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SUMMARY Stochastic decoding provides ultra-low-complexity hard-
ware for high-throughput parallel low-density parity-check (LDPC) de-
coders. Asynchronous stochastic decoding was proposed to demonstrate
the possibility of low power dissipation and high throughput in stochastic
decoders, but decoding might stop before convergence due to “lock-up”,
causing error floors that also occur in synchronous stochastic decoding. In
this paper, we introduce a wire-delay dependent (WDD) scheduling algo-
rithm for asynchronous stochastic decoding in order to reduce the error
floors. Instead of assigning the same delay to all computation nodes in the
previous work, different computation delay is assigned to each computation
node depending on its wire length. The variation of update timing increases
switching activities to decrease the possibility of the “lock-up”, lowering
the error floors. In addition, the WDD scheduling algorithm is simplified
for the hardware implementation in order to eliminate time-averaging and
multiplication functions used in the original WDD scheduling algorithm.
BER performance using a regular (1024, 512) (3,6) LDPC code is simu-
lated based on our timing model that has computation and wire delay esti-
mated under ASPLA 90nm CMOS technology. It is demonstrated that the
proposed asynchronous decoder achieves a 6.4-9.8× smaller latency than
that of the synchronous decoder with a 0.25-0.3 dB coding gain.
key words: forward error correction (FEC), stochastic computation, asyn-
chronous circuits

1. Introduction

Low-Density Parity-Check (LDPC) [1], [2] codes are very
powerful forward-error-correcting codes and have been used
in digital communication standards, such as WiMAX [3],
WiFi [4], and 10GBASE-T [5]. LDPC decoding using the
sum-product algorithm (SPA) or one of its variants, per-
forms by iteratively passing a posteriori probability or log-
likelihood ratio (LLR) soft-valued messages between two
computation nodes on a factor graph [6].

In the hardware implementation based on the SPA and
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the min-sum algorithm (MSA), parallel decoder implemen-
tations tend to achieve high throughput, but the wiring com-
plexity and large area consumption lead to an increase in
the maximum wire length, which imposes an upper limit
on achievable speed [7]–[10]. Stochastic decoding [11]–
[22] has been proposed as an alternative implementation of
LDPC decoders to provide very low-complexity hardware.
Stochastic computation in essence represents a way of quan-
tizing the amplitude of a signal onto the statistics of a ran-
dom signal, rather than onto classical binary (e.g. 2’s com-
plement) values. This represents an evolution from binary
or voltage/current amplitude signalling towards more mod-
ern time-based, and ultimately statistics-based signal pro-
cessing. In stochastic decoding, probability messages rep-
resented by the statistics of a Bernoulli sequence are se-
rially sent over an interleaver portion between two com-
putation nodes that are simply designed using binary or
even multiple-valued logic [17], [18] gates. As relatively
large number of clock cycles are required compared with
that of the MSA, high-speed clocking is required for high-
throughput decoders, causing large power dissipation. For
larger codes toward higher throughput demands, such as
40G- and 100GBASE-T, the wiring delay in the interleaver
portion tends to have more variations due to the complexity
of wiring. It causes very long interconnect, which limits the
clock frequency of the synchronous stochastic decoders.

An asynchronous stochastic decoder has a possibil-
ity of implementing an energy-efficient high-throughput
LDPC decoder due to the lack of clocking. An asyn-
chronous scheduling algorithm and its hardware have been
proposed for min-sum decoders [23], [24] and demonstrate
high-throughput and low-power LDPC decoders by solv-
ing the clock-related problems, while maintaining BER per-
formance [25], [26]. For stochastic decoders, we have pre-
sented an asynchronous scheduling algorithm, called a wire-
delay independent (WDI) scheduling algorithm [19] that
suffers from error floors that also occur in synchronous
stochastic decoding. A wire-delay dependent (WDD)
scheduling algorithm has been presented [20] in order to re-
duce the error floors and this paper is the extension. The
WDD scheduling algorithm reduces the error floors, but it
requires a complex function, such as time-averaging and
multiplication functions, which increase the area and the de-
lay time in hardware. In this extension, a simplified WDD
(SWDD) scheduling algorithm is presented for the efficient
hardware implementation. The SWDD scheduling algo-
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rithm exploits a simple addition and a comparison instead
of using the complex functions while maintaining the BER
performance.

The rest of the paper is organized as follows. A re-
view of stochastic decoding is described in Sect. 2. Sec-
tion 3 describes asynchronous stochastic decoding based on
the WDI scheduling algorithm. Section 4 and Sect. 5 intro-
duce the WDD and the SWDD scheduling algorithms, re-
spectively. Section 6 evaluates BER performance using our
simulator that includes computation and wire delay based on
a 90nm CMOS technology. Finally, we conclude this paper
in Sect. 7.

2. Review of Stochastic Decoding

2.1 Overview of LDPC Codes

Figure 1 shows a factor graph [6] that represents n variable
and m parity-check nodes in an LDPC code. In an LDPC
code, (n-m) information bits are encoded using a generator
matrix G, and the n-bit encoded data x containing m par-
ity bits are transmitted over the channel, such that GHT=0
with operations typically (but not always) over GF(2), where
H is a parity-check matrix. The received data transmit-
ted with channel noises are often decoded using the sum-
product algorithm (SPA) or one of its variants, such as the
min-sum algorithm (MSA). LDPC decoding performs by it-
eratively passing a posteriori probability or log-likelihood
ratio (LLR) messages along the edges of the factor graph
between the variable and the check nodes. In the SPA, the
outgoing probability in a two-input variable node, which has
two inputs (A and B) and one output (C), is represented by

p(C) =
p(A)p(B)

p(A)p(B) + (1 − p(A))(1 − p(B))
. (1)

Similarly, the outgoing probability in a two-input check
node, which has two inputs (A and B) and one output (C), is
represented by

p(C) = p(A)(1 − p(B)) + (1 − p(A))p(B). (2)

Fig. 1 Factor graph for an LDPC code that represents n variable nodes
and m check nodes.

2.2 Stochastic Decoding

Parallel LDPC decoders based on the MSA have been pro-
posed [10], [24] instead of using the SPA [7], but wiring
complexity of interleaver portions and relatively large area
of the computation nodes are issues in hardware. In order to
realize low-complexity decoders, stochastic decoders were
first introduced in [11] and have been demonstrated to lead
to simple, yet very high throughput hardware [14], [15] for
LDPC codes. Stochastic decoding performs in the proba-
bilistic domain, such as the SPA. The probability p is rep-
resented by a random sequence of bits that is a Bernoulli
sequence and corresponds to the frequency of ones or ze-
ros in the sequence. The probability can be represented by
many different sequences of bits. For example, different se-
quences of bits (0011) and (1010) can be p = 0.5.

Figure 2 (a) shows a circuit diagram of a two-input
stochastic variable node. Let p(A) = Pr(A(t)=1) and p(B)
= Pr(B(t)=1) be the probabilities represented by the two in-
put bit streams, and p(C) = Pr(C(t)=1) be the probability
represented by the output bit stream. The circuit is designed
based on a tracking forecast memory (TFM) method [15].
The TFM consists of a r-bit flip-flop (e.g. r is 5 to 8) to hold
an estimate of the message probability that the precision can
be increased with wider widths. It is possible that the width
of the TFM can increase the number of iterations if the extra
bits are used (hence slowing the convergence, but improving
the BER). The TFM and another rerandomization unit, edge
memory (EM) [14] generate an output bit stream randomly
based on a probability stored in the memory when inputs
are not the same. These units increase switching activities
of messages to reduce the probability of “lock-up” that stops
decoding before decoding convergence. The “lock-up”, or
also called “latching” occurs because a cycle in the graph,
such as Fig. 1, causes a group of nodes to lock into a fixed
state (see details in [12]). Large switching activities increase
a possibility of breaking the fixed state, lowering the BER.

In the two-input stochastic variable node, Eq. (1) is im-
plemented by the following rules:

C(t) =

{
r(t) if U = 1
r′(t) otherwise

(3)

r(t) is an output of the two-input AND gate. r’(t) is a ran-
domly selected bit based on a stored probability P(t) in the
TFM. When U is 1, P(t) is updated by comparing r(t) with

Fig. 2 Circuit diagrams in a stochastic decoder: (a) variable and (b)
check nodes.
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Fig. 3 Asynchronous data transmission between variable and check
nodes, where local handshaking is performed using a request and an ac-
knowledgment signal.

R(t) that is a random bit whose probability is 0.5. Fig-
ure 2 (b) shows a circuit diagram of a two-input stochastic
check node. Equation (2) for the check node is implemented
by the following rule:

C(t) = A(t)
⊕

B(t). (4)

Decoding performs by iteratively passing stochastic mes-
sages that are updated in variable and check nodes along
the edges of the factor graph for a fixed number of cycles,
known as decoding cycles [14], [15], or until a codeword is
found.

3. Asynchronous Stochastic Decoding

3.1 Asynchronous Scheduling Algorithm

Stochastic decoders are usually implemented using syn-
chronous circuits, where all the variable-node outputs are
updated simultaneously using a global clock signal. How-
ever, the wiring delay via an interleaver tends to have varia-
tions from wire to wire due to the complexity in the chip im-
plementation causing very long interconnects, which limits
the clock frequency. We have previously proposed an asyn-
chronous scheduling algorithm to alleviate this problem for
the MSA [25], [26].

Asynchronous scheduling algorithms for stochastic de-
coding of LDPC codes have been proposed to tackle the
wiring complexity, especially for clock distribution [19],
[20]. In the scheduling algorithms, computation nodes do
not need to wait for the all updated messages including from
tardy long wires, but can proceed when ready as node com-
putations are performed by using the most recent available
messages rather than all updated messages at a global level.
The transmission delays between the computation nodes are
determined by each wire delay, and thus the decoding con-
vergence and hence throughput is governed by the average
(rather than worst-case) wire delays of the interleaver.

Figure 3 shows asynchronous data transmission be-
tween one variable node and one check node. Data (an
stochastic stream) is transmitted using local control signals,
such as a request and an acknowledge signal, labeled as
req and ack, respectively. First, the request signal, req, is
asserted to transmit data to the check node. Second, the
check node detects the request signal and then receives the

Fig. 4 Timing model for asynchronous stochastic decoding.

data. Third, the check node transmits the acknowledge sig-
nal, ack, to the variable node to inform that the data is re-
ceived. Finally, the variable node detects the ack signal and
then goes back to the first step to transmit the next data. In
this way, the transmission delay via the interleaver is de-
termined by local wiring delay characteristics as the asyn-
chronous circuits are controlled by a request-acknowledge-
based handshaking protocol,

Our goal is to implement an energy-efficient high-
throughput stochastic LDPC decoder based on asyn-
chronous scheduling. A BER simulation is required before
decoder implementation to validate decoding and schedul-
ing algorithms. In a synchronous stochastic decoder, all
computation blocks operate at the same time, thus the BER
simulation is straightforward to implement. However, in the
asynchronous stochastic decoder, computation blocks and
data-transmission blocks operate at different speed based
on each individual delay. To validate the asynchronous
scheduling algorithms, we need a complex timing model
that considers all delay information.

3.2 Wire-Delay Independent (WDI) Scheduling

In this subsection, we describe a timing model for BER
simulations based on an asynchronous scheduling algo-
rithm called a wire-delay independent (WDI) schedul-
ing [19]. Figure 4 shows a timing model for the asyn-
chronous scheduling algorithms. Suppose that incoming
and outgoing messages to and from check (CHK) nodes are
represented by vectors X and Y, respectively, where these
vectors have length n and m, respectively. The operations of
variable (VAR) and CHK nodes are represented by
{

VAR : X = f (Y,R),
CHK : Y = g(X),

(5)

where f and g represent the VAR and the CHK operations,
respectively. R is a received channel output whose vector
has length n. The operations f and g correspond to Eqs. (1)
and (2) in probabilistic domain, respectively. The hardware
implementations of f and g are described in Fig. 2 (a) and
(b), respectively.
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Table 1 Delay time that determines update timing in synchronous, asynchronous and clockless
stochastic decoding.

Synchronous Asynchronous (WDI) Asynchronous (WDD) Clockless
VAR TS ync TVAR α ∗ avg(TYX(i,0) , . . . ,TYX(i,(dv−1)) ) -
CHK TS ync TCHK α ∗ avg(TXY( j,0) , . . . ,TXY( j,(dc−1)) ) -

Interleaver TS ync min(TXY ) − max(TXY ) min(TXY ) − max(TXY ) -

The timing model includes three blocks that are VAR,
CHK, and data transmission (DT) between VAR and CHK.
These three blocks operate at different timing i.e. asyn-
chronously. The output of each VAR operation, X′

i
(0 ≤

i < n) with the update timing is given by:

X′
i
(t) =

{
f (Yi(t − TXi),Ri), if t = rTXi

hold. otherwise
(6)

Xi is composed of Xik and Yi is composed of Yik(0 ≤ k <
dv), where dv is the number of inputs from CHK at each
VAR. TX represents the VAR computation delay time, which
is represented by a vector (TX0, . . . ,TX(n−1)) and r is an inte-
ger value. Each VAR is updated using a local control signal
that can be generated by a ring oscillator. X′

i
is updated if

the simulation time is equal to rTXi. Otherwise, the output
holds the previous value.

The output of each CHK operation, Y′
j

(0 ≤ j < m)

with the update timing is given by:

Y′
j
(t) =

{
g(Xj(t − TY j)), if t = rTY j

hold. otherwise
(7)

Yj is composed of Yjl and Xj is composed of Xjl(0 ≤ l < dc),
where dc is the number of inputs at each CHK. TY represents
the CHK computation delay time, which is represented by a
vector (TY0, . . . ,TY(m−1)).

The output of each DT operation from VAR to CHk,
Xjl and the output from CHK to VAR, Yik with the update
timing are given by:

Xjl(t) =

{
h(X′ik(t − TXY( j,l))), if t = rTXY( j,l)

hold, otherwise
(8)

Yik(t) =

{
h(Y ′jl(t − TYX(i,k))), if t = rTYX(i,k)

hold, otherwise
(9)

where TXY( j,l) and TYX(i,k) represent data-transmission delay
time from the k-th output of the i-th VAR to the l-th input
of the j-th CHK and from the l-th output of the j-th CHK
to the k-th input of the i-th VAR, respectively. Suppose that
TXY( j,l) and TYX(i,k) are the same delay time. h is a mapping
function that copies an input to an output in a module.

4. Wire-Delay Dependent (WDD) Scheduling for Asyn-
chronous Stochastic Decoding

4.1 Error Floors in WDI Scheduling

In [19], the asynchronous stochastic LDPC decoder based
on the WDI scheduling algorithm achieves up to 7.37× im-
provement of throughput estimated in the simulation model

compared to that of the synchronous stochastic decoder.
However, it causes error floors due to the “lock-up”, such
as the synchronous stochastic decoders. We have also pro-
posed clockless stochastic decoding that is another type of
asynchronous stochastic decoding [21]. It is not governed
by any global and local control signals and hence compu-
tation nodes operate when incoming messages sent along
wires are changed. Unlike WDI asynchronous stochastic
decoding, clockless stochastic decoding reduces error floors
and achieves comparable BER performance to the SPA.
The difference between WDI asynchronous and clockless
stochastic decoding is the update timing in the computation
nodes.

4.2 WDD Scheduling

Despite of the good BER performance of clockless stochas-
tic decoding, it is hard to implement the clockless stochas-
tic decoder due to the lack of the hardware implemen-
tation [22]. Unlike the clockless stochastic decoder, the
hardware implementation of the asynchronous circuits have
been presented [25]–[27]. A wire-delay dependent (WDD)
scheduling algorithm is the extension of the WDI scheduling
algorithm in order to lower the error floors. The scheduling
algorithms are summarized in Table 1.

The VAR operation in the WDD scheduling algorithm
is the same as that in Eq. (6), but the update timing (TX) is
different. In the WDI scheduling algorithm, as all VARs are
updated based on the same cycle delay, the update timing
(TXi ) at each node is fixed to TVAR and is defined by

TXi = TVAR. (10)

In the WDD scheduling algorithm, update timing at each
VAR is determined by averaging delay time of data trans-
mission from CHKs over wires that connect to the VAR. The
i-th variable node has dv wires on which data-transmission
delay time is TYX(i,k) . The assignment of different update tim-
ing at each VAR makes a similar characteristic of updating
in clockless stochastic decoding that updates the output de-
pending on just input-message changes. The update timing
in the WDD scheduling algorithm is given by:

TXi = α × avg(TYX(i,0) , . . . ,TYX(i,(dv−1)) ), (11)

where α is a variable.
The CHK operation in the WDD scheduling algorithm

is the same as that in Eq. (7). In the WDI scheduling al-
gorithm, as all CHKs are updated based on the same cycle
delay, TY j at each node is defined by

TY j = TCHK . (12)
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In the WDD scheduling algorithm, update timing at each
CHK is determined by averaging delay time of data trans-
mission from VARs over wires that connect to its CHK. The
j-th check node has dc wires on which data-transmission de-
lay is TXY( j,l) . TY j in the WDD scheduling algorithm is given
by:

TY j = α × avg(TXY( j,0) , . . . ,TXY( j,(dc−1)) ). (13)

The DT operation is the same in both WDI and WDD
scheduling algorithms.

The update timing of the WDD scheduling algorithm
is different at each computation node while that of the WDI
scheduling algorithm is the same at all computation nodes
shown in Table 1. The WDD update timing is similar to that
of the clockless scheduling algorithm as the updated tim-
ing depends on the data-transmission delay [21], [22]. The
difference between the WDD and the clockless scheduling
algorithms is the data transmission. The data transmission in
the WDD is controlled by local handshaking between VARs
and CHKs, but it is not in the clockless scheduling algo-
rithm.

4.3 Combination of WDI and WDD Scheduling Algo-
rithms

We also introduce another scheduling algorithm based on
the combination of the WDI and the WDD. In the schedul-
ing algorithm, at first, decoding performs based on the WDI
or the WDD until a specific decoding time, and then it per-
forms based on the WDD or the WDI. The algorithm would
make more switching activities of messages than the WDD
and reduce the probability of error floors. Suppose that TDCT

is total decoding time. It is represented by

TDCT I = γ × TDCT , (14)

TDCT D = (1 − γ) × TDCT , (15)

where TDCT I and TDCT D are decoding time for the WDI and
the WDD, respectively.

5. Simplified WDD (SWDD) Scheduling

In the WDD scheduling algorithm, a different timing up-
date at each computation node is realized using the aver-
age data-transmission delay information that related to the
computation nodes. However, a time-averaging circuit and
a multiplier are required in hardware for the WDD schedul-
ing algorithm. The hardware tends to be complex, which
increases the area and the delay time at each computa-
tion node. Hence, we simplify the WDD scheduling algo-
rithm for the efficient hardware implementation of the asyn-
chronous stochastic decoder.

In the simplified WDD (SWDD) scheduling algorithm,
the time-average function and the multiplication are re-
moved. The update timing is determined by comparing the
number of transmitted data with a threshold value. The
number of transmitted data is counted using asynchronous

Fig. 5 Hardware architectures of a controller for a three-input VAR
based on : (a) WDI scheduling, (b) WDD scheduling, (c) SWDD schedul-
ing, and (d) SWDD scheduling if thv is dv.

request and acknowledge signals. The number of transmit-
ted data in the i-th VAR (NVARi(t)) is given by:

NVARi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NVARi(t) + 1, if t = rTYX(i,k)

0, else if NVARi(t) ≥ thv
hold, otherwise

(16)

where thv (1 ≤ thv ≤ dv) is the threshold value in the VAR.
Let NV AR(t) be the number of transmitted data represented
by a vector (NVAR0(t), . . . ,NVAR(n−1)(t)). The output value of
each VAR is updated as follows:

X′
i
(t) =

{
f (Yi(t − TXi),R), if NVARi(t) ≥ thv
hold, otherwise

(17)

where TXi can be a different value at each variable node de-
pending on the data-transmission delay to the variable node.

Figure 5 shows hardware architectures of a controller
for a three-input VAR. In the WDI scheduling algorithm,
the controller can be designed using a delay element and
a C-element shown in Fig. 5 (a). The C-element is a typi-
cal storage component for asynchronous circuits. The out-
put is the same value of the inputs if the two inputs are the
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same. Otherwise, the output holds the previous value. The
delay time is set to TVAR. In the WDD scheduling algorithm,
the controller would be very complex because of using the
time-averaging function block and the multiplier shown in
Fig. 5 (b). In the time-averaging function block, dv delay
elements are required to detect the data-transmission delay
time. In addition, an adder and a divider are necessary to
average the data-transmission delay time. After the multi-
plication of α and the output of the time-averaging block,
the output of the multiplier sets the delay time of the pro-
grammable delay element. In the SWDD scheduling algo-
rithm, the controller can be designed using an adder and a
comparator based on Eqs. (16) and (17) shown in Fig. 5 (c).
The adder includes three 1-bit inputs and hence it can be de-
signed using a full adder. The comparator includes two 2-bit
inputs and one 1-bit output when dv is 3. If thv is fixed to
dv, the controller can be designed using just an AND gate as
shown in Fig. 5 (d).

The CHK operation is also described, such as the VAR
operation. The number of transmitted data in the j-th CHK
(NCHK j(t)) is given by:

NCHK j(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NCHK j(t) + 1, if t = rTXY( j,l)

0, else if NCHK j(t) ≥ thc
hold, otherwise

(18)

where thc (1 ≤ thc ≤ dc) is a threshold value in the CHK.
Let NCHK(t) be the number of transmitted data represented
by a vector (NCHK 0(t), . . . ,NVAR(m−1)(t)). The output value
of the CHK is updated as follows:

Yj
′(t) =

{
g(Xj(t − TY j)), if NCHK j(t) ≥ thc
hold, otherwise

(19)

where TY j can be a different value at each check node de-
pending on the data-transmission delay to the check node.

6. Evaluation

We use our BER simulator for asynchronous stochastic de-
coding. A regular (1024, 512) (3,6) LDPC code is used for
evaluation of BER performance, where dv is 3 and dc is
6. Suppose that the stochastic decoders are implemented
based on ASPLA 90nm CMOS technology. We assume that
data-transmission delay distribution is symmetric truncated
Gaussian from 100 to 1000 ps, where the variance σ is set
to 223 ps. Suppose that the data-tranmission delay consists
of wire delay and gate delay related to the data transmis-
sion, such as buffers. The VAR computation delay TVAR

for the WDI scheduling algorithm is 380 ps. Also, assume
that the CHK computation delay TCHK for the WDI is 250
ps. Those values estimated by HSPICE simulation are min-
imum values that achieve good BER performance [19]. In
the stochastic variable node, the memory size of the TFM is
set to 5 bits and the type of the TFM is a reduced complexity
architecture [15]. Noise dependent scaling is set to 1.5 [14],
[15]. The BER results are obtained with 100 frame errors

Fig. 6 Simulated BER results of a regular (1024,512) LDPC code de-
pending on α in the WDD scheduling algorithm.

under binary-phase shift-keying (BPSK) modulation on an
additive white Gaussian noise (AWGN) channel. Decod-
ing terminates when the decoding latency reaches a maxi-
mum decoding cycle (DC) count for synchronous stochas-
tic decoding, a maximum decoding time for asynchronous
stochastic decoding, or a maximum number of iterations
for the SPA with the syndrome checking as an early stop-
ping method. BER performance is evaluated on a 2.6 GHz
Opteron 6282 SE server.

6.1 BER on Asynchronous Stochastic Decoding

Figure 6 shows BER performance depending on α based
on the WDD scheduling algorithm. The maximum decod-
ing time TDCT is 5 μs. In a region of small α, small TX

causes unnecessary updating of rerandomization units, such
as EMs or TFMs in the VARs and hence induces bad BER
performance. This explanation is described in detail in [19].
The minimum BERs are obtained by different α depend-
ing on Eb/N0. At Eb/N0 = 3.4 [dB], α=2/3 is the value to
achieve the minimum BER.

Figure 7 shows BER performance depending on γ
based on the combination of the WDI and the WDD
scheduling algorithms. In this simulation, at first, the WDI
is used until TDCT I , then the WDD is used until TDCT . α
is set to 2/3. γ = 0 indicates that decoding performs based
on only the WDD. γ = 1 indicates that decoding performs
based on only the WDI. At Eb/N0 = 2.6 [dB], the combi-
nation of the WDI and the WDD is not effective to reduce
BER. In contrast, at Eb/N0 = 3.0 and 3.4 [dB], γ = 1/10 is
the value to achieve the minimum BERs.

Figure 8 shows BER performance depending on γ
based on the combination of the WDD and the WDI
scheduling algorithms. The order of using the two algo-
rithms is contrary to the previous one. At first, the WDD is
used until TDCT D, then the WDI is used until TDCT . Similar
to the previous results, at Eb/N0 = 2.6 [dB], the combination
of the WDI and the WDD updating causes worse BER than
that using only the WDI updating. At Eb/N0 = 3.0 and 3.4
[dB], γ = 1/10 is the value to achieve the minimum BERs.
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Fig. 7 Simulated BER results of a regular (1024,512) LDPC code de-
pending on γ in the combination of the WDI and the WDD scheduling
algorithms.

Fig. 8 Simulated BER results of a regular (1024,512) LDPC code de-
pending on γ in the combination of the WDD and the WDI scheduling
algorithms.

From these results in Figs. 7 and 8, the combination of the
WDI and the WDD is effective to reduce BERs at a high
SNR region, but the BER performance is not affected by the
order of the usage of these two algorithms.

Figure 9 shows BER performance based on the SWDD
scheduling algorithm. When thv is equal to 1, decoding is
not properly performed. The small-thv effect on BER is sim-
ilar to when small α is used in the WDI scheduling. Other
than thv=1, decoding is correctly performed. When thv is 3
and thc is 6, two controllers in each VAR and CHK can be
designed using AND gates.

Figure 10 shows the BER performance based on asyn-
chronous stochastic decoding. The optimum parameters to
achieve the minimum BERs at the high SNR region are se-
lected for all the algorithms. For the SWDD scheduling
algorithm, one additional parameter (thv=3 and thc=6) is
selected, where the hardware is simply designed as shown
in Fig. 5. The WDD and the SWDD scheduling algorithms
achieve better BER performance than the WDI scheduling
algorithm. The BER of the SWDD is superior to that of

Fig. 9 Simulated BER results of a regular (1024,512) LDPC code based
on the SWDD scheduling algorithm.

Fig. 10 Simulated BER results of a regular (1024,512) LDPC code based
on asynchronous stochastic decoding.

the WDD and is similar to that of the combination of the
WDI and the WDD at the high SNR region. In addition, the
SWDD requires less complex hardware than that based on
the WDD and the combination of the WDI and the WDD.

6.2 Comparisons and Discussions

We compare BERs with those based on the sum-product al-
gorithm (SPA), synchronous stochastic decoding, and clock-
less stochastic decoding [21], [22] shown in Fig. 11. The
BER based on the SPA is evaluated using a floating-point
simulation with 32 iterations. In synchronous stochastic de-
coding, two maximum decoding counts (MaxDC) are set
to 5k and 1.6k. Suppose that the clock frequency of the
synchronous stochastic decoders is 333 MHz under ASPLA
90nm CMOS technology. MaxDC=5k is the maximum de-
coding time of 15 μs and MaxDC=1.6k is that of 5 μs.
The BER performance at MaxDC=5k is worse than that of
the SWDD scheduling algorithm with requiring three times
larger maximum decoding time, causing larger input and
output buffers to the decoder [15].

Table 2 shows decoding latency in synchronous and
asynchronous stochastic decoding. All decoders use the
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Fig. 11 Simulated BER results of a regular (1024,512) LDPC code.

Table 2 Decoding latency at Eb/N0 = 3.4 dB using a regular (1024,512)
LDPC code.

Sync. Async. (WDI) Async. (SWDD)
(thv=2, thc=2)

Latency [ns] 225 35 23

same maximum decoding time of 5 μs. The latency of syn-
chronous stochastic decoding is large because the clock fre-
quency is restricted by the worst-case latency due to long
wires in the interleaver portion. The latencies of asyn-
chronous stochastic decoding have 6.4x-9.8x smaller laten-
cies than that of synchronous stochastic decoding. The WDI
scheduling algorithm needs to assign relatively large com-
putation delay time on the VAR as small computation de-
lay time updates too much in the VAR, causing poor BER
performance [19]. The WDD and the SWDD can assign
smaller computation delay time than the WDI depending
on data-transmission delay time. As a result, the SWDD
scheduling algorithm achieves a 1.4x smaller latency than
that of the WDI scheduling algorithm.

Compared with clockless stochastic decoding at the
maximum decoding time of 4 μs, asynchronous stochas-
tic decoding based on the SWDD scheduling algorithm
achieves almost the same BER performance at a high SNR
region with a 25% increase of the maximum decoding time.
In terms of the hardware implementation, asynchrornous
stochastic decoding has some benefits compared with clock-
less stochastic decoding. Currently, we are developing
an implementation of clockless stochastic decoders [22],
but there are still some issues. The issue concerned is
metastability that stores wrong data in registers because
there is not any global and local clock signals. That would
change the probability wrongly in the EM or the TFM,
causing poor BER performance. Other issue is that there
is no design flow for clockless circuits that have lots of
loops without registers, which would be difficult to imple-
ment and test the clockless stochastic decoder. In contrast,
asynchronous stochastic decoding can be implemented us-
ing asynchronous circuits [25], [26] that operate based on
the request-and-acknowledgement handshaking. The hand-

shaking process guarantees the timing of storing data in the
EM or the TFM, which maintains good BER performance.
Using the SWDD scheduling algorithm, asynchronous con-
trol circuits would be small.

7. Conclusions

In this paper, we have presented asynchronous scheduling
algorithms for stochastic decoding of LDPC codes. Asyn-
chronous stochastic decoding has the possibility of imple-
menting an energy-efficient high-throughput LDPC decoder
due to the lack of a global clock signal that releases from the
worst-case delay restriction and reduces the power dissipa-
tion of clocking. The previous WDI scheduling algorithm
suffers from error floors on BER performance that occur
in synchronous stochastic decoding. The WDD scheduling
algorithm assigns different update timing at each computa-
tion node depending on the data-transfer delay time between
the nodes. The variation of the update timing increases the
switching activity in stochastic LDPC decoders, which re-
duces the error floors. As a result, asynchronous stochas-
tic decoding based on the WDD and the simplified WDD
(SWDD) scheduling algorithms achieves 6.4-9.8× smaller
latency than that of synchronous stochastic decoding with a
0.25-0.3 coding gain. In addition, the SWDD scheduling al-
gorithm eliminates some complex functions that are a time-
averaging circuit and a multiplier used in the WDD schedul-
ing algorithm. In future prospects, an energy-efficient high-
throughput LDPC decoder can be implemented based on the
SWDD scheduling algorithm.
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