], [7]1-[9], [14], [15], [18], [19], [21]-[24]). In event-
triggered control, the measured signal is sent to the con-
troller only when a certain triggering condition on the mea-
sured signal is satisfied. In this method, it is important to
consider how to design the triggering condition, i.e., the
condition for sending the measured signal to the controller
(equivalently, the condition for recomputing the control in-
put using the measured signal). In self-triggered control, the
next sampling time at which the control input is recomputed
is computed. That is, both the sampling interval and the
control input are computed simultaneously. In many exist-
ing works, first, the continuous-time controller is obtained,
and after that, the sampling interval such that stability is pre-
served is computed.

To the best of our knowledge, few results using on-
line optimization have been obtained so far. For example,
in [22], [24], a design method based one-step finite horizon
boundary has been proposed. In this method, the first sam-
pling interval such that the optimal value of the cost func-
tion is improved, is computed under the constraint that other
sampling periods are given as a constant. However, a non-
linear equation must be solved, and input constraints can-
not be considered. In [14], [15], the authors have proposed
an approximate solution method and an iterative solution
method for self-triggered model predictive control (MPC).
The MPC method in which the optimal control problem is
solved at each time is one of online optimization methods.
An approximate solution can be found fast, but the long
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computation time is generally required for deriving an exact
solution. In [20], self-triggered predictive control for mixed
logical dynamical systems has been studied.

In this paper, motivated by periodic event-triggered
control [9], [21], we propose new methods of event-
triggered control and self-triggered control from the view-
point of online optimization (i.e., MPC). In periodic event-
triggered control, the triggering condition is verified at each
sampling time, where the sampling interval is given. In
the proposed event-triggered control method, the trigger-
ing condition is given by two QP problems. By the trig-
gering condition, we determine whether the control input at
the next sampling time is updated or not. In the proposed
self-triggered control method, we determine sampling times
that update of the control input is skipped. In the proposed
method, skip of the sampling time is determined by solving
a pair of a QP problem and an MILP problem. The effec-
tiveness of the proposed methods is presented by numerical
examples. The proposed methods provide us a basic frame-
work for event-triggered and self-triggered control methods.

Notation: Let R denote the set of real numbers. Let 7,,,
0,5 denote the n X n identity matrix, the m X n zero matrix,
respectively. For simplicity, we sometimes use the symbol 0
instead of 0,,x,,, and the symbol [ instead of I,,.

2. Problem Formulation

In this section, we formulate the self-triggered and event-
triggered control problems. After a plant is explained as
preliminaries, each problem is explained.

2.1 Preliminaries

Consider the following continuous-time linear system:
x(t) = Ax(t) + Bu(1), (1)

where x(f) € R”" is the state, and u(r) € R™ is the control
input. For u(?), the constraint upi, < u(t) < Upax 1S imM-
posed, where the vectors umin, Umax € R™ are a given con-
stant vector. Let #;, k = 0, 1,... denote the sampling time.
The sampling interval is given by h := f;4; — #, which is
a non-negative constant. Assume that the control input is
piecewise constant, that is, the control input is given by

u(t) = uty), t€ [t tke1)-

Hereafter, we denote x(#;) and u(#;) as x; and uy, respec-
tively. In addition, assume that a pair (A, B) is stabilizable.

Consider the following conventional finite-time
sampled-data optimal control problem.

Problem 1: Suppose that for the system (1), the initial time
1o, the initial state x(, and the prediction horizon N are given.
Then, find a control input ug, uy,...,uy-; minimizing the
following cost function

N-1 i1
J(xo, u(t)) = Z f (" (10x(t) + u" ()Ru())} dt
k=0 Y
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+xy O Xy, 2)

where the weights Q and Q; are positive semi-definite, and
the weight R is positive definite.

Let J; denote the optimal value of the cost function (2)
in Problem 1.

Here, we explain one of the methods to choose Q. The
weight O may be given by a solution P(h) of the following
discrete-time algebraic Riccati equation

AT(WP(WA(h) — P(h) — (AT (h)P(h)B(h) + § (h))
X(B" (h)P(h)B(h) + R(h))™!
x(BT (WP(WAh) + §T(h)) + O(h) = 0,

where

h
A(h) := ", B(h) := f e"drB,
0

and
o Sy | _ ("m0 0]k
[ Sty kay [T, ¢ o RO
A B

peld ]
Then, xf,Q rxn, QO = P(h) is the optimal value of the cost
function J = fr ;o {xT(t)Qx(t) + uT(t)Ru(t)}dt under no in-
put constraint. Hence, we can approximately evaluate the
behavior after ty.

2.2 Self-Triggered Optimal Control Problem

Using J;;, consider the following self-triggered optimal con-
trol problem.

Problem 2: Suppose that for the system (1), J; and the
non-negative constant Ny < N are given. Then, find a con-
trol input ug, uy, ..., uy-; maximizing / € {0, 1,..., N,} sat-
isfying the following conditions

up=uy =---=u, <Ny, 3)
J(xo, u(®)) < yJy, 4

where y > 1 is a given constant.

In Problem 2, the time interval [fy, #;;;) in which the
same control input is applied is maximized under the con-
straint (4). Hence, control performance can be adjusted by
suitably giving y. In this problem, we focus on only the time
interval [y, #;11), but by applying the following procedure to
generate the control input, we can realize self-triggered con-
trol.

Procedure of Self-triggered Optimal Control:
Step 1: Set ¢y, = 0, and give the initial state x;.

Step 2: In the controller, solve Problem 1 and Problem 2.

Step 3: Until control starts, send the message about u to
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the plant.
Step 4: Apply u(t) = ug, t € [to, t7+1)-
Step 5: In the controller, calculate the predicted state X;.;.

Step 6: In the controller, solve Problem 1 and Problem 2 by
using X1 as Xxp.

Step 7: Send the message about i to the plant.

Step 8: Wait until time #;,.

Step 9: Update 1y := £, measure xj, send the message
about xy to the controller, and return to Step 4.

Remark 1: In the method proposed in [20], non-uniform
sampling intervals in the time interval [0, N] are calculated.
In Problem 2, to reduce the computational cost, we focus on
only the first sampling interval.

2.3 Event-Triggered Optimal Control Problem

Next, we consider the event-triggered optimal control prob-
lem studied here. In this paper, we suppose the following
situation.

(i) The measured state is sent to the controller at time ?;.

(i) Whether the control input is sent to the plant or not is
determined by solving a certain problem.

The above (i) is not imposed in the conventional event-

triggered control method (see also Remark 2). However, in

several cases, the state at each time is useful for after-control

analysis. Hence, we focus on sending of the control input.
Consider the following problem.

Problem 3: Suppose that for the system (1), Jj and the
past control input u_; (u(¢) = u_1, t < 0) are given. Then,
find a control input ug, ui,...,uy-; maximizing p € {0, 1}
satisfying the following conditions
U1 = Uy, %)
J(xo, u(?)) < yJg, (6)
where y > 1 is a given constant.

In this problem, if p is obtained as p = 1, then u_; = uy
holds, that is, the control input is not changed. If p is ob-
tained as p = 0, then u_; and uy may be different. By ap-
plying the following procedure to generate the control input,
we can realize event-triggered control.

Procedure of Event-triggered Optimal Control:
Step 1: Set #y = 0, and give the initial state x;.

Step 2: In the controller, solve Problem 1.

Step 3: Until control starts, send the message about ug to
the plant.

Step 4: Apply u(t) = ug, t € [to,11).
Step 5: In the controller, calculate the predicted state X;.

Step 6: In the controller, solve Problem 1 and Problem 3 by
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using %] as xo.

Step 7: If uy = u_; holds, do not send any massage. Other-
wise, send the message about u to the plant.

Step 8: Wait until time ¢;.

Step 9: Update 1 := |, measure xy, send the message about
Xo to the controller, and return to Step 4.

Remark 2: In the conventional event-triggered control
method, the triggering condition, that is, the condition for
sending the measured state to the controller is given by a
simple function. Hence, the triggering condition is imple-
mented in sensors, i.e., simple devices. In the proposed
method, the triggering condition is given by two optimiza-
tion problems (Problem 1 and Problem 3). Its implementa-
tion in sensors will be difficult in the current step. Simpli-
fication of the triggering condition is important, and will be
focused on as one of the future efforts.

3. Solution Method
3.1 Solution Method for Problem 1

According to the conventional result on sampled-data con-
trol theory, Problem 1 can be equivalently rewritten as the
following optimal control problem of discrete-time linear
systems.

Problem 4: Find a control input sequence ug, U, .. ., Uy—|
minimizing the following cost function

N-1 Tr A §
) x| [0 S| [xi
J(xo, u(t)) = kZ(; [Mk] ST(h) R(h)} [”k]
+x]{/Qfo @
subject to

Xert = A()xi + B(h)uy,

Umin < Uk < Umax-

Next, consider reducing Problem 4 to a quadratic pro-
gramming (QP) problem. Define

T
o [T T T
x.—[xo Xp e xN] ,

T
U I T
=l |

Then, we can obtain

<

X =Axy + Bi,

where
I
A(h)
A=| AWM |
AN(h)
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0 0 oo 0]
B(h) 0
A(h)B(h) B(h)
AX(W)B(h)  A(h)B(h)

o]
Il

: : .- 0
[AN=Y(m)B(h) AN"2(h)B(h) --- B(h)]

In addition, we define

Q := block-diag(Q(h), O(h), ..., O(h), Qf),
__ [block-diag(§ (h), S (h), ..., S (h))

' Ons(N=1ym ’

R := block-diag(R(h), R(h), . .., R(h)).

%]

Then, the cost function (7) can be rewritten as follows:

J=x"0x+25"Sa+a' R
= ﬁTLzﬁ + Ly + L(),

where

L, = R+B'S +5"B+ BT OB,

Ly = 2x;AT(S + OB),

LO = ngTQAXQ.
Finally, fimin = [ wl ul oo ul 17 and fgey =
[ul ul, - ul 17 are also defined.

Under the above preparation, Problem 4 is equivalent
to the following QP problem:

Problem 5: Find # minimizing the cost function &7 Ly +
Ly + Ly subject to fiyin < it < -

This QP problem can be solved by using a suitable solver.
It may be solved by using a multi-parametric optimization
approach [6], [16]. In this case, J; and the optimal control
input are given by a piecewise affine function with respect
to xo, and an online computational cost is reduced.

3.2 Solution Method for Problem 2
Next, consider solving Problem 2. Here, continuous vari-

ables vy, 2, ...,vy, and binary variables 61, 0s,...,0y, are
introduced as follows:

up =0ug + (1 =61y,
uy = 0rug + (1 = 62)v,
) 8
un, = (SNJM() + (1 - 6NY)UNS’
and
0, <01,
03 < 0,
&)
51\/5 < 6N5—1-

For example, if 6; = 1, then u; = up and 5, < 1 hold.
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The equality u; = ug implies that the control input is not
changed at time #;. The inequality d, < 1 implies that 9, is
a free binary variable. If §; = 0, then 6, < 0 holds, that is,
0r = 53 == 5NA = 0 holds from (9)

Then, Problem 2 is equivalent to the following prob-

lem.
Problem 6: Find continuous variables i, vy, vy, . . . , Uy, and
binary variables d;, 6, . .., 0y, maximizing the cost function

01+ 02+ -+ 0n, subject to lmin < @ < lmax, (8), (9), and
i Lyt + Lyt + Lo < yJ;,. (10)

In this problem, a product of a binary variable and a
continuous variable such as 6,y is included. Such products
can be linearized by using the following lemma [5].

Lemma 1: Considerxe X CR", 6 €{0,1},and g : R" —
R™. Then, z = dg(x) is equivalent to the following linear
inequalities:

g6 <z < g0,
g(x) —g(1 -6) <z < g(x) —g(1-9),
where g= min,ey g(x) and g = max,ex g(x).

Using this lemma, Problem 6 can be equivalently
rewritten as a mixed integer linear programming (MILP)
problem with a quadratic constraint. The quadratic con-
straint is given by (10). This problem can be solved by using
a suitable solver. We remark here that the optimal solution
for Problem 6 can be obtained by solving QP problems at
most N times.

3.3 Solution Method for Problem 3

In a similar way to the solution method for Problem 6, Prob-
lem 3 can be equivalently rewritten as an MILP problem
with a quadratic constraint. Here, as the other method, we
explain a simple method.

In the case of p = 0, solving Problem 3 is equivalent to
solving Problem 1 i.e., Problem 5. Consider solving Prob-
lem 1 with the constraint up = u_1. Let J} denote the optimal
value of the cost function in this problem. If J§ < yJj is sat-
isfied, then the optimal value of p is given by p = 1, and
the optimal control input is given by the control input corre-
sponding to J{. Otherwise the optimal value of p is given by
p = 0, and the optimal control input is given by the control
input corresponding to J;. Thus, the optimal solution for
Problem 3 can be derived by solving two QP problems.

Remark 3: In the proposed solution methods, an MILP
problem or multiple QP problems (more precisely, convex
QP problems) must be solved. An MILP problem is in gen-
eral NP-hard. Although a convex QP problem is solved
in polynomial time, multiple QP problems must be solved.
Hence, in both Problem 2 and Problem 3, the sampling inter-
val & must be carefully chosen considering the trade-off be-
tween control performance and computation time. In Prob-
lem 2, the parameter Ny must be also chosen carefully. How-
ever, there is a possibility that the proposed approach cannot



472

be applied to fast dynamical systems. Such weakness is the
common weakness of online optimization (i.e., model pre-
dictive control).

4. Numerical Examples
4.1 Self-Triggered Optimal Control

First, we present a numerical example on self-triggered con-
trol. Consider the following unstable system:

.~ | 0 1 0

x(1) —[ 01 -1 ]x(t)+ 1 ]u(t).

The input constraint is given by u(f) € [-10, +10]. Parame-
ters in Problem 1 and Problem 2 are given as follows: #y = 0,
xo=[10 1017, h =05, N = 10, N, = 2, Q = 100],, and
R = 1. Then, Qf = P(h) can be derived as

117.79  17.67
P(h)‘[ 17.67 17.55 ]

We present the computational result in the case of y =
1.1. Figure 2 shows the obtained state trajectory, and Fig. 3
shows the control input trajectory. From these figures, we
see that the sampling interval is non-uniform and the state
converges to the origin. The control input and / in Problem
2 at each time are derived as follows:

u(r) = —10.00, t€[0,1.5), [ =2,

State

Time

Fig.2  State trajectory.

6
4
2]
a 0 _,—\_,—
g
s 2
i=|
5 4
O
-6
-8
-10]
0 1 2 3 4 5 6 7 8
Time

Fig.3  Control input.
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u(t) = =7.03, t€[1.5,3.0), [ =2,
u(t) = 3.10, t€[3.0,4.0), [=1,
u(t) = —1.04, t€[4.0,50), [=1,
u(®) = 0.18, t€[5.0,6.5), 1=2,
u(?) = —0.18, t€1[6.5,7.0), [ =0,
u(?) = 0.01, t€[7.0,8.5), 1=2.

In the cases of y = 1.09 and y = 1.11, the sampling intervals
were the same as those in the case of y = 1.1. In the case of
v = 1.0, the sampling intervals were 0.5 sec except for the
second sampling interval that is equal to 1.5 sec. In the case
of y = 2.0, the first five sampling intervals were obtained by
1.5 sec. In the case of y = 3.0, all sampling intervals in the
transient response were obtained by 1.5 sec. Thus, depend-
ing on v, i.e., required control performance, an appropriate
sampling interval can be obtained.

We comment the computation time for solving the pair
of Problem 1 and Problem 2. In the above simulations, this
pair was solved 30 times, where we used Gurobi Optimizer
5.6.2 on the computer with the Intel Core i7-4770K pro-
cessor and the 32 GB memory. Then, the worst computa-
tion time was 0.30 sec, and the mean computation time was
0.24 sec. Since h is given by & = 0.5, we see that the pair
of Problem 1 and Problem 2 was solved in online. Since the
closed-loop system is stable in this example, we consider
that the suitable & was chosen.

4.2  Event-Triggered Optimal Control

Next, we present a numerical example on event-triggered
control. The plant and parameters in Problem 3 are the same
as those in the previous subsection.

We present the computational result in the case of y =
1.1. Figure 4 shows the obtained state trajectory, and Fig. 5
shows the control input trajectory. From these figures, we
see that update of the control input is non-uniform and the
state converges to the origin. The control input at each time
is derived as follows:

u(t) = —10.00, € [0,2.5),
u(t) = 4.95, t€[2.5,3.0),
u(t) = —1.15, t€[3.0,4.0),
u(t) = 1.29, t € [4.0,4.5),
u(t) = —0.28, t€[4.5,5.5),
u(t) = 0.33, t€[5.5,6.0),
u(t) = —0.07, t€[6.0,6.5),
u(t) = 0.01, 1€[6.5,7.5),
u(t) = —0.01, t€[7.5,8.0).

In other words, the control input was updated 8 times un-
til time 8. In the case of y = 1.09, the control input was
updated 8 times until time 8. In the cases of y = 1.11 and
v = 2.0, the control input was updated 7 times until time 8.
In the cases of y = 3.0 and y = 4.0, the control input was
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State

Time

Fig.4  State trajectory.

Control input

0 1 2 3 4 5 6 7 8
Time

Fig.5 Control input.

updated 5 times until time 8. In the case of y = 1.0, the con-
trol input was updated 14 times until time 8 (i.e., the control
input was almost always updated at each time). Thus, in
this example, there is a trend that updating times decrease
for larger vy.

We comment about the computation time for solving
the pair of Problem 1 and Problem 3. In the above simula-
tions, this pair was solved 40 times. Then, the worst com-
putation time was 0.11 sec, and the mean computation time
was 0.08 sec. Since & is given by & = 0.5, we see that the
pair of Problem 1 and Problem 3 was solved in online. In
also the case of event-triggered optimal control, the closed-
loop system is stable, and we consider that the suitable A
was chosen.

5. Conclusion

In this paper, we discussed the self-triggered control method
and the event-triggered control method from the view point
of online optimization (i.e., model predictive control). In
the proposed self-triggered control method, the control in-
put and the sampling interval are optimized by solving the
QP problem and the MILP problem. In the proposed event-
triggered control method, the condition for updating the
control input is given by two QP problems, and the con-
trol input and the timing that the control input is sent to the
plant are optimized. The proposed methods provide us a ba-
sic framework for event-triggered and self-triggered optimal
control methods.
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As was pointed in Remark 2, simplification of the
triggering condition in the proposed event-triggered control
method is one of the future efforts. Then, it is important to
derive an approximate condition in which solving the opti-
mization problem is not needed. Theoretical analysis of the
relation between the sampling time interval and the param-
eter y is also important. In addition, stability analysis of the
closed-loop system is also one of the future efforts. Then,
the method proposed in [17] will be useful.

This research was partly supported by Grant-in-Aid for
Scientific Research (C) 26420412.
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