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PAPER

Investigating System Survivability from a Probabilistic Perspective
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SUMMARY Survivability is an essential requirement of the networked
information systems analogous to the dependability. The definition of sur-
vivability proposed by Knight in [16] provides a rigorous way to define
the concept. However, the Knight’s specification does not provide a be-
havior model of the system as well as a verification framework for deter-
mining the survivability of a system satisfying a given specification. This
paper proposes a complete formal framework for specifying and verifying
the concept of system survivability on the basis of Knight’s research. A
computable probabilistic model is proposed to specify the functions and
services of a networked information system. A quantified survivability
specification is proposed to indicate the requirement of the survivability.
A probabilistic refinement relation is defined to determine the survivability
of the system. The framework is then demonstrated with three case studies:
the restaurant system (RES), the Warship Command and Control system
(LWC) and the Command-and-Control (C2) system.
key words: survivability, probability programs, probabilistic refinement,
survivability specification

1. Introduction

The term survivability employed by the industrial commu-
nity emerges with the development of the networked infor-
mation systems [28]. The notion of survivability is origi-
nated from the weapon system engineering [2], [34] and then
regarded as a crucial property for the networked informa-
tion systems. The survivability property is analogous to the
dependability characteristics such as reliability, availability,
and security described by Avizienis et al. [1]. Informally
speaking, the notion of survivability captures the require-
ment that the system could perform harmoniously with var-
ious operating environments in face of external attacks, fail-
ures, accidents or internal errors. Furthermore, a survivable
system may sacrifice some secondary functionalities tem-
porarily to retain the essential primary functionalities.

The dependability specifies the requirements in terms
of availability, reliability, safety, confidentiality, integrity
and maintainability. Like the dependability, the survivabil-
ity also describes the requirement of a system to avoid fail-
ures. However, the dependability only focuses on the be-
havior of the system in a certain and normal environment. It
does not consider the behavior of the system under different
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environments. The notation survivability emphasizes that
the survivable system can provide different forms of ser-
vices and each service meets the corresponding depend-
ability requirements [10], [15] under different environments.
Essentially, a complete and precise definition of survivabil-
ity should consider three critical characteristics [16], i.e.,
various environments, alternate forms of services and the
probability of availability of each service.

Knight made a comprehensive discussion about system
survivability in [16], [17]. He presented a survivable speci-
fication involving three characteristics mentioned above and
gave a rigorous definition of what a survivable system is,
i.e., a system is survivable if it complies with its survivabil-
ity specification. This precise definition of the survivability
above is a significant and elegant evolution. But there are
still some problems need to be settled.

• In Knight’s work, the environment is classified to sev-
eral factors such as political climate, conflict disper-
sion and security threat status in LWC systems. This
classification, however, is not necessary and rises the
complexity of reasoning about the system behavior. In
fact, a correspondence between a certain environment
and the configuration of the system is sufficient for the
analysis.
• In Knight’s specification, a service can satisfy a re-

quirement with a probability. But this probability is not
computable without a behavioral model of the service.
• Knight defines the survivability specification but does

not provide a computable approach to determine
whether a system is survivable with respect to a se-
ries of operating environments, i.e., how to determine
a given system model complies with the survivability
specification.

The need for a precise and adequately comprehensive
formal definition of survivability as well as a computable
approach for verifying survivability is critically essential not
only from an academic view point but also in an engineering
sense. In this paper, we revise the survivability specification
with a formal framework. The system behavior is specified
with a formal probabilistic model. A probability refinement
theory [21] is employed to verify whether a system com-
plies with the survivability specification. With the refine-
ment theory, one can compare two similar services and indi-
cate how a system satisfies a survivability specification, i.e.,
a system is survivable if it is a refinement to a survivability
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specification. The various operating environment is mod-
eled with a probabilistic distribution over a succinct envi-
ronment set so that the concrete and complicated environ-
mental factors can be abstract away. The service model also
contains a set of core functionality to specify the concept of
an acceptable service, i.e., the core functionalities should be
preserved under every operating environment.

According to Knight’s specification, the model of a
survivable system is divided into two layers, i.e., the func-
tion layer and service layer. The functions provides specific
functionalities while a set of alternative services provides
the possibility to preserve core functionality under various
operating environments. Based on this perspective, we also
formalize the system as two layers. The functions are speci-
fied with guarded probabilistic programs and a service com-
bines a set of functions with alternative implementations.
The system behavior is constructed by a probabilistic choice
from a set of accepted services regarding to a various oper-
ating environment.

In summary, the main contributions of our work in-
clude:

• Probabilistic Computation Model. Modeling sys-
tem behavior with probabilistic programs [24] facili-
tates the model to express the probability within the
distribution of the operating environments and its in-
ferences to the dependability of the services. The prob-
abilistic model provides a quantified computation ap-
proach to reason about the survivability property and
can further support the expression of randomization
in terms of efficiency and simplicity [32]. With this
model, one can specify the behavior of a networked
information system containing alternative services and
functions under a various operating environment com-
plies with a probability distribution.
• Quantified Survivability Specification. Proposing a

survivability specification which specifies the required
probability of the availability of each acceptable ser-
vice. The specification contains a core function set and
a distribution of the environment configuration. The re-
quired probability indicates the quantified survivability
requirement of the system design.
• Computable Verification using Probabilistic Refine-

ment. With the probabilistic computation model, the
probability of availability of each service in the sys-
tem can be figured out. The survivability of a system
can be verified by checking the probabilistic refinement
between the computation model and the survivability
specification. Some important inference involving the
probabilistic refinement are presented for the reasoning
and proof.

The remainder of the paper is organized as follows.
Section 2 introduces the fundamental of probabilistic pro-
grams and its denotational semantics. Section 3 gives
the two-layer model of system and researches the diver-
gence and failure semantics of the functions and services.
The general refinement is extended into the probabilistic

refinement to reason about the system’s survivability. In
Sect. 4 the survivability specification is presented to de-
sign and analyze the survivable system. The survivabil-
ity can be verified by checking the probabilistic refinement
between the system model and its survivability specifica-
tion. Section 5 demonstrates the formal framework with two
case studies: the Command-and-Control case study given
by Knight [16] and a hypothetical Warship Command-and-
Control system. At last, Sect. 6 concludes the paper.

2. Fundamental of Probabilistic Programs

In this section, we present our language of the survivabil-
ity system which is an extension of Dijkstra’s language
of guarded commands [12], [13] by including the program
WAIT and probabilistic choice P r⊕ Q. The syntax of our
programming language is given below.

P,Q ::= ABORT | S KIP | x := e | P � b � Q | P; Q

| P r⊕ Q | P � Q | X | μX · P(X) |WAIT

Where P and Q are programs, b is boolean expression
and r is a real number over the interval [0, 1]. Assume that
x stands for a list of distinct variables, and e a list of expres-
sions.

Program ABORT stands for the worst program and
S KIP represents a program which is always idle. The as-
signment x := e updates variable x with the value of ex-
pression e. Conditional choice P � b � Q behaves like P
if boolean expression b is satisfied, otherwise like program
Q. The sequential P; Q first executes program P and when
P is finished, it executes program Q. The program P � Q
executes P or Q nondeterministically. Probability choice
P r⊕Q chooses between programs P and Q with probabilities
r and 1 − r respectively. Program WAIT always blocks the
progress of the whole program. Program μX · P(X) defines
the recursion program and X is recursive identifier.

In this paper, we will propose a probabilistic relational
model to specify the denotational semantics of the language.
We first turn to notations and definitions which are necessary
for the probabilistic model for our language. we employ the
state variable s including data variables and a special control
variable wait to record the observable system state. The set
S t collects all possible states, which is formally defined as
follows.

S t =d f (Var → Val) × ({wait} → {true, f alse})
Where Var is the set of programs variables and Val is

the Integer set (not affect the generality of the model). In
our model, the execution of the program may be blocked in
some states which we call a failure. The failure state can be
observed with the control variable wait = true.

Definition 2.1: A probability distribution prob is a func-
tion from S t to the interval [0, 1], such that

∑
s∈S t

prob(s) ≤ 1.

We say that a probability distribution refines another if
it assigns higher probabilities to all states.



2358
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

Definition 2.2: For probability distribution prob1, prob2 ∈
ProbS t,

prob1 ≤ prob2 =d f (∀s ∈ S t · prob1(s) ≤ prob2(s))

where ProbS t =d f S t → [0, 1] contains all the probability
distributions prob over S t.

In our framework, a program P can be specified by a
relation from S t to ProbS t, i.e.,

P ⊆ S t ↔ ProbS t

Note that the execution of a sequential program either
terminates with the observable final state or diverges without
any meaningful final state. A program may terminate at dif-
ferent states because of nondeterminism [9] and probabilis-
tic choice [31]. Accordingly we utilize a probability distri-
bution to characterize the possible final states of the program
execution. In design calculus [4], an additional control vari-
able ok is introduced to indicate whether the program termi-
nates or diverges. In our model, we only sum up the prob-
ability of the terminated behaviors and leaves the rest prob-
ability to the divergent behavior so that the control variable
ok is not necessary. As a result of this modeling, the overall
distribution of the final state may less than 1 for a program
which is possible to diverge, i.e.,

∑
s∈S t prob′(s) < 1, where

the dashed distribution prob′ indicates the observation oc-
curs after the program executes. In our paper, we follow the
convention that the undashed and dashed variables record
the observation before the execution and after the execution
respectively.

The refinement relation over the probabilistic program
can be defined as follows.

Definition 2.3: Let P and Q be probabilistic programs. We
say P is a refinement of Q, denoted as P � Q, if and only if

∀s, prob′ · (P(s, prob′)⇒ Q(s, prob′))

In UTP theory [4], Healthiness conditions regulate the
behaviors of programs so that the model can reflect the rea-
sonable properties of the real program. For the probabilistic
model, we list the healthiness conditions a program is sup-
posed to satisfy. Healthiness conditions [35] are defined as
equations in terms of an idempotent function φ on predi-
cates. Every healthy program represented by predicate P
must be a fixed point under the healthiness condition of its
respective UTP theory, i.e., P = φ(P).

H1: A nondeterministic choice made on two identical pro-
grams is void.

P = P � P

H2: If a program results in a probability distribution (say p),
then a better distribution q ≥ p should be allowed to be ob-
served in the execution of the program. In other terms, the
healthiness condition requires that every probabilistic pro-
gram satisfy up-closed property.

P = P; (prob ≤ prob′)

H3: A program would act like WAIT if its predecessor is
blocked so that it cannot be executed.

P = P � wait = f alse �WAIT

We define a healthiness function H to mapping an or-
dinary program to a healthy program which satisfies the
healthiness condition. And the rest of the paper only refers
to healthy programs.

H(P) =d f (P; (prob ≤ prob′))�wait = f alse�WAIT

The healthiness function H is idempotent and mono-
tonic [4] and all healthiness programs constitutes a complete
lattice.

In summary, the semantics of our language can be de-
fined as follows.

(1) ABORT =d f H(True)

The behavior of the chaotic program ABORT is totally un-
predictably.

(2) S KIP =d f H(prob′ = ηs)

Where ηs(t) =d f

{
1, t = s
0, t � s

The program S KIP terminates immediately and changes
nothing.

(3) x := e =d f H(prob′ = ηs[e/x])

The assignment terminates and changes the value of variable
x to e.

(4) P r⊕Q =d f ∃prob1, prob2 ∈ ProbS t · P[prob1/prob′]∧
Q[prob2/prob′] ∧ prob′ = r ∗ prob1 + (1 − r) ∗ prob2

The probabilistic choice P r⊕ Q chooses between programs
P and Q with probabilities r and 1 − r respectively.

(5) P � b � Q =d f (b ∧ P) ∨ (¬b ∧ Q)

The program of the conditional choice acts like P if b = true
and like Q otherwise.

(6) P; Q =d f P; (↑ Q)

Where ↑ Q =d f ∃G ∈ S t → ProbS t,∀s ∈ S t · Q(s,G(s))

∧ prob′ =
∑

t∈S t prob(t) ∗G(t)

The sequential program passes the final state of program P
on to the program Q as its initial state.

(7) P � Q =d f ∃ prob1, prob2 · P[prob1/prob′] ∧
Q[prob2/prob′] ∧ ∃r · prob′ = r ∗ prob1 + (1 − r) ∗ prob2

The behavior of P � Q is like P or Q nondeterministic.

(8) μX · P(X) =d f �{X|X � P(X)}
The recursive program is defined as the least fix point of the
recursive function.

(9) WAIT =d f H(prob′(s[true/wait]) = 1)

The program WAIT blocks the execution of the program.
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Fig. 1 The two layer model of survivable system.

In the following part of the paper, we will employ a
unified syntactic form (α, g, P) to represent a probabilistic
program. α is the alphabet of the program (In the rest of
the paper, the programs would have the same alphabet if we
don’t mention it deliberately). g(s) : S t → {0, 1} is the guard
condition and P is a predicate over the alphabet indicating
the semantics of the program execution. We employ the no-
tation pGCL to define all the programs with the syntactic
form (α, g, P).

3. Probabilistic Model of Survivable System

In this section, we present a denotational semantical model
of the survivable system. The model shown in Fig. 1 is di-
vided into two layers, i.e., function layer and service layer.
The system is constructed by the probabilistic choice of ser-
vices it could provide combined with the operating environ-
ment.

3.1 Function and Service

Our model of the system is divided into two layers, func-
tion and service. The function is defined by the probabilistic
program above while the service consists of functions. Al-
ternative forms (degraded) of services are needed to adapt
various environments. The service allows one function to
have multiple implementations achieving specific function-
alities. The same function of different services can also has
different implementations so that the degraded service can
afford some (worse) functions to make a tradeoff between
the performance and the resources.

Assume that all the functions here completely imple-
ment the corresponding functionalities the users expect re-
spectively and the parameters including import and export
are concealed for the succinctness of the model. The as-
sumption about functions is not strictly necessary. It can

be extended to the form of function with parameters. The
analogous extension is in [22], [23].

In our setting, the signature of the function is deter-
mined by its name (identifier) and the set FN collecting the
names of functions. The name merely identifies the func-
tion from others but offers no implementation of the func-
tion specification. The function S pec maps each function in
FN to its specifications, i.e., S pec : FN → P(pGCL). In
the function layer, the specifications S pec( f ) of function f
describes all the potential implementations of the function.
Obviously the set S pec( f ) should be up-closed and convex-
closed due to the semantics of the probabilistic programs.

In the service layer, the service is identified by a triple
(FDec, Imp, Prot), where FDec ⊆ FN lists all the functions
which the service could provide to the users. The specifica-
tion Imp : FDec → pGCL depicts the corresponding im-
plementations of the functions in FDec. The protocol Prot,
the set of sequences of function names, specifies the patterns
the service engages in the functions. To describe the prop-
erty in the process of calling the functions, the set should be
prefix closed.

The dynamic behavior of a service could be described
by a sequence of a particular triple (tr, div, re f ). The trace
tr is included in Prot. The probability div is the possibility
the service may be chaotic after engaging in tr. For any set
X of functions, re f (X) gives the probability with which the
system may refuse X after engaging in tr.

Not all the sequences lead to a satisfying state and the
execution of service could lead to divergent or deadlock/wait
state. The probabilistic model itself has the expressive
power to depict the divergence [3], [6], thus we needn’t em-
ploy the additional control variable to denote the divergent
state. The control variable wait and the guarded conditions
indicate which service functions could engage and which
could not. Moreover, the model has the ability to suggest
how much probability the system (service) could lead to a
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divergent state or refuse to perform in some sets of func-
tions after engaging a trace.

Definition 3.1 (Probabilistic Divergent Trace): For the ser-
vice (FDec, Imp, Prot), a trace 〈 f1, f2, . . . , fn〉 ∈ Prot is
called probabilistic divergent trace with probability α if the
service can lead to a divergent state with probability α after
engaging in the trace, i.e.,

∃prob1·(Imp( f1);Imp( f2);...;Imp( fn))[prob1/prob′]∧∑
s∈S t

prob1(s)≤ 1−α

Definition 3.2 (Probabilistic Failure): Given that the ser-
vice (FDec, Imp, Prot), it can refuse to perform the set
X of functions with probability α after engaging in trace
〈 f1, f2, . . . , fn〉 ∈ Prot if

(∃ prob1,s1·(Imp( f1);Imp( f2);...;Imp( fn))[prob1/prob′]
∧ (prob1(s1)≥α∧∀ f ∈ X ·¬g(s1)∨ s1(wait)= true))

or 〈 f1, f2, . . . , fn〉 is a divergent trace with probability α.

Definition 3.3 (Semantic Definition): The formal seman-
tics Traces(S ) of a service S = (FDec, Imp, Prot) can be
specified as a set {(tr, div, re f ) | tr ∈ Prot}, where the trace
tr is the probabilistic divergent trace with probability div and
could refuse to perform the functions in set X with probabil-
ity re f (X).

After achieving the precise understanding of service,
we utilize the definition to introduce the degraded services.
Degraded services is tradeoff between performance and re-
sources. The tradeoff is exploited by constructing service
with less provision of functionality and worse function im-
plementation for coping with faults and attacks in some en-
vironment.

Definition 3.4: Let S 1 = (FDec1, Imp1, Prot1) and S 2 =

(FDec2, Imp2, Prot2) be services, S 2 is called a degraded
service of S 1 if

(1) FDec1 ⊇ FDec2.

(2) ∀ f ∈ FDec2, Imp1( f ) � Imp2( f ).

In this subsection, our two-layer model consists of the
features which the survival system performs. The system
can be expressed as a collection of different services. Every
service have its own functionals. And for the same function-
ality, different services would have a different implementa-
tion. In this sense, the degraded service can be obtained by
using a worse implementation for tradeoff. In summary, the
model accurately describes the survival system component,
as well as the relationship between function and service.

3.2 Probabilistic Refinement

In modern software engineering, software developers ap-
ply software refinement [17], [25] in order to proceed from a
high-level abstract model to a final executable software sys-
tem by adding more details stepwisely. The software system

would becomes larger and more complicated during this de-
velopment process [5]. A service contains a set of functions.
A refinement relation is introduced to reason about the cor-
rectness of the services.

Definition 3.5: The service S 1 = (FDec1, Imp1, Prot1) is
a refinement of the service S 2 = (FDec2, Imp2, Prot2) de-
noted by S 1 �S S 2 if

(1) Prot1 ⊇ Prot2.

(2) Traces(S 1 ↓ Prot2) ⊆ Traces(S 2 ↓ Prot1).

Where, given that a service S = (FDec, Imp, Prot),
the notation S ↓ Prot1 defines a degraded service S ′ =
(FDec, Imp, Prot′) whose protocol Prot′ is the subset of
protocol Prot, i.e., Prot′ = Prot ∩ Prot1. We generalize
the probabilistic choice between probabilistic programs in
terms of the operator S [r]T . It chooses between S and T
with probability r and 1− r respectively. It offers probabilis-
tic choice between services. In our model, a system would
be regarded as a probability choice of all the services that it
could provide later. The semantics of S [r]T is given below:

Traces(S [r]T )=d f { (tr, div, re f ) | ∃d1, d2, f1, f2 ·
(tr, d1, f1)∈Traces(S )∧ (tr, d2, f2)∈Traces(T )∧

div≤ (r× d1 + (1− r)× d2)∧
re f ≤ (r× f1 + (1− r)× f2)∧ tr �dom(Traces(T ))∧
(tr, div, re f )∈Traces(S )∧ tr �dom(Traces(S ))∧

(tr, div, re f )∈Traces(T ) }
We generalize the probabilistic refinement relation

from the service refinement relation. Survivability analysis
is based on probabilistic refinement.

P �r Q =d f P �S (Q[r]⊥S )

where ⊥S indicates a service which only has a function
which is defined by the unpredictable program ⊥. The re-
lation P �r Q reads as ‘P refines Q with probability r’. In
particular, the probabilistic refinement degenerates into the
general refinement if r = 1 and the relation suffices trivially
if r = 0.

The probability refinement relation provides a precise
interpretation about the meaning of one program refines an-
other program with certain probability. The concept of prob-
abilistic refinement could be used in other model.

We list some important properties about probability re-
finement in Table 1.

The probability refinement is based on the probabilistic
programs, with which we can describe the actual situation
accurately. In real world, the system will behave as a certain
service at a time. As time goes by, with the environment
changes, the system will evolve into another service. So the
actual system can be a series of combinations of different
services. In order to compare the behavior of the system,
we give the definition of probabilistic refinement.

3.3 System with Operating Environment

The operating environments could affect the performance of



ZHAO et al.: INVESTIGATING SYSTEM SURVIVABILITY FROM A PROBABILISTIC PERSPECTIVE
2361

Table 1 The laws for probabilistic refinement.

P �r P reflexivity
P �r R Q �r S

P � b � Q �r R � b � S
��-monotonicity

P �r Q Q �s T
P �r∗s T

quasi-transitivity

P �r Q r ≥ s
P �s Q

probability-monotonicity

P �r Q
P; R �r Q; R

;-left-monotonicity

P �r Q
R; P �r R; Q

;-right-monotonicity

P �r Q R �r T
P[s]R �r Q[s]T

[r]-monotonicity

the service and the survivable system must have the power to
withstand certain types of faults and security attacks. Thus
we should describe the environment factors and how it af-
fects the behavior of a survivable system. We employ the
notion Env to define the set of all operating environment
conditions and

Ep : Env→ [0, 1]

where Ep satisfies
∑
θ∈Env Ep(θ) = 1

to define the probability distribution over Ep respectively.
Each of the environment conditions is stable and pre-
dictable, which is obtained by a long time observations. The
probability distribution Ep precisely captures the meaning
of the environment variety and stability from a quantitative
point of view [8], [14].

To model the affection to the system caused by the en-
vironment, we add a guarded condition merely involving the
environment condition for the succinctness ahead of each
service the system could afford. Thus the system could be
defined as a guarded choice between services:

S ys=d f i f (b1(θ)→ S 1, b2(θ)→ S 2, · · · · · ·, bn(θ)→ S n)

where S 1, S 2, . . . , S n are services of the system S ys. θ ∈
Env is the environment condition variable. bi is the guard
condition satisfying

∨
i

bi = True and bi ∧ b j = f alse.

Definition 3.6: A system S ys =d f i f (b1(θ)→ S 1, b2(θ)→
S 2, · · · · · · , bn(θ)→ S n) with the probability distribution Ep

could be regarded as a probability choice of services, i.e.,

S ys =
∑
{pi&S i|pi = Σθ∈EnvEp(θ) ∗ bi(θ), 1 ≤ i ≤ n}

where the notation Σ{pi&S i|1 ≤ i ≤ n} is defined recur-
sively:
∑{1&S } =d f S and∑{r&S } ∪ {pi&S i|i ∈ I} =d f S [r]{(pi/1 − r)&S i|i ∈ I}.
The system is defined as a probabilistic choice of the

services with respect to the operating environment. With

the change of the environment, there is an acceptable ser-
vice of the system adapting the environment. However the
situation is not so optimistic. When the best choice of ser-
vice is unavailable, an alternative (degraded) service would
take over.

4. Survivability Specification

Now, we will devote ourselves to defining the survivability
property. The precise and adequately comprehensive defini-
tion of the survivability must have three essential character-
istics, i.e., various operating environments, alternate accept-
able forms of service and the probability of the availability
of each service [16]. John C. Knight presents a six-tuple
survivability specification and he indicates that a system is
survivable if it complies with its survivability specification.
However he does not provide a computation model for the
system. A verification approach is also missing to determine
whether a system satisfies the specification.

We present a more elegant and abstract survivability
specification in our framework and reveal how our model
of system satisfies the new survivability specification. First,
the survivability specification should list all the services that
it can provide. In different environment, the system can per-
form different forms of service to ensure that the function-
alities expected by the users can be met. The specification
also introduces the concept of core functions to define pri-
mary service in a survivability system with respect to the
operating environment. The relative service values offer an
ordering on the user’s perceived service value from their re-
quirement under reachable environmental state. The value
is represented by a natural number and the ordering is total.
It indicates the evaluation of each service in the view of the
user. The probability distribution over operating environ-
ment describes the condition to which the system is subject
in a period and the environment also includes certain spe-
cific failure modes or threats. But for each function in the
system, its functionality is certain. At last, a service proba-
bility is specified to define the probability that service must
meet the corresponding dependability requirement, i.e., the
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probability gives an assurance that the various different ac-
ceptable services will be provided at some adequate level.

Definition 4.1 (Survivability Specification): A survivabil-
ity specification is a five-tuple, (S, F, Ep,V, P) where

(1) S is a set of acceptable forms of services in the system.
Each service consists of a set of the functions it can
provide.

(2) F is the core function set which defines the core func-
tions of the survival system. A service provides all the
functions in the set F is called essential service.

(3) Ep : Env → [0, 1] is the environment distribution. The
notion indicates the probability distribution of environ-
ment states. The set E contains all the possible envi-
ronment states and satisfies

∑
θ∈E Ep(θ) = 1

(4) V : S × Env → N+ is the relative values. The value
given by the user indicates the order of the services
which the user would prefer in different environment
conditions.

(5) P : S → [0, 1] is the probabilistic requirement on the
operation of the acceptable forms of service.

The services in the specification should at least include
an essential service to meet the expectation of the user with
respect to the normal environment. The relative service val-
ues indicate which service satisfying the user has a more
evaluation. But the ordering may violate the implementation
decided by the engineering. For the trusted requirement, we
insist that the order be consistent with the refinement rela-
tion between services if the latter exists. Thus the consistent
specification is outlined below:

Definition 4.2 (Consistent Specification): A survivability
specification (S, F, Ep,V, P) is consistent if

(1) ∃S ∈ S, S .FDec ⊇ F. We can at least find a service is
an essential service in our survivable system.

(2) ∀S 1, S 2 ∈ S ∧ e ∈ Env, S 1 �S S 2 ⇒ V(S 1, e) ≥
V(S 2, e). The service which refines another service
should receive a higher relative service value given by
the user.

The system we constructed is survivable if complies
with its consistent specification defined above. The view-
point is coincident with Knight’s but we give a formal
method to determine how a system complies with the spec-
ification. The system should ensure the probability require-
ment is satisfied for each of the service of the specification.

Definition 4.3 (Survivability System):
A system S ys =

∑{pi&S i|pi = Σθ∈EnvEp(θ) ∗ bi(θ), 1 ≤ i ≤
n} is survivable if it complies with its consistent specifica-
tion (S, F, Ep,V, P), i.e., ∀S ∈ S, S ys �P(S ) S .

The probability refinement in the definition of surviv-
ability system not only indicates the system could provide
the service expected by the user but also means the system
ensures that the system meet the dependability requirement
of the service in the specification with the corresponding
probability. Moreover, we can define the weakest system

which satisfies a given specification. Thus the probability
refinement could be used to develop the survivable system
and all systems satisfying the specification must be the prob-
ability refinement of the weakest system. We could also de-
fine another refinement relation over specifications with re-
spect to the given environment conditions, the relative ser-
vice values and core functions in the future work.

Now, we will compare our specification with Knight’s
survivable specification. In our setting, we simplify the defi-
nition of the environment to make it more abstract. We con-
centrate on the probability distribution of the environment
other than the discussion of various concrete environment
factors. The service based on the probabilistic model could
be reasoned about and therefore our model is computable.
To avoid the gap between the system designers and the users
on perceived service value, we emphasize the consistency
between the V table and the service refinement. The valid
transitions T could be inducted from our specification since
the services given in the specification are constructed from
the probabilistic programs. The core function is introduced
to define the primary service satisfying the primary require-
ment. A survivable system should at least provide the pri-
mary service to the user despite of the environment changes.

5. Case Study of Survivable System

In this section three examples of survivable systems, i.e.,
the RES system, the LWC system and the C2 system, will
be given to illustrate our approach described above. We for-
malize these three systems in our framework and give the
corresponding survivable specifications. Thus the surviv-
able system could be developed by refining the survivable
specifications step by step. But we cannot list the speci-
fied and exhaustive specifications of all the functionalities
for a huge system, so we assume that all the functions are
regarded as the basic and appropriate modules in our exam-
ples.

5.1 The RES System

The first example introduces the restaurant system which
provides two kinds of functionalities: hall food and delivery.
For hall food, it provides three different forms of services,
i.e., NS A, S A, EatOutside. The first two are both settled
in the inside of the restaurant; NS A indicates that the cus-
tomers cannot smoke in the non-smoking while S A permits
the customers smoke in the smoking area. The two areas are
separated by a solid door and the layout will not make sec-
ondhand smoke from the smoking area to impact the non-
smoking area. If the weather is awesome, EatOutside is a
good choice and the customers are arranged at the outside of
the restaurant. Besides, the restaurant may provide the de-
livery when the weather is not so heavy. The weather condi-
tions have a strong influence on the functionalities provided
by the restaurant. When the weather is good, the restaurant
may provide the functionalities hall food and delivery under
most conditions. But when the weather is not so good, the
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Table 2 The satisfied V table of the RES system.

V S 1 S 2 S 3

e1 3 1 2
e2 3 2 1

restaurant may only provide NS A and S A with a big possi-
bility.

For the RES system described above, we first give a
possible survivable specification (S, F, Ep,V, P) and then de-
sign a possible survivable system S ys in our framework. At
last, we check the satisfiability of the system and the spec-
ification based on the probabilistic refinement. If the RES
system is a survival system, it should provide one of the fol-
lowing services in different environments. Here, we regard
NS A, NS A&S A, and NS A&EOut as different implementa-
tions of functionality hall food.

- Service S 1: the customers are served inside and not
allowed to smoke in the restaurant. It also provides the
functionality delivery, i.e., S 1 = {NS A, delivery}.

- Service S 2: the customers are served inside, but which
of NSA and SA is not determined. Besides the delivery
is provided, i.e., S 2 = {NS A&S A, delivery}.

- Service S 3: the customers are served in non-smoking
area or in outside area and the delivery is provided, i.e.,
S 3 = {NS A&EOut, delivery}.
Here, we regard a variant of FDec as a service declara-

tion, where the function name are substituted with its some
implementation. Thus the set S is defined as {S 1, S 2, S 3}
and the core function F is {hall f ood}. In this example, we
employ two kinds of environment states e1 and e2 to rep-
resent different weather conditions. The state e1 indicates
the weather is good while e2 indicates the weather is not
good. The notation Ep indicates the probability distribution
of environment states. Here, we assign Ep(e1) = 0.8 and
Ep(e2) = 0.2. The relative service values are listed in Ta-
ble 2, the ordering of that indicates which service the user
would prefer in the environment conditions. The probabilis-
tic requirement P for the accepted forms of services is de-
fined as P = {(S 1, 0.59), (S 2, 0.78), (S 3, 0.75)}.

In order to explain how the formal language defined in
Sect. 2 facilitates the check of the system survivability, we
just give a sketch of the definition of functions and services.

Let α the alpha of the program. Define variables h f ood
and deli to denote the implementation form of functionali-
ties hall food and delivery. In detail, h f ood = 1, h f ood = 2
and h f ood = 3 indicate the customers are served in non-
smoking area, smoking area and outside area respectively.
deli = 1 and deli = 0 state whether the delivery is avail-
able or not. Thus some function definitions are described as
below.

NS A : (α, true, h f ood := 1)

NS A&S A : (α, true, h f ood := 1 � h f ood := 2)

NS A&EOut : (α, true, h f ood := 1 � h f ood := 3)

delivery : (α, true, deli := 1)

In summary, a survivable specification (S, F, Ep,V, P)
is given. Obviously, for each service S in S, F is the subset
of S .FDec since all the service provide the core function-
ality hall food. Note that S 1 is the service refinement of
both S 2 and S 3 according to the definitions involved and
refinement calculus. In consideration of the Table 2, the rel-
ative service value of S 1 is bigger than one of S 2 and S 3 in
whichever environment, which indicates the given V table is
coincident with the service ordering. That is, the specifica-
tion (S, F, Ep,V, P) is a consistent specification.

Now, we will construct a system in our framework.

S ys = {(e = e1)→ S ′1, (e = e2)→ S ′2}.
Where S ′1 = { f1, g1} and S ′2 = { f2, g2}, the details of
f1, g1, f2, g2 are interpreted as below.

f1 = (α, true, (((h f ood := 10.75⊕ h f ood := 2)

0.8⊕ h f ood := 3)0.95⊕ ABORT ))

g1 = (α, true, deli := 10.9⊕ ABORT )

f2 = (α, true, (((h f ood := 10.8⊕ h f ood := 2)

0.99⊕ h f ood := 3)0.9⊕ ABORT ))

g2 = (α, true, deli := 10.4⊕ ABORT )

The function f1 indicates that the customers are served
in the non-smoking area with probability 0.57, the smoking
area with probability 0.19, the outside area with probability
0.19 and the customers can not eat in the restaurant due to
its capacity with 0.05.

Considering the given Ep, the system can be described
as S ys = 0.8&S ′1 + 0.2&S ′2. Now, we compare the system
S ys and the specification in terms of the probabilistic re-
finement. For service S 1, in the environment e1, the system
S ys may provide NS A with probability 0.57 and delivery
with probability 0.9; in the environment e2, the system S ys
may provide NS A with probability 0.7128 and deliverywith
probability 0.4. Thus the system S ys may provide NS A with
probability 0.59856 and delivery with probability 0.8. In
other words, S ys �0.59856 S 1, thus S ys �0.59 S 1.

Similarly, we can conclude that S ys �0.7862 S 1 �0.78 S 1

and S ys �0.75236 S 1 �0.75 S 1. Therefore, the system is a
survivable system with respect to the given specification.

5.2 The LWC System

The second example introduced below is one of the most
important services in a Warship Command-and-Control sys-
tem. The system which is called LWC system can provide
three kinds of functionalities: Location, Weather query and
Communication. Two kinds of data transmission channels
are proposed to protect the safety and privacy of the com-
munication. One is called the private channel, which is used
to transfer the data from the system only, while the other
is called the public channel, which is used to transfer the
encrypted data from both the system and the internet. The
functionality Location can get the location information of
the warship from the local device without using any chan-
nel. But the other two functionalities Weather query and
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Fig. 2 The structure of warship command-and-control system (LWC).

Fig. 3 The switch of four services in the LWC system.

Communication need to get their information from other ser-
vices respectively. So these two functionality will use the
two kinds of channels to communicate with other services.

We give the details of the three functionalities of the
LWC system as follows. Figure 2 shows the hierarchy of
the LWC system.

• Location. LWC provide two kinds of implementations
to get the longitude and latitude of the warship. The
information can be acquired from a local GPS device
first, denoted by GPSLocation. When GPSLocation is
unavailable, the information can be acquired from the
local backup device, which is called StandbyLocation.
Once the GPSLocation becomes available, the LWC
system will get the location information via it again.
• Weather Query. Weather information is quite neces-

sary for the LWC system, which is got from channels.
There are two kinds of implementations: LocalSecu-
rityTransfer and General Transfer. In the first imple-
mentation, the weather information is acquired from a
Navy Meteorological device and transferred via the pri-

vate channel. When the private channel is unavailable,
the weather information is acquired from the internet
via the public channel, which is the second implemen-
tation.
• Communication. Actually it can be divided into two

sub functionalities since the data can be critical or non-
critical. For the first functionality CriticalCommuni-
cation, the data is usually transferred via the private
channel. The implementation of this functionality is
called SecurityTransfer. Once the private channel be-
comes unavailable, the data will be encrypted first and
then transferred via the public channel until the private
channel becomes available again. This kind of imple-
mentation is called EncryptedGeneralTransfer. For the
second functionality NonCriticalCommunication, the
noncritical data is transferred via the private channel.
Once the private channel becomes unavailable, the data
will be dropped. The two kinds of functionalities share
one implementation: SecurityTransfer.

If LWC system is a survivable system, it should always
provide one of the following services in different environ-
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ments:

- Service S 1: It uses function GPSLocation to implement
its location functionality, LocalSecurityTransfer to im-
plement its weather query functionality, and Security-
Transfer to implement its CriticalCommunication and
NonCriticalCommunication functionalities.

- Service S 2: It has the same implementations as service
S 1 except using StandbyLocation to implement its lo-
cation functionality instead of GPSLocation.

- Service S 3: It uses GPSLocation to implement its lo-
cation functionality as service S 1. It adopts General-
Transfer to implement the weather query functionality,
and EncryptedGeneralTransfer to implement the Crit-
icalCommunication functionality. Both of them only
use the public channel.

- Service S 4: It uses StandbyLocation to implement its
location functionality, GeneralTransfer to implement
its weather query functionality, and EncryptedGeneral-
Transfer to implement its CriticalCommunication func-
tionality.

The environment makes the system employ different
services, which is decided by the status of the GPS device
and the private channel. When the system starts, we assume
all the devices and channels are available and the system
provides service S 1. If the GPS device is unavailable, the
system turns to service S 2. Or if the private channel is un-
available, the system turns to service S 3. When both the
GPS device and private cannot be available, the system can
still provide service S 4. The switch of the four services is
shown in Fig. 3.

Let f1 be the location functionality, f2 be the weather
query functionality, f3 be the CriticalCommunication func-
tionality and f4 be the NonCriticalCommunication function-
ality. The LWC system can be formalized by our model as
follows:

The system S = {S 1, S 2, S 3, S 4}, which means that the
system LWC can provide four kinds of services in certain
environments. The four kinds of services are defined as:

S 1 = { f1, f2, f3, f4}
S 2 = { f ′1 , f2, f3, f4}
S 3 = { f1, f ′2 , f ′3}
S 4 = { f ′1 , f ′2 , f ′3}
Here fi and f ′i (1 ≤ i ≤ 4) represent the different imple-

mentations of the same functionality which implies fi � f ′i .
For example, f1 and f ′1 represent the two kinds of imple-
mentations of the functionality location and f1 represents
GPSLocation, f ′1 represents StandbyLocation, and it implies
that f1 � f ′1. Obviously the essential functionalities are lo-
cation, weather query and critical communication, so the
set F = { f1, f2, f3}. As LWC does not concern the envi-
ronment element outside the system, we merely give two
kinds of environment states and the set Ep can be set as
Ep = {(e1, 0.7), (e2, 0.3)}, where e1, e2 represent the possible
environment states respectively. The V table lists the total

Table 3 The satisfied V tables.

V S 1 S 2 S 3 S 4

e1 4 2 3 1
e2 4 3 2 1

Fig. 4 The structure of hypothetical command-and-control system (C2).

order under different environment states in Table 3. It is no
doubt that the value of S 1 is the highest and the value of S 4

is the lowest, but the ordering of the values of S 2 and S 3 can-
not be determined. Since our specification cannot indicate
which of them are higher, both of them shown in Table 3.
can comply with the specification according to the different
environment states. Obviously, the V table is consistent. At
last, we give a possible service probabilities in the example:

P = {(S 1, 0.95), (S 2, 0.04), (S 3, 0.005), (S 4, 0.005)}
Thus the five-tuple (S, F, Ep,V, P) defines the survivable
specification of the Warship Command-and-Control system
in our framework.

5.3 Command-and-Control System

The last example is Command-and-Control (C2) system in
[2]. The C2 system as a hypothetical military system has a
central command center and some intermediate nodes which
provide regional or specialized services, as well as a large
number of leaf network nodes used by local commanders.
The general network topology is shown in Fig. 4.

We will propose the consistent specification of C2 sys-
tem and construct the survivable system satisfying the spec-
ification (S, F, Ep,V, P) in our framework. The details about
implementations and specifications of functions are ignored
and the services are denoted as the set of the functions since
we merely want to display the satisfaction of the system and
the specification here. According to the requirement docu-
ments, the C2 system provides five different basic functions,
including both central information servers f1, regional infor-
mation servers f2, transmission of command information f3,
transmission of security information f4 and transmission of
normal information f5. Thus the set FN of function identi-
fiers is defined as { fi | 1 ≤ i ≤ 5}. Here we don’t distinguish
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the name and the specification of the function and the func-
tion fi is the refinement of f ′i with respect to i. The trans-
mission of command information f3 is regarded as the core
function in C2 system, i.e., F = { f3}.

In the Command-and-Control system, there are five ac-
ceptable forms of services. Full Command, Control, and
Analysis S 1 provides complete and normal functionality and
Low Performance S 2 also has full functionality, but with
higher latencies. Regional S 3 is limited to regional infor-
mation servers and transmission of security information is
unavailable. Maximum Alert S 4 requires the system oper-
ate with no network traffic, but the local regional informa-
tion processing is available. Command only S 5 limits trans-
mission operate to basic command only. The above service
would be formalized as the set of functions in the following.
Thus we conclude S 1 �S S i for 2 ≤ i ≤ 5 and no more
services meet service refinement.

S 1 = { f1, f2, f3, f4, f5}
S 2 = { f ′1 , f ′2 , f ′3 , f ′4 , f ′5}
S 3 = { f2, f3, f5}
S 4 = { f2, f3, f4}
S 5 = { f1, f2, f3}
Thus the set S = {S i | 1 ≤ i ≤ 5} defines all the ser-

vices which the C2 system could provide to the user. Next
we consider the operating environment Envwhich can affect
the acceptable forms of service. In Knight’s example we can
get four different environment states: No Threat, Regional
Conflict, Dispersed Conflict, Distributed Security Threat,
denoted as e1, e2, e3, e4 respectively. Correspondingly, a
reasonable probability distribution over Env is given, i.e.,
Ep = {(e1, 0.9), (e2, 0.05), (e3, 0.03), (e4, 0.02)}.

The relative service values, which are displayed in Ta-
ble 5, are determined by the user subjectively and the or-
dering indicates which service the user would prefer in the
environment conditions. V should meet the consistent re-
quirement defined above, i.e., finer service has higher rela-
tive service value. The service S 1 provide complete func-
tions with higher performance and it has the highest relative
service value. The completely reasonable V is listed in Ta-
ble 5. Moreover we give a possible service probabilities in

Table 4 Services probabilities.

Service Probability The Value
P(S 1) 0.9975
P(S 2) 1 − 10−4

P(S 3) 1 − 10−4

P(S 4) 1 − 10−6

P(S 5) 1 − 10−6

Table 5 Relative service values.

S 1 S 2 S 3 S 4 S 5

e1 5 4 3 1 2
e2 5 2 4 1 3
e3 5 3 2 1 4
e4 5 1 3 4 2

Table 4 according to the dependability requirement, which
is given by the user subjectively. Thus we finish the defini-
tion of the survivability specification (S, F, Ep,V, P) of the
C2 system and obviously the specification is consistent.

A survivable system would be described as S ys =∑{pi&S i | 1 ≤ i ≤ 5}. The value of pi (1 ≤ i ≤ 5) can
not be fixed since the concrete specification of function is
known. A system is survivable if it complies with its con-
sistent specification. Thus we conclude S ys �P(S i) S i for
1 ≤ i ≤ 5. Therefore we could utilize the probabilistic
refinement to determine whether the system is deemed to
satisfy the survivability specification.

6. Related Work

In recent years, many researchers have paid more atten-
tions on the precise definition of survivability. Thus various
comprehension and interpretations [16], [29] from different
perspectives are given and the corresponding survivabil-
ity evaluation models and methods are also proposed [33].
The notion of survivability initially is a common concept in
weapons systems engineering [2], [24] and the definition in-
dicates the degraded or different services should be included
implicitly. The concepts of damage and probability are also
included. Furthermore, a networked survivable system [30]
was specified which was used widely in real world. Vickie
investigated some previous definitions [33] about survivabil-
ity and then proposed his own definition, in which some
features should be involved in the survivable system, such
as threat, adaptability and continuity of service. Deutsch
presented a general and intuitive notion of the concept of
survivability in [11] and Ellison et al. presented that the sur-
vivability is the ability of a network computing system to
provide essential services in the presence of attacks and fail-
ures, and recovers full services in a timely manner in [29].
Knight believed all the above definitions are not adequately
precise to support an engineering approach to the specifica-
tion. And all of them lack of decidable criteria to determine
whether a given system can be deemed survivable. Based on
the previous work and research results, Knight made a com-
prehensive discussion about system survivability in [16] and
analyzed four critical infrastructure applications involving
financial payment system, electric power system, rail trans-
portation system and air traffic control system [15]. He pre-
sented a survivable specification and gave a rigorous defi-
nition of what a survivable system is. Besides he also ex-
pounded the differences between survivability and other re-
lated concepts, e.g., reliability and availability.

Koziolek et al. propose an analytical model and met-
rics for survivability assessment and uses this modeling to
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design power distribution system in smart grid [36]–[38].
Three design principles are presented to reduce the com-
plexity of computing the metrics of interest. In their model,
the system survivability can be reflected by the efficiency
of the failure recovery process. In our model, the assess-
ment of system survivability is considered as the satisfac-
tory between the system behavior under hostile environment
and the promised core function requirement. Our model has
inherent compositionality which can significant reduce the
computation complexity.

Heegaard et al. demonstrate modeling approaches in-
cluding stochastic reward nets and continuous time Markov
chain to quantify network survivability and clarify the trade-
offs regarding the cost of changing, extending and solving
models [39], [40]. Our modeling quantifies the system be-
havior with the probability distribution on post states. We
uses uniformed formal semantics to specify the system be-
havior and the requirement. The survivability can be as-
sessed by checking a refinement relation between system
and requirement with probability.

7. Conclusion

This paper presents a denotational semantics in terms of a
probabilistic model for survivable systems. It also proposes
a new survivability specification based on the probability.
The model is designed into two layers, i.e., function and
service. A system is regarded as a probabilistic choice of
guarded services with respect to the operating environment.
The system is called survivable if it complies to its corre-
sponding consistent survivability specification. The mean-
ings of essential service and degraded service have been for-
malized. Furthermore, the probabilistic refinement is intro-
duced for designing, analyzing and reasoning about the sur-
vivable system. In the future, we will continue to explore
further related theories for the survivability.
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Appendix

Below are the algebraic laws for probabilistic programs and
the proof for the inference rules of probabilistic refinement
introduced in Sect. 3. Here we will confine ourselves to
those laws involving the probabilistic choice operator.

Probabilistic choice is idempotent, skew-symmetric
and quasi-associative.

Law-1 P r⊕ P = P

Proof. By the definition of probabilistic choice, we know
that P r⊕ P = ∃ prob1, prob2 ∈ ProbS t · P[prob1/prob′] ∧
P[prob2/prob′]∧ prob′ = r∗ prob1+ (1−r)∗ prob2. In par-
ticular, if we let prob2 = prob1, we claim that P � P r⊕ P
in terms of the definition of refinement in the probability
program. Obviously, P r⊕ P � P� P if we consider the def-
inition of r⊕ and �. According to the healthiness condition
H1: P = P � P, we conclude that P r⊕ P = P. �

Law-2 P r⊕ Q = Q 1−r⊕ P

Proof.
LHS

≡ ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2

≡ ∃prob2, prob1 ∈ ProbS t,Q[prob2/prob′] ∧
P[prob1/prob′] ∧
prob′ = (1 − r) ∗ prob2 + (1 − (1 − r)) ∗ prob1

≡ RHS
�

Law-3 (P r1⊕ Q) r2⊕ R = P s1⊕ (Q s2⊕ R)

Where s1 = r1 ∗ r2 and (1 − r2) = (1 − s1) ∗ (1 − s2)
Proof.

LHS

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = r2 ∗ (r1 ∗ prob1 + (1 − r1) ∗ prob2) +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = r1 ∗ r2 ∗ prob1 + (1−r1) ∗ r2 ∗ prob2 +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + (r2 − s1) ∗ prob2 +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + (1 − r2) ∗ prob3 +

((1 − s1) − (1 − r2)) ∗ prob2

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + (r2 − s1) ∗ prob2 +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 +

((1 − s1) − (1 − s1)(1 − s2)) ∗ prob2 +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + (r2 − s1) ∗ prob2 +

(1 − r2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + ((1 − s1) ∗ s2) ∗ prob2 +
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(1 − s1) ∗ (1 − s2) ∗ prob3

≡ ∃prob1, prob2, prob3 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ R[prob3/prob′]
∧ prob′ = s1 ∗ prob1 + (1 − s1) ∗ (s2 ∗ prob2 +

(1 − s2) ∗ prob3)

≡ RHS
�

Law-4 P 1⊕ Q = P

Proof.
LHS

≡ ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′]
∧ prob′ = 1 ∗ prob1 + 0 ∗ prob2

≡ ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
Q[prob2/prob′] ∧ prob′ = prob1

≡ RHS
�

Law-5 P r⊕ (Q � b � R) = (P r⊕ Q) � b � (P r⊕ R)

Proof.
LHS

≡ ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
(Q � b � R)[prob2/prob′]
∧ prob′ = r ∗ prob1 + (1 − r) ∗ prob2

≡ ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′]
∧ ((b ∧ Q) ∨ (¬b ∧ R))[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2

≡ (∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
(b ∧ Q)[prob2/prob′]
∧ prob′ = r ∗ prob1 + (1 − r) ∗ prob2) ∨
(∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
(¬b ∧ R)[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2)

≡ (b ∧ (∃prob1, prob2 ∈ ProbS t,

P[prob1/prob′] ∧ Q[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2)) ∨
(¬b ∧ (∃prob1, prob2 ∈ ProbS t,

P[prob1/prob′] ∧ Q[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2))

≡ (b ∧ (P r⊕ Q)) ∨ (¬b ∧ (P r⊕ R))

≡ RHS
�

Law-6 If P � Q, then P r⊕ R � Q r⊕ R

Proof.
Obviously, we have ∀s ∈ S t, prob′ ∈ ProbS t, (s, prob′) ∈
P r ⊕ R, ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
R[prob2/prob′] ∧ prob′ = r ∗ prob1 + (1 − r) ∗ prob2. We
know that ∀(s, prob′) ∈ P, (s, prob′) ∈ Q since P � Q.

Thus (s, prob1) ∈ Q and (s, prob′) ∈ Q r ⊕ R. That is
P r⊕ R � Q r⊕ R. �

Law-7 (P � Q) r⊕ R = (P r⊕ R) � (Q r⊕ R)

Proof. On the one hand, according to Law 6, P r ⊕
R � (P � Q) r ⊕ R and P r ⊕ R � (P � Q) r ⊕ R, thus
(P r ⊕ R) � (Q r ⊕ R) � (P � Q) r ⊕ R. On the other
hand, RHS = ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′] ∧
R[prob2/prob′] ∧ prob′ = r ∗ prob1 + (1 − r) ∗
prob2 ∨ ∃prob3, prob4 ∈ ProbS t, P[prob3/prob′] ∧
R[prob4/prob′] ∧ prob′ = r ∗ prob3 + (1 − r) ∗ prob4

and LHS = ∃prob1, prob2 ∈ ProbS t, (P[prob1/prob′] ∨
Q[prob1/prob′]) ∧ R[prob2/prob′] ∧ prob′ = r ∗ prob1 +

(1−r)∗ prob2 = ∃prob1, prob2 ∈ ProbS t, P[prob1/prob′]∧
R[prob2/prob′] ∧ prob′ = r ∗ prob1 + (1 − r) ∗ prob2 ∨
Q[prob1/prob′]∧R[prob2/prob′]∧ prob′ = r∗ prob1+(1−
r)∗prob2. Obviously, ∀(s, prob′) ∈ (P�Q) r⊕R, (s, prob′) ∈
(P r⊕R)�(Q r⊕R). That is (P�Q) r⊕R � (P r⊕R)�(Q r⊕R).
Thus (P � Q) r⊕ R = (P r⊕ R) � (Q r⊕ R). �

Law-8 (P r⊕ Q); R = (P; R) r⊕ (Q; R)

Proof.

RHS

≡ (∃prob1, prob2 ∈ ProbS t, (P; R)[prob1/prob′] ∧
(Q; R)[prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2)

≡ ∃prob1, prob2 ∈ ProbS t,∃prob3, prob4 ∈ ProbS t,

P[prob3/prob′]∧ ↑R[prob3/prob, prob1/prob′] ∧
Q[prob4/prob′]∧ ↑R[prob4/prob, prob2/prob′] ∧
prob′ = r ∗ prob1 + (1 − r) ∗ prob2

≡ ∃prob3, prob4 ∈ ProbS t, P[prob3/prob′] ∧
Q[prob4/prob′] ∧ R[prob0/prob] ∧
prob0 = r ∗ prob3 + (1 − r) ∗ prob4

≡ LHS
�

Inference Rule-1 P �r P

Proof. P �r P since P �S P[r]⊥S . �

Inference Rule-2
P �r R Q �r S

P � b � Q �r R � b � S

Proof. We know that P �S R[r]⊥S and Q �S S [r]⊥S , thus
P�b�Q �S R[r]⊥S �b�S [r]⊥S = (R�b�S )[r]⊥S . That
is P � b � Q �r R � b � S . �

Inference Rule-3
P �r Q Q �s T

P �r∗s T

Proof. According to the premise, we know that P �S

Q[r]⊥S and Q �S T [s]⊥S . Thus P �S (T [s]⊥S )[r]⊥S =

T [r ∗ s]⊥S , that is P �r∗s T . �

Inference Rule-4
P �r Q r ≥ s

P �s Q

Proof. P �S Q[r]⊥S �S Q[s]⊥S , that is P �s Q. �

Inference Rule-5
P �r Q

P; R �r Q; R
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Proof.
P; R �S (Q[r]⊥S ); R since P �S Q[r]⊥S . Then
(Q[r]⊥S ); R = (Q; R)[r](⊥S ; R) = (Q; R)[r]⊥S , thus P; R �r

Q; R. �

Inference Rule-6
P �r Q

R; P �r R; Q

Proof.
R; P �S R; (Q[r]⊥S ) since P �S Q[r]⊥S . Then
R; (Q[r]⊥S ) = (R; Q)[r](R;⊥S ) = (R; Q)[r]⊥S , thus R; P �r

R; Q. �

Inference Rule-7
P �r Q R �r T
P[s]R �r Q[s]T

Proof. We claim that P[s]R �S (Q[r]⊥S )[s](T [r]⊥S ) ac-
cording to the monotonicity of the probabilistic choice op-
erator since P �S Q[r]⊥S and R �S T [r]⊥S . Furthermore,
(Q[r]⊥S )[s](T [r]⊥S ) = (Q[s]T )[r]⊥S . Thus P[s]R �S

(Q[s]T )[r]⊥S , i.e., P[s]R �r Q[s]T . �
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