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A Novel Structure of HTTP Adaptive Streaming Based on Unequal
Error Protection Rateless Code

Yun SHEN†a), Yitong LIU†, Jing LIU†, Nonmembers, Hongwen YANG†, Member,
and Dacheng YANG†, Nonmember

SUMMARY In this paper, we design an Unequal Error Protection
(UEP) rateless code with special coding graph and apply it to propose a
novel HTTP adaptive streaming based on UEP rateless code (HASUR). Our
designed UEP rateless code provides high diversity on decoding probabil-
ity and priority for data in different important level with overhead smaller
than 0.27. By adopting this UEP rateless channel coding and scalable
video source coding, our HASUR ensures symbols with basic quality to
be decoded first to guarantee fluent playback experience. Besides, it also
provides multiple layers to ensure the most suitable quality for fluctuant
bandwidth and packet loss rate (PLR) without estimating them in advance.
We evaluate our HASUR against the alternative solutions. Simulation re-
sults show that HASUR provides higher video quality and more adapts to
bandwidth and PLR than other two commercial schemes under End-to-End
transmission.
key words: adaptive streaming, decode probability and priority, overhead,
rateless code, unequal error protection, video quality

1. Introduction

Currently, increasing demand on multimedia services moti-
vates the evolution of multimedia technology, shifting from
constant bitrate streaming to HTTP adaptive streaming. As
a representation, Dynamic Adaptive Streaming based on
HTTP (DASH) [1] is proposed as a 3GPP standardization.
The DASH client can dynamically adjust video bitrate based
on the available network bandwidth to provide the most flu-
ent playback experience. Thus HTTP adaptive streaming is
much more flexible and powerful to adapt changeable net-
work situation.

DASH splits the media content into a series of small
segments, encodes them into several versions with different
bitrates or resolutions, which is a waste of storage since only
one encoded version will be transmitted per segment period.
When a DASH service is on demand, the client requests a
suitable encoded version based on the estimated bandwidth.
The server then sends the requested segment to the client.
Such delivery operation is repeated every segment period
until the end of connection.

The above delivery requires the client to estimate the
current bandwidth before requesting data. However, the
bandwidth is quite hard to predict and is changing over time
even though there have been various bandwidth estimating
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methods proposed in previous papers [2]–[4]. Therefore,
misestimating the fluctuant bandwidth would lead to poor
performance on self-adaptation to bandwidth for adaptive
streaming.

Same problem also exits when symbols are encoded
by application-layer forward error correction (FEC) [5]–[7]
channel code. The code rate is fixed or updated based on
the packet loss rate (PLR) prediction. The mismatching be-
tween the predicted and the actual PLR may lead to decod-
ing failure or bandwidth wasting in the case of under- or
over-estimating respectively.

Therefore, we plan to adopt rateless code (LT code [8])
to solve the above problems. The code rate of it does not
need to be predetermined since the encoder can generate a
potentially infinite stream on the fly. Thus, the PLR pre-
diction becomes unnecessary for rateless code. Meanwhile,
considering symbols in adaptive streaming with different
quality levels, it is required to have unequal error protec-
tion (UEP) on them, which makes the client decode the most
important symbols successfully with the highest priority to
ensure the fluent playback.

Several work have focused on UEP rateless code. [9]
proposes expanding window fountain (EWF) codes for UEP
based on PLR estimation, which also exists the problem on
misestimating PLR. [10] deals with UEP on precoder before
rateless code, however, the low-degree encoded symbols are
hard to connect with high-priority data. And a UEP scheme
via distributed rateless code is provided in [11], which con-
sumes high computation complexity. Another UEP scheme
is designed in [12] by rebuilding LT code structure, while at
the cost of high overhead. [13] proposes a degree-dependent
selection concept for UEP rateless codes. While it may
be not suitable for real-time streaming due to its complex
design. Besides, a Layered-Aware FEC method is imple-
mented to Raptor codes in [14] to achieve UEP on depen-
dent layers also at the cost of high overhead.

Compared with the above UEP schemes, we propose
a novel UEP rateless code with special coding graph to
guarantee high diversity on decoding probability and prior-
ity for different important level symbols with low computa-
tion complexity and little overhead. And we design a novel
structure of HTTP adaptive streaming based on this UEP
rateless code, named as HASUR. It adopts H.264/SVC to
encode the raw stream into a single SVC bitstream with one
base layer and several enhancement layers, which gradually
improve the video quality. Then the symbols are encoded
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by the UEP rateless code scheme to ensure the high priority
symbols (symbols in the base layer) have higher decoding
probability than the low priority ones.

Our main contribution is to design a UEP rateless code
scheme and apply it to propose a novel structure of adap-
tive streaming. Our proposed UEP rateless code guarantees
perfect UEP performance on different quality level symbols
with minimal overhead. And our designed HASUR makes
the video stream become more adaptive to the network to
ensure the most fluency playback under the fluctuant band-
width and changeable PLR without estimating them in ad-
vance.

The remainder of this paper is organized as follows.
In Sect. 2, we illustrate our design on the proposed UEP
rateless code. And the performance is analyzed in Sect. 3.
Then the structure of our designed HASUR is described in
Sect. 4. Section 5 will be the simulation of our HASUR,
compared with DASH and HLS. The conclusion will be
stated in Sect. 6.

2. The Proposed UEP Rateless Code Based on Hierar-
chical Coding Graph

To ensure the proposed HASUR becoming more adaptive
to the fluctuant bandwidth, an efficient UEP rateless code is
necessary to guarantee the diversity on decoding probability
and decoding priority for symbols in different quality layers.
In this section, we design a UEP rateless code with a hierar-
chical coding graph to make sure the high priority symbols
are recovered before the low priority ones, thus the more
important data (symbols in lower layers) can be recovered
with lower latency, lower computation and higher probabil-
ity. Besides, symbols in different layers are encoded depen-
dently to help recovering each other.

2.1 Degree Distribution Analysis

The representative rateless code is LT code, proposed by
Luby in 2001 [8]. The pdf of degree distribution for LT code
obeys the Robust Soliton distribution (RSD) [8], according
to which, the belief propagation (BP) decoder can recover
k input symbols from any k + O(k

1
2 ln2(k/δ)) encoded sym-

bols with probability (1 − δ) on average (k · ln(k/δ)) symbol
operation [8]. It is obvious that as k turns large enough, the
overhead becomes arbitrarily small, as shown in (1).

lim
k→∝

overhead = lim
k→∝

k
1
2 ln2(k/δ)

k
= 0 (1)

It indicates that rateless code with RSD enjoys perfect per-
formance for data with long size. However, under some spe-
cial situations, RSD is not the optimum solution anymore.
For example, many download services tend to be small in
size, i.e., k is not large enough, which results in excessive
overhead for RSD. There are also plenty work have focused
on overhead optimization. [15] proposes a rateless code
scheme with non-binary LDPC code to reduce the overhead
for small input symbol size. While the scheme is unable

Fig. 1 Usage ratio of encoded symbols with different degrees in decod-
ing process under different overhead.

to consider the UEP property. In our proposed adaptive
streaming scheme, the unit of source block to be encoded
is Group of Picture (GOP). Take an example for the video
streaming with bitrate = 512kbps, framerate = 30, and
GOPsize = 16, the size of each GOP block is k = 2.80×105,
then according to (1), the overhead is about 0.4565 for
δ = 0.05. And it will increase greatly along with bitrate
decreasing, which indicates that when the bandwidth turns
bad, only low bitrate video streaming is allowed to be trans-
mitted, the excessive overhead brings greatly burden to net-
work, leading to not only decoding failure, but also more
serious network situations.

Except for the extremely overhead of LT code in the
above situation, the encoded symbols with high degree are
usually of less help for decoding, compared with low degree
symbols. Here, an encoded symbol is regarded as helpful
when an input symbol is recovered through it after the de-
coding process, which greatly relies on the symbol degree,
as shown in Fig. 1, where 10000 input symbols are recov-
ered by encoded symbols with different overhead. From
Fig. 1, the encoded symbols with degree 1 are fully used,
while the usage ratio of encoded symbols decreases ex-
tremely along with degree increasing, especially for small
overhead. Here the usage ratio of encoded symbols is de-
fined as the proportion of the helpful symbols in the whole
encoded symbols with degree i, as expressed in (2).

usageratioi = numi(helpful)/numi(total) (2)

Considering the curves with overhead ≤ 0.4 in Fig. 1, it
is obvious that only encoded symbols with degree ≤ 3 are
much more helpful while the rest symbols become nearly
useless for decoding process. In this situation, it can be
concluded that the low degree encoded symbols are more
helpful for decoding than those with high degree.

In view of BP decoder, all input symbols connected
with degree 1 encoded symbols are recovered first after the
1st decoding iteration, enjoying the highest decoding prior-
ity. While those input symbols, recovered by higher degree
encoded symbols, are decoded after several iterations. It
indicates that these symbols have lower priority, especially
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Fig. 2 Cumulative usage ratio of encoded symbols with different degrees
along with decoding iteration.

along with degree increasing, as shown in Fig. 2, in which
all input symbols are recovered after the 8th decoding it-
eration. Figure 2 gives cumulative usage ratio of encoded
symbols with different degrees along with decoding itera-
tion times increasing. From which, the usage ratio of en-
coded symbols with degree 4 keeps lower than 2% after all
decoding iterations, indicating that encoded symbols with
higher degree give even less help for decoding.

2.2 UEP Rateless Code Design

From Fig. 1 and Fig. 2, we can conclude that the encoded
symbols with low degree are more useful for decoding than
those with high degree, especially in the case of low over-
head. Besides, an input symbol enjoys higher decoding pri-
ority when it is recovered earlier than others. Thus accord-
ing to Fig. 2, the input symbols connected with degree 1 en-
coded symbols enjoy the highest decoding priority, and the
decoding priority decreases along with the increasing of en-
coded symbol degree.

Thus, considering the usage ratio of encoded symbols
with different degrees, the degree distribution of our rateless
code does not follow the robust soliton distribution. Besides,
we also design a UEP hierarchical coding graph based on
decoding priority of encoded symbols with different degrees
to keep high diversity on decoding probability and priority
for different important level symbols. Therefore, we aban-
don encoded symbols with degree larger than 3 and classify
input symbols into n layers based on the important level, that
is, the symbols in Layer i are more important than those in
Layer i + 1. The most important input symbols are gathered
into Layer 1 and encoded with degree 1 to ensure the highest
decoding probability and priority. While the input symbols
in Layer 2 to Layer m are encoded with degree 2 for some
positive integer m ≤ n − 1, and the rest symbols in Layer
k (k > m) generate encoded symbols with degree 3 or 2.

The coding rules of our proposed UEP rateless code are
illustrated as follows. The input symbols in Layer 1 dupli-
cate themselves directly to produce encoded symbols with
degree 1. For the encoded symbols in Layer k (2 ≤ k ≤ m),

Fig. 3 Topological structure of our proposed coding graph with 4 layers
(The bold curve presents an alternative decoding path when encoded sym-
bol a is lost, and the circle number is the index of input symbols in each
layer).

parts of them are generated by XORing one input symbol in
Layer k and one in layer k − 1, and the rest are generated
by XORing adjacent two input symbols in Layer k. Then in
Layer k for m+1 ≤ k ≤ n, the encoded symbols with degree
3 are generated by XORing one input symbol in Layer k and
two in Layer k − 1, besides the adjacent two input symbols
in Layer k are XORed with each other to produce encoded
symbols with degree 2. Here we take a topological structure
of our proposed coding graph with 4 layers for example as
shown in Fig. 3.

From Fig. 3, 60 input symbols are divided into 4 lay-
ers to generate 80 encoded symbols. The most important
input symbols are contained in Layer 1 at the bottom to be
protected by degree 1 encoded symbols. The input symbols
in Layer 2 to Layer m (m = 3) are protected by degree 2
encoded symbols and in the top layer (Layer 4), the rest in-
put symbols generate encoded symbols with degree 3 and
2. While in decoding process, the input symbols in Layer 1
are recovered firstly as they are connected with degree 1 en-
coded symbols and then the rest input symbols are decoded
step by step from the lower layer to the higher layer. Thus
it can be figured out that the more important symbol enjoys
higher priority to be recovered.

Besides, an input symbol can be recovered not only
from lower layers but also from higher layers due to the en-
coding dependency between adjacent layers. An input sym-
bol is recovered from the higher layers only when all helpful
encoded symbols in lower layers are lost. For example, the
input symbol 1 in Layer 1 can be recovered from input sym-
bol 2 in Layer 2 along with the decoding path as shown in
the bold curve in Fig. 3 when its connected degree 1 encoded
symbol a is lost. Such protective measure improves the de-
coding probability of input symbols at the cost of proper
computation complexity increasing.

The above designed UEP code is still a finite-length
code with a fixed code rate R = N

K , where N and K are
the total number of encoded symbols and input symbols.
Due to the drawback of fixed-rate FEC code as mentioned
in Sect. 1, we take some methods to make our designed
UEP code become rateless code. The ideal way to achieve
nearly arbitrary code rate is to extend the number of en-
coded symbols to unlimited large, which leads to the no
upper bound for R. Thus, in our proposed adaptive video
streaming scheme, the UEP rateless encoding will be oper-
ated multiple times in each transmission period T to realize
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Fig. 4 UEP rateless encoding operation delivery procedure.

the arbitrary code rate. The delivery procedure is shown in
Fig. 4.

According to Fig. 4, the encoder generates all encoded
symbols by randomly selecting input symbols according
to the proposed coding graph, and then sends them to the
client. The client will send back an ACK/NAK based on
each layer to inform the server whether a layer is decoded
successfully or not. After sending all encoded symbols to
the client, when the server receives a NAK that Layer i is
failed to be decoded, it will regenerate encoded symbols in
Layer i by randomly selecting input symbols in this layer
and resend them to the client until no NAK has been sent
back to the server, i.e., all layers have been decoded success-
fully. Such delivery operation effectively increases the num-
ber of helpful encoded symbols of an input symbol, which
increases the decoding probability greatly and keeps the de-
coding priority unchangeable.

3. Performance Analysis of UEP Rateless Code

The purpose to design this UEP rateless code is to ensure
the high diversity on decoding probability and decoding pri-
ority for different important level symbols at the cost of a
little overhead. Thus, in this section, the performance on
our UEP rateless code is analyzed in terms of overhead, de-
coding probability and decoding priority.

3.1 Overhead

The topological structure of our proposed UEP rateless code
can also be expressed as mathematical expression. Define
k(i) and N(i) as the number of input symbols and encoded
symbols in Layer i. Let K and N be the total number of
input symbols and encoded symbols in all layers. Then k(i),
N(i), K and N of the UEP rateless code with n layers can be
expressed as follows.

k (i) = 2q+i−1. 1 ≤ i ≤ n (3)

N (i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2q, i = 1

2q+i−2 + 2q+i−1, 2 ≤ i ≤ m
2q+i−3 + 2q+i−1. m + 1 ≤ i ≤ n

(4)

Fig. 5 Overhead Comparing between our proposed UEP rateless code
and LT with RSD.

K =
n∑

i=1

k(i) = 2q(2n − 1) (5)

N =
n∑

i=1

N(i) = 2q(5 · 2n−2 + 2m−2 − 2) (6)

where 2q is the size of Layer 1 for some positive integer q,
and the range of m in (4), (6) is 2 ≤ m ≤ n − 1. Therefore,
the overhead of our proposed UEP rateless code is defined
as follows.

overhead =
N − K

K
=

2n−2 + 2m−2 − 1
2n − 1

≤ 1
4

(1 + 2m−n) ≤ 0.375
(7)

Besides, overhead in (7) can be regarded as a monotonic
increasing function of m in range of 2 ≤ m ≤ n − 1. Then
overhead is expressed in (8).

overhead = f (m) ≥ f (2) ≥ 0.25 (8)

Confined by (7) and (8), the overhead of our proposed UEP
rateless code is in range of 0.25 ≤ overhead ≤ 0.375, much
lower than that provided in [12] (0.31 ≤ overhead[12] ≤ 0.5).

Besides, in the situation mentioned in Sect. 2.1, when
the number of input symbols K is not large enough, the
overhead of our proposed scheme is comparable with that
of LT code with RSD, as shown in Fig. 5. The full line in
Fig. 5 presents the overhead of a GOP for a video streaming
with bitrate = 1Mbps, framerate = 30 via LT encoding,
and the dotted line is the overhead (= 0.27) of that with
bitrate = 2Mbps via LT encoding. According to Fig. 5,
along with the decreasing of m, the overhead of our UEP
rateless code keeps decreasing, even lower than 0.27 (the
dotted line), where m is the boundary that the symbols will
be encoded with degree 2 if Layer i ≤ m, otherwise, the
degree will be 2 or 3. Especially when m is in range of
(n − 3) ≤ m ≤ (n − 1), the overhead decreases rapidly.
Such phenomenon is suitable for different value of n, that
is by choosing suitable m, such as m = (n − 4), the over-
head of our proposed UEP rateless code with n layers can
be further limited under 0.27 for any value of n, as shown
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in (9), and is even lower than the overhead of a GOP with
bitrate = 2Mbps via LT coding with RSD.

0.25 ≤ overhead ≤ 0.27 for 2 ≤ m ≤ (n − 4) (9)

3.2 Decoding Probability and Priority

The input symbols in our proposed coding graph can be re-
covered through multi-decoding paths. Considering the de-
gree of input symbols, the input symbols in the proposed
coding graph can be classified into 5 types, as shown in
Fig. 6, where the input symbol Bi in Layer i can be recov-
ered from an encoded symbol bi+1 in Layer i + 1 or one of
three encoded symbols ai in Layer i, and the input symbols
Di in Layer i can be decoded through one of two encoded
symbols in Layer i. Here, an input symbol decoded through
encoded symbols ai in the same layer is defined as bottom-
to-top decoding, while if an input symbol is recovered by
encoded symbols bi+1, we call it top-to-bottom decoding. As
mentioned before, the input symbols can be recovered from
both bottom-to-top direction and top-to-bottom direction.
No matter what decoding direction is, the decoding prob-
ability of any input symbols in our proposed coding graph
can be expressed by the combination of decoding probabil-
ity of these 5 types input symbols.

Define P(X) be the decoding probability of input sym-
bol X with loss rate (1− p), and P(xi) be the probability that
any input symbol is recovered by encoded symbol xi, where
x ∈ {a, b}. Then, P(Ai) can be expressed in (10).

P(Ai) = P(ai) + P(bi+1) − P(ai)P(bi+1) (10)

where P(ai) and P(bi) is expressed by following equations:

P(ai) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p, i = 1
p[p+P(Ai)+P(Ci)]

3 , i = 2
p[P(Ei−1)+P(Di−1)+2(P(Ai)+P(Ci))]

6 , 3 ≤ i ≤ m
p[P(Ei−1)P(Di−1)+2(P(Ai)+P(Ci))]

5 , m < i < n
p[P(Ei−1)P(Di−1)+2(1+p)P(Di)]

5 . i = n

(11)

P(bi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
pP(Bi), 2 ≤ i ≤ m

pP(Ci)[P(Di−1)+P(Ei−1)]
2 , m < i < n

pP(Di)[P(Di−1)+P(Ei−1)]
2 . i = n

(12)

Besides Ai types, input symbols can also be decoded via
other directions. The decoding probability of other 4 input
symbol types are shown as following equations:

P(Bi) = 1 − [1 − P(bi+1)][1 − P(ai)]
3 (13)

Fig. 6 5 different types of input symbols in proposed coding graph.

P(Ci) = 1 − [1 − P(bi+1)][1 − P(ai)]
2 (14)

P(Di) = 2P(ai) − P(ai)
2 (15)

P(Ei) = 1 − [1 − P(ai)]
3 (16)

With the combination of the above 5 types input symbols,
the decoding probability of arbitrary input symbol Xi in
Layer i can be expressed as

P(Xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(Ai), i = 1
[P(Bi) + P(Ci)]/2, 2 ≤ i ≤ m
[P(Bi) + 3P(Ci)]/4, m < i < n
[P(Ei) + 3P(Di)]/4. i = n

(17)

The above equations give the general form for decoding
probability of arbitrary input symbols in our proposed cod-
ing graph, according to which, it is obvious that the de-
coding probability in different layers is interdependent with
each other.

However, it is too complicated to give an exact value
for a symbol according to (17). For simplicity, only con-
sidering bottom-to-top decoding path for Layer i, where
2 ≤ i ≤ n. Thus, input symbols Bi and Ci are simplified to
type Ei and Di respectively. Due to P(Bi) ≥ P(Ei), P(Ci) ≥
P(Di), the lower bound of decoding probability is calculated
in (18).

Pl.b.(Xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(Ai), i = 1

[P(Ei) + P(Di)]/2, 2 ≤ i ≤ m
[P(Ei) + 3P(Di)]/4. m < i ≤ n

(18)

where

P(X1) = P(A1) = 1 − (1 − p)(1 − pP(E2))

P(Di) = 1 − (1 − pP(Ei))
2

P(Ei) =

{
1 − (1 − pP(Xi−1))(1 − pP(Di)))2, i ≤ m
1 − (1 − pP(Xi−1)2)(1 − pP(Di)))2, o.w.

Here we present an intuitive description on decoding proba-
bility in each layer, as shown in Fig. 7, where input symbols
are encoded into 4 layers. The lines with circular marker in
Fig. 7 are the decoding probability of each layer calculated
by (18) for n = 4, m = 3, and the lines with rectangle marker

Fig. 7 Decoding probability for different layer under increasing symbol
loss rate (cal.: calculated by (17), simu: simulation result).
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are the simulation results with K = 10000. Since the value
calculated by (18) is the lower bound of decoding proba-
bility, the calculated decoding probability is a little smaller
than the simulation result, as shown in Fig. 7. While the
mismatch between the calculated and simulated value is no
larger than 0.02.

Besides, from both calculated and simulation results in
Fig. 7, only a few layers lose a little information when the
symbol loss rate is small, while along with the increasing of
symbol loss rate, the decoding probability of the more im-
portant layers become much higher than the layers with the
important level. It can be concluded that with our designed
UEP rateless encoding, the input symbols in arbitrary layer
enjoys greatly high decoding probability when the symbol
loss rate is small, while with the loss rate increasing, it pro-
vides high diversity on decoding probability between differ-
ent layers to achieve our purpose on unequal error protection
to different important symbols.

After decoding probability, decoding priority is to be
discussed. Any input symbols Xi in our proposed coding
graph, except those in the top layer, can be recovered from
both ai and bi+1 encoded symbols. Then the input symbol Xi

enjoys the ith decoding priority when it is recovered from ai

in Layer i, otherwise, it will have the jth decoding priority,
where j is in range of (i+1) ≤ j ≤ (2n− i−1). Notes that the
longest decoding priority j = 2n − i − 1 is from Layer 1 up
to Layer n (the top layer), then following the top-to-bottom
path, goes down to the Xi in Layer i. Considering that we
adopt BP decoding process, the decoder will firstly recover
the encoded symbols with degree 1 and decrease the degree
of other encoded symbols connected with the decoded in-
put symbol. For instance, after the first decoding iteration,
all input symbols in Layer 1 have been recovered, and en-
coded symbols in Layer 2 will decrease their degree and to
be decoded in the next decoding iteration. Thus in BP de-
coding process, the input symbol Xi will be recovered from
ai in Layer i with the ith decoding priority. The situation
that Xi decoded by bi+1 only happens when encoded sym-
bol ai is lost. In our discussion about the decoding priority,
we assume that all encoded symbols are sent to the decoder.
Figure 8 presents the decoding priority of our proposed UEP
rateless code with 248 input symbols. The recovered sym-

Fig. 8 Decoding priority for input symbols in different layers.

bols are assigned from Layer 1 to Layer 5.
According to Fig. 8, the decoder recovers all input sym-

bols in Layer 1 after the first decoding iteration, and then all
in Layer 2 and parts in Layer 3 in the 2nd iteration. Thus
it is obvious that the ith decoding operation can recover the
whole input symbols in Layer i and part in Layer i+1, proves
that the more important symbols enjoy higher decoding pri-
ority than other symbols.

4. Adaptive Streaming Based on UEP Rateless Code

Based on the UEP rateless code designed above, the deliv-
ery mechanism of our HASUR is shown in Fig. 9. The raw
video stream captured by the camera from time t = 0 to
t = T is encoded as the first source block by H.264/SVC
encoder. The source block is partitioned into one base layer,
which provides the basic quality by decoding itself indepen-
dently, and several enhancement layers, providing higher
quality gradually together with the base layer. For simplic-
ity, we ignore source encoding time, which depends on the
implementation of encoder and is usually very short. Then
at t = T , the server applies our designed UEP rateless code
to the source block, which has been illustrated in Sect. 2.
After channel coding, the encoded block is sent to the client
and the client tries to recover the source block from the re-
ceived symbols. Because of characteristics of UEP rateless
code, the client will firstly decoded the base layer success-
fully and then each enhancement layers. At t = 2T , the
client refuses to receive any symbols from the server and
stops channel decoding. While due to the packet loss or
bandwidth fluctuation, some encoded symbols are lost or ar-
rive too late to be useful, thus not all layers can be recovered
successfully within the stipulated time Δt = 2T − T . Then
those recovered symbols in successfully decoded layers will
be fed into the source decoder at t = 2T . Source decoding
can be done with almost no delay to provide the first frame
of the recovered video stream for playback at t = 2T , which
ensures the maximum playback latency is 2T . Increasing T
will increase the size of source block, which leads to more
efficient coding but also to a longer playback latency.

The same process is repeated at t = iT, i = 1, 2, . . .. In
a word, each encoded block is generated and transmitted at

Fig. 9 Delivery mechanism of the proposed adaptive streaming structure
(Source Coding*: H.264/SVC).
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t = iT , while at t = (i + 1)T , the client decodes each layer
based on the encoded symbols received during the trans-
mission period of T . The above process makes the video
streaming more adapt to the bandwidth fluctuation without
predicting the bandwidth and PLR in prior. When the band-
width turns worse at one transmission period, the client re-
ceives only a little encoded symbols, and decodes only the
base layer, providing the basic quality to the users. While in
the next period, the bandwidth becomes better, and the client
recovers not only the base layer, but also many enhancement
layers, giving users much better playback experience.

5. Simulation Results

The performance of our designed UEP rateless code ana-
lyzed in Sect. 3 is suitable for general data. In this section,
we will test the performance of our HASUR mentioned in
Sect. 4 with this UEP rateless code.

5.1 Test Bed Environment

In the simulation, we compare our HASUR with two com-
mercial HTTP adaptive streaming schemes, DASH and
HLS, in the case of fluctuant bandwidth and changeable
PLR respectively. To this end, we implement the network
simulator application-layer module, named Dummynet, be-
tween server and client to control bandwidth and PLR. The
server of HASUR processes source coding (H.264/SVC)
and channel coding (proposed UEP rateless code), packages
encoded symbols into ip packet and sends them through the
network simulator to the client. While the client is in charge
of decoding received symbols, reconstructing images and
playing back video streaming. Figure 10 shows the topol-
ogy for simulation, from which, the network simulator takes
charge of bandwidth fluctuating and arbitrary changeable
PLR in real-time.

The media used in the simulation is the CIF tempete
video sequence (30fps, 352x288), encoded by H.264/SVC,
with one base layer and four enhancement layers, as shown
in Table 1. The sequence is segmented into GOPs in size of
16 frames, and every 16

30 seconds, our UEP rateless encoder
is supplied by a new GOP data as the source block, the size
of which is about K = 1.6 ∗ 105 Byte. It is obvious that
in our simulation, the symbols in base layer are with the
most important level and are encoded with degree 1, those
in enhancement layer 1 and 2 are then encoded with degree
2, while the rest layers are encoded with degree 3 and 2,
which gives the overhead of each segment about 0.28.

Fig. 10 Simulation topology.

5.2 Experimental Results

In this subsection, we discuss the quality of received media
at the client of HASUR, DASH and HLS, considering dif-
ferent PLR and the fluctuant bandwidth respectively. Here
we adopt Peak Signal to Noise Ratio (PSNR) as the metric
of the media quality, as shown in Table 1, the higher quality
enjoys higher PSNR.

Firstly, we fix bandwidth at 5Mbps and limit PLR vari-
ous in range of 1% to 5%. Under this network situation, the
client requests streaming service via HASUR, DASH and
HLS. Due to packet loss, the above 3 adaptive streaming ad-
just their own segment bitrate automatically to self-adapt to
the current network situation. The average PSNR is calcu-
lated to give the entire judgement of received media quality
under different PLR, as shown in Fig. 11, It is obvious that
along with the increasing of PLR, all of 3 adaptive stream-
ing degrade their video quality to ensure their playback flu-
ency. While the quality degradation of our HASUR is the
weakest, which indicates that our proposed scheme guaran-
tees higher video quality than DASH and HLS under various
PLR. In other word, our HASUR gives good performance on
efficient resilience against packet loss.

Besides, The situation about the fluctuant bandwidth is
also considered. When an adaptive streaming is transmit-
ting and playing back, the network simulator changes the
bandwidth from 256kbps to 3Mbps randomly, which leads
to our HASUR, DASH and HLS keeping changing their
segment bitrate to suit the real-time fluctuant bandwidth as
possible as they can. Figure 12 gives the situation of real-
time streaming bitrate change under the fluctuant bandwidth
when the adaptive streaming is on-demand.

Table 1 H.264/SVC encoded tempete video sequence.

Layer Bitrate (kbps) PSNR-Y (dB)
Base Layer 79.72 28.3996

Enhancement Layer 1 239.98 29.8272
Enhancement Layer 2 533.02 31.8428
Enhancement Layer 3 1265.20 34.2681
Enhancement Layer 4 2696.40 37.7825

Fig. 11 PSNR of adaptive streaming under different PLR.
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Fig. 12 The real-time streaming bitrate under the fluctuant bandwidth
when the adaptive streaming is on-demand.

Fig. 13 Decoding probability of different layers with the proposed UEP
rateless code and EEP LT code respectively under different PLRs. (over-
head = 0.28).

From Fig. 12, when the bandwidth increases, all of the
3 adaptive streaming improve their bitrate as a whole and
decrease them when the bandwidth becomes worse. While
compared with HLS, HASUR is much more suitable to the
fluctuant bandwidth, which even enjoys similar performance
with DASH. It should be noted that we come to this conclu-
sion under the situation with End-to-End transmission, ig-
noring the interference caused by multi-users and only con-
sidering bandwidth fluctuating.

In addition, we also research the decoding probabil-
ity of different layers based on the UEP code scheme
when compared with Equal Error Protection (EEP) LT code
scheme. The simulation results are shown in Fig. 13. Ac-
cording to it, under the same PLR, the decoding probabil-
ity of each layer based on EEP scheme keeps unchanged
due to the equal protection on each layer. While, with the
UEP scheme, the decoding probability of high priority sym-
bols are higher than that of the low priority ones. Besides,
compared with EEP scheme, our UEP scheme enhances the
decoding probability of the higher priority symbols by sac-
rificing that of the lowest priority symbols.

6. Conclusion

In this paper, we designed a UEP rateless code and proposed
HASUR, a novel structure of HTTP adaptive streaming us-
ing this UEP rateless code. Our adaptive streaming scheme
makes video stream become more adaptive to the network.
It also ensures the most fluency playback and satisfactory
video quality under the fluctuant bandwidth and changeable
PLR, which are unnecessary to be estimated in advance.

Our designed UEP rateless code in this adaptive
streaming is very suitable in best-effort packet network. It
guarantees the high decoding probability and priority of im-
portant data with very little overhead and computation com-
plexity in minimal decoding iteration. Our UEP rateless
code enjoys even lower overhead than that of LT code with
RSD under the situation that the size of input symbols is not
large enough.

The performance of our proposed HASUR has been
verified by comparing with DASH and HLS. Under the si-
tuation of End-to-End transmission, HASUR provides bet-
ter video quality under changeable packet loss rate and be-
comes more adaptive to bandwidth fluctuating, especially
than HLS.
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