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PAPER

Learning a Two-Dimensional Fuzzy Discriminant Locality
Preserving Subspace for Visual Recognition

Ruicong ZHI†,††a), Member, Lei ZHAO††, Bolin SHI††, and Yi JIN†, Nonmembers

SUMMARY A novel Two-dimensional Fuzzy Discriminant Locality
Preserving Projections (2D-FDLPP) algorithm is proposed for learning ef-
fective subspace of two-dimensional images. The 2D-FDLPP algorithm
is derived from the Two-dimensional Locality Preserving Projections (2D-
LPP) by exploiting both fuzzy and discriminant properties. 2D-FDLPP
algorithm preserves the relationship degree of each sample belonging to
given classes with fuzzy k-nearest neighbor classifier. Also, it introduces
between-class scatter constrain and label information into 2D-LPP algo-
rithm. 2D-FDLPP algorithm finds the subspace which can best discrimi-
nate different pattern classes and weakens the environment factors accord-
ing to soft assignment method. Therefore, 2D-FDLPP algorithm has more
discriminant power than 2D-LPP, and is more suitable for recognition tasks.
Experiments are conducted on the MNIST database for handwritten image
classification, the JAFFE database and Cohn-Kanade database for facial
expression recognition and the ORL database for face recognition. Experi-
mental results reported the effectiveness of our proposed algorithm.
key words: fuzzy assignment, discriminant objective function, locality pre-
serving, pattern recognition

1. Introduction

Learning effective data representations are one of the most
important issues in pattern recognition. Researchers showed
that the intrinsic characterization of data always lied on the
corresponding feature subspace. For image-based recogni-
tion tasks, for example, face recognition [1], facial expres-
sion recognition [2], object pose classification [3] and other
pattern recognition tasks [4]–[6], it is essential to find ef-
fective features in the image-based subspace. In many real
world applications, one often faces to the curse of dimen-
sionality problem [7] which arises from the fact that there
are usually too few samples comparing with the number of
dimensions. To overcome the curse of dimensionality, re-
searchers made effort to find low-dimensional representa-
tion for original images and made a growing interest in sub-
space analysis techniques.

From a geometrical point of view, the dimension-
ality reduction can be formulated as discovering a low-
dimensional embedding of high-dimensional data, which is
assumed to lie on a linear or nonlinear manifold. There
are many subspace-based methods which can be divided
into two categories: linear (e.g. PCA, LDA, LPP, ICA,
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NMF, etc.) [8]–[10] and nonlinear (e.g. kernel-based algo-
rithms, manifold learning algorithms and spectral based al-
gorithms) [11]–[13]. The differences between these meth-
ods depend on their different motivations and objective func-
tions. The tree illustration of the main subspace-based
algorithms is shown in Fig. 1. The linear algorithms in-
clude vector-based algorithms and matrix-based algorithms.
Vector-based algorithms treat images as vectors, and two-
dimensional (2D) image matrices must be previously trans-
formed into one-dimensional (1D) image vectors which usu-
ally lead to a high-dimensional image vector space. There-
fore, it is difficult to evaluate the resulting objective ma-
trix accurately due to its large size and the relatively small
number of training samples (or small sample size problem).
Matrix-based algorithms are straightforward image projec-
tion techniques, which treat the image matrices directly ac-
cording to various objective functions. They successfully
solve the small sample size problem and evaluate the image
objective matrices accurately [14], [15]. Furthermore, less
time is required for calculation. It is reported that matrix-
based algorithms outperform vector-based algorithms sig-
nificantly on both recognition accuracies and computation
time.

Two-dimensional Locality Preserving Projections (2D-
LPP) [16] is a recent proposed algorithm which can obtain a
linear subspace that preserves local information of the image
set. The locality characterization is likely a nearest neigh-
bor searching in the low-dimensional space, and it will yield
similar results to that in the high dimensional space [17]. A
good many of experiments show that 2D-LPP has more dis-
criminating power than Two-dimensional Principal Compo-
nent Analysis (2D-PCA) and Two-dimensional Linear Dis-

Fig. 1 The main subspace-based algorithms.
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criminant Analysis (2D-LDA) [16], [18].
2D-LPP has been successfully applied to biometrics

recognition, e.g. face recognition, palmprint recognition,
facial expression recognition. Shan et. al. [12] reported
the comprehensive comparison of popular linear subspace
methods for facial expression recognition, e.g. PCA, LDA,
LPP (supervised and unsupervised), ONPP (Orthogonal
Neighborhood Preserving Projections, supervised and unsu-
pervised). It concludes that supervised LPP performs best in
supervised methods for facial expression recognition. More-
over, a great number of researchers tried to improve the ef-
ficiency of LPP [20]–[22]. However, if the training samples
are insufficient and data dimension is high especially for im-
age data, LPP can not be used directly due to singularity of
matrices.

Conducting LPP in two-dimensional sense based di-
rectly on image matrices, 2D-LPP is proposed. 2D-LPP
does not suffer from small sample size problem, and outper-
forms LPP algorithm on visual recognition problems [16],
[19], [23].

However, 2D-LPP suffers from the limitation that it
preserves the locality structure of data points, and ignores
the locality structure between pattern classes, that means it
deemphasizes discriminant information which is very im-
portant in pattern recognition tasks. On the other hand, 2D-
LPP algorithm adopts the binary class assignment, which
means that the samples come fully assigned to the given
classes. Evidently, visual recognition problem usually af-
fected by numerous conditions, it is advantageous to inves-
tigate these factors on soft class assignment. By consider-
ing these two aspects, we propose a novel Two-dimensional
Fuzzy Discriminant Locality Preserving Projections (2D-
FDLPP) to learn a more effective subspace for image rep-
resentation. 2D-FDLPP is a linear dimensionality reduction
method, and it is derived by introducing discriminant infor-
mation to 2D-LPP algorithm. Moreover, 2D-FDLPP utilizes
a fuzzy assignment method to determine the coefficients of
weight matrix.

The technique of fuzzy set has been successfully used
in image segmentation, image filtering, objection detection
and pattern recognition. It is usually done by coping with
the factor of uncertainty being inherently presented in im-
age processing and pattern recognition. From this point of
view, we address the uncertainty assignment to the weight
coefficients so that to get fuzzy weight matrix. The idea of
fuzzification of class assignment can be dated back to the
results published by Keller et. al. [24] coming under the no-
tion of a fuzzy k-nearest neighbor classifier. The modifica-
tion makes the new method be more discriminant and robust
to the confused images.

The remainder of this paper is organized as follows:
Section 2 gives the review of algorithm 2D-LPP; Section 3
analyzes the 2D-FDLPP algorithm in detail; Section 4 re-
ports the experimental results on different databases; con-
clusions are presented in Sect. 5.

2. Review of 2D-LPP Algorithm

2D-LPP works directly on the image matrix, and it is a lin-
ear dimensionality reduction method which aims to find a
transformation matrix A that maps original image Xi to a
low-dimensional representation matrix Yi, according to the
transformation Yi = XiA. Xi denotes an h×w original image
matrix, Yi is the low-dimensional matrix corresponding to
the original image matrix, and A is the transformation ma-
trix.

The linear transformation can be obtained by minimiz-
ing the objective function as follows:

min
∑

i j

‖Yi − Yj‖2S i j (1)

The objective function can be reduced to:

J =
1
2

∑

i, j

‖Yi − Yj‖2S i j =
1
2

∑

i, j

‖XiA − XjA‖2S i j

= AT XT (L ⊗ Ih)XA (2)

where D is a diagonal matrix whose entries are column (or
row) sum of S , L = D − S is the Laplacian matrix. X is
data matrix, X = [X1, X2, . . . , XN]. It contains N samples
which belong to C pattern classes, and each class contains
ni(i = 1, 2, . . . ,C) samples. With the constraint AT XT (D ⊗
Ih)XA = 1, the optimization problem is reduced to finding:

min
AT XT (D⊗Ih)XA

AT XT (L ⊗ Ih)XA (3)

3. Two-Dimensional Fuzzy Discriminant Locality Pre-
serving Projections (2D-FDLPP) Algorithm

Although 2D-LPP preserves the local structure of the image
space, it deemphasizes the locality characters between pat-
tern classes. As discriminant information is very important
for pattern recognition problem, we introduce label informa-
tion and between-class scatter constraint into the objective
function of 2D-LPP, so that to exact more discriminating in-
formation of images. On the other hand, 2D-LPP algorithm
assigns the samples in a crisp way to the given classes. That
means, for each sample, it fully belongs to or not belongs to
a pattern class. However, pattern recognition problems are
easily affected by several factors, e.g. environment factors.
It is more suitable to assign the samples in a soft way. There-
fore, we propose Two-dimensional Fuzzy Discriminant Lo-
cality Preserving Projections (2D-FDLPP). 2D-FDLPP is
interesting in the following three aspects: (1) 2D-FDLPP
is based on image matrix, and it solves the optimal problem
directly, which makes the calculation accurate and less time
consumed; (2) 2D-FDLPP utilizes soft assignment method
to construct the weight matrix with membership grade of
each data point belonging to given class; (3) the between-
class scatter constraint is added into the 2D-FDLPP objec-
tion function and 2D-FDLPP aims to find the subspace by
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minimizing the within-class distance, while maximizing the
between-class distance.

3.1 Fuzzy Weight Matrix

A number of studies have been carried out to cope with the
factor of uncertain being inherently present in many prob-
lems of image processing and pattern recognition, and these
can be called as fuzzy image processing. Generally speak-
ing, pattern recognition problem is often affected by envi-
ronment factors, for instance, illumination and pose. By in-
troducing uncertainty associated with the affective factors,
one can get more robust data presentation for pattern recog-
nition. From this point of view, we propose a fuzzy class
allocation method instead of conventional crisp allocation
method. The weight coefficients of pairs of samples are de-
fined by membership degree [25]. Fuzzy k-nearest neighbor
classifier is used to calculate the degree of membership of
each sample belonging to the given class.

As usual, the partition matrix is denoted by U = μi j,
μi j denotes the membership grade of sample j belonging to
class i, and it satisfies two properties:

(a)
C∑

i=1

μi j = 1 (b) 0 <
N∑

j=1

μi j < N (4)

The larger the value of μi j, the higher degree of mem-
bership that sample j belongs to class i. For instance, μi j = 1
denotes that sample j exactly belongs to class i, and μi j = 0
denotes that sample j does not belong to class i.

In fuzzy weight matrix construction, we try to find a
better representation of the class label information of train-
ing samples. By taking fuzzy k-nearest neighbor classifier
on the training samples, we find the first k nearest neighbors
of the sample according to the Euclidean distance (the Eu-
clidean distance between sample i and sample j is defined
as disi j =

∑
k,l(X

i
k,l − X j

k,l)
2), then collect the number of sam-

ples belong to the certain pattern classes that they belong
to, i.e. ni j denotes the number of sample j’s neighbor which
belongs to class i, then the membership degree is calculated
according to the neighbor samples’ class label. Let S̃ de-
note the fuzzy weight matrix between training samples, and
we use the membership degree of each sample belonging to
classes to construct the weight coefficients of S̃ . If sample
k belongs to class i, then the weight value between sample
j and sample k is obtained by the degree of membership of
sample j belonging to class i. D̃ is a diagonal matrix which
entries are row sum of S̃ .

Therefore, the weight matrix reflects the degree of
membership of each sample belonging to given class rather
than the relationship between pairs of samples. Each sam-
ple is assigned a membership value to each class rather than
binary decision of belongs to or does not belong to. The ad-
vantage of such assignment is that these membership values
act as strength or confidence with which the current sample
belongs to a particular class. The details of the procedure of
construct the fuzzy Laplacian matrix is shown in Fig. 2.

Fig. 2 Main steps of constructing the fuzzy Laplacian matrix.

Fig. 3 Membership degree to different classes.

The following example comes from Cohn-Kanade fa-
cial expression database. Figure 3 shows the membership
degrees obtained by the fuzzy k-nearest neighbor classifier.
For facial expression anger, the membership degree is 0.6,
while membership degrees of other facial expressions are
between 0.05–0.1. The confusing impact of different facial
expressions is quantified by the internal membership degree.
By this soft assignment, the reflection impacts are weakened
and the sample is confirmed to class anger.

3.2 Two-Dimensional Discriminant Objective Function

Discriminant information is very important for pattern
recognition problem, so we add the between class scat-
ter constraint into the objective function. Therefore, the
discriminant subspace can be obtained by minimizing the
within-class distance, while maximizing the between-class
distance. Therefore, the Two-dimensional discriminant ob-
jective function is

JD(Y) =

∑N
i, j=1 ‖Yi − Yj‖2S i j

∑C
i, j=1 ‖Mi − Mj‖2Wi j

(5)

where Yi, Yj denote the low-dimensional image matrices,
corresponding to the original images. S is the weight matrix
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of the samples, S i j = exp
(
−‖Xi − Xj‖2/t

)
(t is the empirical

parameter). W is the weight matrix of classes. Mi represents
the mean matrix of the projected images in class i, i.e. Mi =

(1/ni)
∑ni

k=1 Yi
k.

According to the linear transformation Yi = XiA, the
denominator of the objective function can be reformed as
follows:

1
2

C∑

i, j=1

(
Mi − Mj

)T (
Mi − Mj

)
Wi j

=

C∑

i=1

AT FT
i EiiFiA −

C∑

i, j=1

AT FT
i Wi jF jA

= AT FT ((E −W) ⊗ Ih) FA (6)

where Fi = (1/ni)
∑ni

k=1 Xi
k, E is a diagonal matrix whose

entries are column (or row) sum of W, H = E−W. Similarly,
the numerator of the objective function is

1
2

N∑

i, j=1

(
Yi − Yj

)T (
Yi − Yj

)
S i j

=

N∑

i=1

AT XT
i DiiXiA −

N∑

i, j=1

AT XT
i S i jX jA

= AT

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i, j=1

XT
i (Dii − S i j)Xj

⎤⎥⎥⎥⎥⎥⎥⎦ A

= AT XT (L ⊗ Ih)XA (7)

Therefore, the projection directions can be obtained by
minimizing the above function

A = arg min
A

AT XT (L ⊗ Ih)XA
AT FT (H ⊗ Ih)FA

(8)

By using Lagrange multipliers, the minimization prob-
lem becomes a generalized eigenvalue problem:

XT (L ⊗ Ih)XA = λFT (H ⊗ Ih)FA (9)

Thus, A = [a1, a2, . . . , ad] is w × d with columns being
the eigenvectors corresponding to the d largest eigenvalues.
All the images should be embedded according to the linear
projection Yi = XiA for classification.

The original between-class scatter matrix over-
emphasizes the classes with large distances, but pays little
attention to the classes with small distances. So the projec-
tion directions can preserve the distances of already well-
separated classes but cause a large overlap of neighboring
classes. To prevent the overlap problem, we introduce the
weighting function w(di) into between-class scatter matrix
to balance the distances between classes. di presents the
distance between the center of class i and the center of total
samples, and w(di) is a monotony and descending function
corresponding to di. Therefore, more powerful discriminant
information can be obtained. In our 2D-FDLPP algorithm,
the weight values are chosen as Wi j = exp

(
−‖Fi − F j‖2/t

)

(t is the empirical parameter).

Fig. 4 Ten simulation images.

Fig. 5 Ten simulation images.

3.3 Learning Two-Dimensional Fuzzy Discriminant Lo-
cality Preserving Subspace

As we can see from the above analysis, we take both of the
fuzzy and discriminant characterizations to propose more
effective algorithm – Two-dimensional Fuzzy Discriminant
Locality Preserving Projections (2D-FDLPP). 2D-FDLPP
utilizes the fuzzy assignment to construct the weight matrix,
and minimizes the discriminant objective function Eq. (7) to
obtain the discriminant optimal projective directions. There-
fore, the locality preserving subspace with fuzzy and dis-
criminant characterization can be obtained by solving the
generalized eigenvalue problem Eq. (8) with fuzzy weight
matrix described in Sect. 3.1.

To demonstrate the improvement of 2D-FDLPP algo-
rithm over 2D-LPP algorithm, we performed a simple sim-
ulation example. In our simulations, the data vectors were
3 × 3-pixel images of two classes. The images are shown
in Fig. 4, and images on the first row belong to class 1 and
images on the second row belong to class 2. The images
are projected by 2D-FDLPP algorithm and 2D-LPP algo-
rithm respectively and the projected images are illustrated
in a three-dimensional way as shown in Fig. 5.

Figure 5 (a) shows the distribution of the images in
three-dimensional 2D-FDLPP subspace, which reflects a
good separation between the two classes, especially in light
of the comparison with 2D-LPP, whose three-dimensional
projection is shown in Fig. 5 (b). At the same time, the im-
ages of the same class locate very closely in 2D-FDLPP
subspace. The result illustrates that 2D-FDLPP is able to
minimizing the within-class distance, while maximizing the
between-class distance. Therefore, 2D-FDLPP has more
discriminating power than that of 2D-LPP.
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3.4 Comparison between 2D-FDLPP and 2D-LDA

2D-LDA attempts to seek a set of optimal discriminating
vectors to form a transform image matrix Xi by maximizing
the 2D Fisher criterion denoted as

J2DLDA =
tr(TS B)
tr(TS W)

=
AT
(∑c

i=1 ni(X̄(i) − X̄)T (X̄(i) − X̄)
)

A

AT
(∑c

i=1
∑ni

k=1(Xk − X̄(i))T (Xk − X̄(i))
)

A
(10)

where X̄(i) is the mean matrix of the ith class, X̄ is the mean
matrix of all the samples, and Xk denotes the kth sample.

From Eq. (10) it can be seen that the goal of 2D-LDA is
to extract features that well discriminate a set of data that be-
longs to a number of classes, making samples from different
classes far as much as possible from each other, while sam-
ples from same classes close as much as possible. Both 2D-
FDLPP and 2D-LDA are supervised algorithm and attend to
preserve the discriminant information of samples. While the
improvement of 2D-FDLPP algorithm over 2D-LDA algo-
rithm benefits mostly from two aspects: (1) 2D-FDLPP in-
troduced fuzzy assignment method to construct the weight
matrix, so that more robust data presentation is obtained; (2)
2D-LDA evaluates the separability in terms of the distance
between class means or the distance between the sample and
its class mean, whereas 2D-FDLPP evaluate the separabil-
ity in terms of the distance between samples, which aims
to preserve the neighbor relationship of samples; (3) in 2D-
LDA, the distribution of variation for any two samples in
the same class is the same, which means that each sample
has the same contribution to the classification, while 2D-
FDLPP uses similarity coefficient to represent the similarity
between two samples from the same class. 2D-FDLPP can
be viewed as a combination of the ideas of both 2D-LDA
and 2D-LPP, with soft assignment method to construct the
similarity coefficients.

4. Experimental Results

In this section, we investigate the performance of our pro-
posed 2D-FDLPP method for image recognition problems.
We begin with handwritten examples to verify the classi-
fication power of 2D-FDLPP, and deal with the facial ex-
pression recognition task on Cohn-Kanade facial expression
database, JAFFE facial expression database, finally, perfor-
mance of 2D-FDLPP on face recognition is verified on ORL
face database.

4.1 Handwritten Examples

In this section, the application of 2D-FDLPP in handwrit-
ten recognition will be discussed. The dataset used in our
experiment is the MNIST handwritten digit data set [26],
containing 28 × 28 pixel image of digits 0 to 9. Some of
the examples of MNIST dataset are shown in Fig. 6. In our

Fig. 6 Digit image samples from MNIST database.

Fig. 7 Euclidean distances between testing samples after different pro-
jections.

experiment, we verify the classification power of our pro-
posed 2D-FDLPP method on the handwritten digits. First,
we select 100 samples per class from the training set, and
500 samples per class from the testing set. The training set
is used to obtain the optimal solution of Eq. (9) with fuzzy
weight matrix, and then testing samples are embedded to the
subspace by the transformation matrix.

To illustrate the discriminant power of 2D-FDLPP sep-
arating different classes and clustering the samples in the
same class, we show the Euclidean distance between pro-
jected testing samples. Let Yi and Y j denote two testing
samples embedded to the obtained subspace, the Euclidean
distance between them are calculated as:

∑
k,l

(
Yi

k,l − Y j
k,l

)
.

The distributions of the distances between samples are
shown in Fig. 7, and the result of 2D-FDLPP is compared
with that of 2D-LPP, 2D-LDA and LLE [27]. LLE method
is nonlinear dimensionality reduction method based on im-
age vector. We compare the classification performance of
2D-FDLPP algorithm to that of 2D-LPP, 2D-LDA and one-
dimensional nonlinear method. It is clear that 2D-FDLPP
has the block structure which means that it separates the ten
digital classes successfully and makes the samples of the
same class compact. For 2D-LPP, the illumination shows
that the original neighboring samples are still close after
projection. However, the samples of class 2, 3, 5, 8 are
confused with samples of other classes. For 2D-LDA, 2,
3, 4, 5 are separated clearly, 7 is well separated from other
digits, while others are confused. For LLE, some of the dig-
ital classes are separated clearly (e.g. 0, 3, 5), while other
classes are confused significantly.

4.2 Facial Expression Recognition

In this section, we discuss how 2D-FDLPP learns the fuzzy
discriminant locality preserving subspace and its perfor-
mances of facial expression recognition for six basic facial
expressions (namely, anger, disgust, fear, happiness, sad-
ness and surprise). The experiments are carried out on the
widely used Cohn-Kanade facial expression database [28]
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Fig. 8 Facial expression images from Cohn-Kanade database.

and JAFFE facial expression database [29]. The classifier
design is not our emphasis. Therefore, we take nearest
neighbor classifier for simplicity.

4.2.1 Cohn-Kanade Facial Expression Database

The Cohn-Kanade facial expression database consists of
video sequences of subjects displaying distinct facial ex-
pressions, starting from neutral expression and ending with
the peak of the expression. As some subjects in Cohn-
Kanade database show less than six facial expressions, we
use a subset with thirty subjects for our experiments. For
each expression of a subject, the last eight frames in the
videos are selected, and we treat these frames as static im-
ages for both training and testing. The images are manu-
ally cropped to a central face image containing the main
facial components (as eyebrows, eyes, nose and chin) and
resized to 120 × 120. The uniform background was elimi-
nated. Some of the samples in Cohn-Kanade database are
shown in Fig. 8.

In the classical facial expression recognition, the orig-
inal data are split in two disjoint parts, training and testing
data sets. To form the training set, we randomly select dif-
ferent training samples p(p = 1, 2, 3) from each subject of
each facial expression (i.e. the number of training samples
of each class is p×30), while the rest of the images are used
for testing.

We compare the proposed 2D-FDLPP algorithm with
other matrix-based dimensional reduction methods, i.e. 2D-
LPP, 2D-LDA and 2D-PCA. For each p, the recognition ac-
curacies of algorithm with varied dimensions are reported
and shown in Fig. 9. Furthermore, Table 1 reports the high-
est recognition accuracies obtained by the six algorithms. It
can be seen from the illustrations that 2D-FDLPP algorithm
outperforms other algorithms significantly, and it achieves
the highest recognition rates among the comparing algo-
rithms. It shows that 2D-FDLPP has more discriminating
ability to separate different pattern classes and makes sam-
ples in the same class more compact. Therefore, 2D-FDLPP
obtains better result in facial expression recognition.

4.2.2 JAFFE Facial Expression Database

The JAFFE facial expression database consists of 213 im-
ages of Japanese female facial expressions. Ten subjects
posed three or four examples for each of the six basic fa-
cial expressions plus neural face. First, the facial images are

(a) (b)

(c)

Fig. 9 Recognition accuracy versus dimensionality reduction on the
Cohn-Kanade facial expression database (a) p = 1; (b) p = 2; (c) p = 3.

Table 1 Comparison of the highest recognition accuracies (%) of 2D-
FDLPP, 2D-LPP, 2D-LDA, and 2D-PCA algorithm on Cohn-Kanade facial
expression database.

case 1 case 2 case 3
2D-FDLPP 95.9 (120 × 90) 96.5 (120 × 95) 97.2 (120 × 120)
2D-DLPP 95.5 (120 × 85) 95.6 (120 × 95) 95.9 (120 × 120)
2D-FLPP 95.2 (120 × 15) 95.6 (120 × 15) 96.0 (120 × 5)
2D-LPP 93.4 (120 × 110) 94.1 (120 × 70) 94.6 (120 × 105)
2D-LDA 92.5 (120 × 10) 93.3 (120 × 5) 93.7 (120 × 5)
2D-PCA 91.7 (120 × 30) 92.2 (120 × 85) 93.5 (120 × 95)

Fig. 10 Synthetic facial expression images on JAFFE database.

manually cropped and resized to 32 × 32. The total number
of facial expression images in JAFFE database is limited,
and it contains only frontal face images. To verify the ro-
bustness of 2D-FDLPP algorithm, we extended the database
by synthetizing various facial images according to the fol-
lowing methods:

For original facial image A:

(1) Make mirror symmetry transform to A, to get A1;
(2) Scale A by a coefficient of 0.9, to get A2;
(3) Scale A by a coefficient of 1.1, to get A3;
(4) Rotate A by an angle of 5degree (left), to get A4;
(5) Rotate A by an angle of 5 degree (right), to get A5;

The samples of synthetic facial expressions are shown
in Fig. 10. In our experiment, six-fold cross validation
method which is similar with that in [30] is conducted on
the extended JAFFE database. The extended JAFFE facial
expression database is equally divided into six subsets. Then
one of the subsets is selected for testing while the remain-
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Fig. 11 Comparison of the highest recognition accuracies (%) of 2D-
FDLPP, 2D-LPP, 2D-LDA and 2D-PCA algorithms on JAFFE facial ex-
pression database.

der is used to construct the training set. Experiments are
repeated for six times, with different test subset being used
for each time.

We compare the proposed 2D-FDLPP algorithm with
2D-LPP, 2D-LDA, and 2D-PCA. The highest recognition
accuracies achieved for each experiment case is compared
in Fig. 11. In short, the recognition performance of 2D-
FDLPP is better than all other tested dimensionality reduc-
tion algorithms in facial expression recognition. For subset
2, the best recognition accuracies achieved by 2D-FDLPP
is 88.7%, while the best recognition accuracies obtained by
2D-LPP, 2D-LDA, 2D-PCA are 84.3%, 83.4%, and 78.7%,
respectively. 2D-FDLPP algorithm gives comparable re-
sults by using the simplest nearest neighbor classifier, and
it demonstrates the superiority of 2D-FDLPP algorithm.

4.3 Face Recognition

In this section, the proposed 2D-FDLPP method is used
for face recognition and tested on Olivetti-Oracle Research
Lab (ORL, http://www.cam-orl.co.uk, [31]). The ORL face
database contains images from 40 individuals, each provid-
ing 10 different images. The images are varied in pose, illu-
mination and facial expression. In our experiment, the im-
ages are manually cropped and resized to 48× 48 pixels and
no other preprocessing is conducted. Some example images
from the ORL face database are shown in Fig. 12.

In our experiment, some images are randomly selected
for training, while the remaining is used for testing. Fur-
thermore, a series of test are designed to compare the per-
formance of 2D-FDLPP to that of 2D-LPP, 2D-LDA, and
2D-PCA methods under conditions where the sample size
is varied. More specifically, we use 2, 3, 4, and 5 image
samples randomly per class for training and the remaining
samples for testing. Figure 13 presents the highest recog-
nition accuracies of the six methods for four experiments.
This figure indicates that the performance of 2D-FDLPP is

Fig. 12 Face images from the ORL face databases.

Fig. 13 Recognition accuracy for different training samples on the ORL
face database.

Table 2 The average CPU time (s) consumed for training and testing,
the highest recognition accuracies (%) and the corresponding dimensions
of the six two-dimensional methods (CPU: Intel Core2 2.83GHz, RAM:
3.50GB).

Method 2D-PCA 2D-LDA 2D-LPP 2D-FLPP 2D-DLPP 2D-FDLPP
Recognition
accuracy

88.6 90.3 91.4 92.9 94.3 95.0

Dimension 48 × 4 48 × 4 48 × 4 48 × 6 48 × 42 48 × 14
CPU time 0.14 0.17 4.80 5.56 6.59 7.32

better than that of other tested algorithms.
In addition, the average CPU time consumed for train-

ing and testing, the recognition accuracy and the corre-
sponding dimensions of the six algorithms are given in Ta-
ble 2 (All the face images were imported from .mat, which
is the data storing format in Matlab). 2D-FDLPP algorithm
achieves the maximal recognition rate of 95% using 14 fea-
tures, and the consumed CPU time is slightly higher than
that of 2D-DLPP and 2D-FLPP.

5. Conclusions

In this paper, we proposed a novel subspace learning algo-
rithm which has fuzzy discriminant locality preserving abil-
ity. Motivated by the advantage of fuzzy set, we utilize the
fuzzy assignment to generate fuzzy weight matrix to denote
the relationship between samples. Moreover, discriminant
objective function is proposed to improve the discriminat-
ing power of the algorithm. Experiments are conducted on
handwritten digital images, facial expression images, and
face images. Experimental results demonstrate that 2D-
FDLPP algorithm can achieve encouraging results in pattern
recognition tasks.
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