
2270
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

Formal Design of Arithmetic Circuits over Galois Fields Based on
Normal Basis Representations∗

Kotaro OKAMOTO†a), Nonmember, Naofumi HOMMA†, and Takafumi AOKI†, Members

SUMMARY This paper presents a graph-based approach to designing
arithmetic circuits over Galois fields (GFs) using normal basis representa-
tions. The proposed method is based on a graph-based circuit description
called Galois-field Arithmetic Circuit Graph (GF-ACG). First, we extend
GF-ACG representation to describe GFs defined by normal basis in addi-
tion to polynomial basis. We then apply the extended design method to
Massey-Omura parallel multipliers which are well known as typical mul-
tipliers based on normal basis. We present the formal description of the
multipliers in a hierarchical manner and show that the verification time
can be greatly reduced in comparison with those of the conventional tech-
niques. In addition, we design GF exponentiation circuits consisting of the
Massey-Omura parallel multipliers and an inversion circuit over composite
field GF(((22)2)2) in order to demonstrate the advantages of normal-basis
circuits over polynomial-basis ones.
key words: arithmetic circuits, formal verification, normal basis, computer
algebra

1. Introduction

Applications of arithmetic operations over Galois fields
(GFs) have been rapidly increasing owing to the high de-
mands of reliable/secure communications and transactions
using ECC (error correction code) and cryptographic opera-
tions [2]. These operations are often implemented on hard-
ware in recent embedded devices, such as smart cards and
cell phones, and the performance and dependability of arith-
metic circuits have a significant impact on the entire proces-
sors. Currently, many hardware algorithms on GF arithmetic
have been devised and some of such algorithms can be im-
plemented by a multiple-valued logic more efficiently than
by the binary logic.

On the other hand, most of such arithmetic circuits are
designed at the logic level by researchers who had trained
in a particular way to understand GF arithmetic. The con-
ventional Hardware Description Languages (HDLs) do not
have high-level arithmetic data structures, arithmetic oper-
ations and formulae over GFs. This sometimes requires us
to describe structural details of arithmetic circuits by hand at
the lowest level of abstraction (i.e., AND-XOR expressions)
in a flattened manner. In addition, the functional verifica-
tion using the conventional logic simulation is quite time-
consuming since these operations are usually performed

Manuscript received November 29, 2013.
†The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
∗A preliminary version of this paper appeared in the IEEE

43rd International Symposium on Multiple-Valued Logic (ISMVL
2013) [1].

a) E-mail: okamoto@aoki.ecei.tohoku.ac.jp
DOI: 10.1587/transinf.2013LOP0012

with more-than 64-bit operands. The test pattern generation
is also difficult since it varies with the irreducible polyno-
mial even for the same operation (e.g., multiplication). In
earlier related research, the formal verification of arithmetic
circuits was primarily performed based on Decision Dia-
grams (DDs) and Binary Moment Diagrams (BMDs) [3]–
[5]. However, conventional approaches are basically limited
not only to binary arithmetic over integers, but also to rather
small circuits. Although Binary Decision Diagrams (BDDs)
can also be applied to GF arithmetic, BDDs are known to be
ineffective for XOR-based logic circuits∗∗. There is a deci-
sion diagram specified for Galois fields based on the decom-
position of multiple-valued functions [6], but it is difficult to
handle practical fields such as GF(216) and GF(232) and ap-
ply it to the formal verification. GF(2m) arithmetic circuits
were successfully verified in a few previous studies [7], [8];
however, the application of the verification method appears
to be limited to the specific GF(2m) circuits whose reference
(i.e., equivalent) circuits can be prepared in advance.

To address the above problems, a formal design and
verification method of arithmetic circuits over GFs was pro-
posed [9] and [10]. The proposed idea is to use a high-level
mathematical graph associated with variables and arithmetic
formulae over GFs, which is called Galois-field Arithmetic
Circuit Graph: GF-ACG. Using GF-ACGs, we can describe
any GF arithmetic circuit in a hierarchical manner as a com-
bination of arithmetic sub-circuits (graphs). Such descrip-
tion is formally verified by checking for every sub-circuit
whether the function is obtained from the internal structure.
The equivalence checking can be performed by formula ma-
nipulations based on a polynomial reduction algorithm us-
ing Gröbner Basis [11], which makes it possible to verify
practical arithmetic circuits in a short time. On the other
hand, the previous works in [9] and [10] were limited to GF
arithmetic represented by polynomial basis.

This paper presents an extension of GF-ACGs to de-
signing arithmetic circuits over GFs represented by normal
basis (NB). The space and time complexities of GF arith-
metic operations heavily depend on how the field elements
are represented. The NB representation is useful for design-
ing GF arithmetic circuits such as inversion circuits and ex-
ponentiation circuits since the squaring operation based on
NB representation is performed only by wiring. In this pa-
per, we first present the extension of GF-ACGs to design and

∗∗GF arithmetic operations mostly consist of XOR and AND
gates.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



OKAMOTO et al.: FORMAL DESIGN OF ARITHMETIC CIRCUITS OVER GALOIS FIELDS BASED ON NORMAL BASIS REPRESENTATIONS
2271

verify GFs represented by NB in addition to PB, and apply
the extended GF-ACG to the formal description of Massey-
Omura multipliers. The advantage of the proposed method
is evaluated through the experimental verification of the de-
signed multipliers. We also design a set of exponentiation
circuits using the designed multipliers and a multiplicative
inversion circuit over GF(((22)2)2) in order to evaluate the
performance of NB-based circuits in comparison with that
of PB-based ones. In addition, we further extend GF-ACG
to composite fields based on NB and apply it to the formal
design and verification of a multiplicative inversion circuit.
Note that the preliminary version [1] studied only for prime
and extension fields.

2. Galois-Field Arithmetic Circuit Graph

This section briefly describes the graph-based representation
of GF arithmetic circuits, where the graphs are referred to as
GF Arithmetic Circuit Graphs (GF-ACGs).

Figure 1 shows an overview of a GF-ACG. A GF-ACG
G is defined as (N, E), where N is a set of nodes, and E is
a set of directed edges. The node represents an arithmetic
circuit by its functional assertion and internal structure. The
directed edge represents the flow of data between nodes, and
defines the data dependency. We assume that every node has
at least one edge connection.

A node n (∈ N) is defined by (F,G′), where F is the
functional assertion given as a set of equations over GFs (GF
equations) and G′ is the internal structure given as a smaller
GF-ACG. A node at the lowest level of abstraction, which
does not have its internal structure, is described as (F, nil).
A functional assertion is represented as a relation El = Er,
where El and Er are the output and input expressions, re-
spectively, and each expression is given by variables, con-
stants or combinations of the two or more expressions con-
nected by arithmetic operations +, −, ×, and /.

A directed edge e (∈ E) is defined as (src, dest, x),
where src and dest represent the start and end node, respec-
tively, and x represents the variable indicating an element of
GF. If either src or dest is nil, its directed edge represents
an external input or output for the given GF-ACG. Each
variable is associated with a Galois field. A Galois field
GF based on polynomial basis (PB) is defined as (B,C, IP),
where B is the basis, C is the coefficient vector, and IP is
the irreducible polynomial. More precisely, B, C, and IP
are given as

B =
(
βm−1, βm−2, · · · , β0

)
, (1)

Fig. 1 Galois-field arithmetic circuit graph.

C = (Cm−1,Cm−2, · · · ,C0) , (2)

IP = βm + cm−1β
m−1 + · · · + c0β

0, (3)

where β is the indeterminate element, Ci is the coefficient
set of degree i, m is the degree of field extension, and ci is
the element of the coefficient set Ci. IP = nil if the GF is
a prime field. Thus, the above description can handle both
prime and extension fields. Let h (0 ≤ h ≤ m − 1) and l (0 ≤
l ≤ h) be the most and least significant degrees, respectively.
A variable is represented as x = (GF, (h, l)), where the tuple
(h, l) is called the degree range. Using the above notation,
we can handle a specific variable xi of degree i.

A variable is represented as an expression at a lower
level of abstraction. Let x be a variable and xi (l ≤ i ≤ h) be
a lower-level variable. We have two types of decomposition
nodes whose functions are given as

x(e)
h + x(e)

h−1 + · · · + x(e)
l = x, (4)

x(p)
h β

h + x(p)
h−1β

h−1 + · · · + x(p)
l β

l = x. (5)

Equation (4) indicates that x ∈ GF(pm) is divided into a
number of variables of degree i (i.e., xi(l ≤ i ≤ h) ∈
GF(pm)). On the other hand, Eq. (5) indicates that x ∈
GF(pm) is divided into a number of variables over the prime
field (i.e., xi(l ≤ i ≤ h) ∈ GF(p)). We also have two
types of composition nodes given as inverse relations be-
tween the above inputs and outputs. Using the decomposi-
tion/composition nodes, we can change the level of abstrac-
tion in edge representation. Note here that these nodes are
implemented by wiring and have no internal structures.

The above GF-ACG can be used also for representing
any logic circuit. A logic variable is considered as a vari-
able over the GF whose coefficient set is limited to the zero
element “0” and the unit element “1”. Any logical opera-
tion can be represented with pseudo logic equations. For
example, the functions of AND and XOR circuits are given
as

and(a, b) = ab, (6)

xor(a, b) = a + b − 2ab, (7)

respectively. Note that the idempotent law is considered as
one of functional assertions in the corresponding node (i.e.,
a = a2 and b = b2).

Thus, GF-ACG can represent any arithmetic circuit
over GF represented by PB and any logic circuit. The arith-
metic circuits given by GF-ACGs are verified by a formal
verification method using Gröbner Basis and a polynomial
reduction technique. (See [9] for the detailed verification
procedure.)

3. Extension to Normal Basis Presentation

This section presents an extension of GF-ACGs to arith-
metic circuits over GFs represented by normal basis (NB).

Let α be the indeterminate element β raised to the n-th
power (i.e., α = βn), where the elements αqm−1

, αqm−2
, · · · , αq0

are linearly independent over GF(q) [12], [13]. A normal



2272
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

basis of GF(qm) is given by (αqm−1
, αqm−2

, · · · , αq0
), where q

is a power of prime number. It is well known that there is a
normal basis for any positive integer m. Any field element
is represented as a linear combination of the elements in a
normal basis. For example, consider the finite field GF(23)
generated by the irreducible polynomial β3 + β + 1. If we
choose α = β3, we can say that (α4, α2, α) is a normal basis.

In order to handle NB representation, we introduce the
expression of basis B by α instead of β. More precisely, a
Galois field GF(= (B,C, IP)) based on NB is defined by

B =
(
αqm−1
, αqm−2

, · · · , αq0)
, (8)

C = (Cm−1,Cm−2, · · · ,C0) , (9)

IP = βm + cm−1β
m−1 + · · · + c0β

0. (10)

According to the extension, the expression of the sec-
ond decomposition node given by Eq. (5) is also extended
to

x(p)
h α

qh
+ x(p)

h−1α
qh−1
+ · · · + x(p)

l α
ql
= x. (11)

The corresponding composition node, as is the case for PB,
is given as the inverse relation between the above input and
output. Using the decomposition and composition nodes,
we can also change the level of abstraction in any edge rep-
resentation based on NB. Note here that we do not need to
change the representation of any logic circuit even if we use
the extended GF-ACG. As a result, we can apply the ex-
tended GF-ACG to any arithmetic circuit over GFs repre-
sented by NB.

The formal verification method in [9] is also ex-
tended due to the extended description. Figure 2 shows
the extended algorithm, where GroebnerBasis(P) indicates
Buchberger’s algorithm to obtain a Gröbner Basis GB from
a set of polynomials P. Given a functional assertion f and
internal structure G, P is generated from functional asser-
tions (i.e., F) in the internal structure. In the extended algo-
rithm, we minimize the degree of F by Minimization(F) if

Fig. 2 Extended verification algorithm.

the F includes the terms of the indeterminate elements. GB
is then obtained from GroebnerBasis(P).

Buchberger’s algorithm sometimes takes a long time
and requires large memory space. The degree of F is a major
factor to increase its computation time since the number of
polynomial reductions in the algorithm is dependent on the
degree. As a result, the above minimization significantly
reduces the computation time to generate GB. If the normal
form of f with respect to GB is equal to zero, f is a member
of the ideal from P. This means that the functional assertion
can be realized with the internal structure. Therefore, this
verification algorithm returns true.

4. Design and Verification of Massey-Omura Parallel
Multipliers

This section presents the application of the extended GF-
ACG to the design and verification of parallel multipliers
based on NB representation.

The Massey-Omura parallel multiplier [14] is a 2-input
1-output parallel multiplier over GF(2m) represented by NB,
which has an efficient structure reducing the redundancy of
a well-known Massey-Omura multiplier [15]. Let a and b ∈
GF(2m) be the inputs and let c ∈ GF(2m) be the output. Let
a(p)

i and b(p)
i be the i-th elements of decomposed inputs (i.e.,

a =
∑m−1

i=0 a(p)
i α

2i
and b =

∑m−1
i=0 b(p)

i α
2i

). The operation of
Massey-Omura parallel multiplier, whose function is given
as c = a × b, is originally represented by

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
i=0

a(p)
i b(p)

i α
2i+1
+

m−1∑
i=0

v∑
j=1

xi, jγ
2i

j , for m odd

m−1∑
i=0

a(p)
i b(p)

i α
2i+1
+

m−1∑
i=0

v−1∑
j=1

xi, jγ
2i

j +

v−1∑
i=0

xi,vγ
2i

v ,

for m even,
(12)

where xi, j = a(p)
i b(p)

i+ j + a(p)
i+ jb

(p)
i (0 ≤ i ≤ m − 1, 1 ≤ j ≤ v),

γ j = α
1+2 j

and v = �m
2 �.

For the GF-ACG design, we derive a hierarchical
description from the above flattened description. First,
Eq. (12) is simplified as follows:

c =
m−1∑
i=0

a(p)
i b(p)

i α
2i+1
+

m−1∑
i=0

m−1∑
j=1

a(p)
i b(p)

i+vγ
2i

j

=

m−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝a(p)
i b(p)

i+0α
2i+2i+0

+

m−1∑
j=1

a(p)
i b(p)

i+ jα
2i+2i+ j

⎞⎟⎟⎟⎟⎟⎟⎠

=

m−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∑
j=0

(
a(p)

i × b(p)
i+ j

)
α2i+2i+ j

⎞⎟⎟⎟⎟⎟⎟⎠

=

m−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝
m−1∑
j=0

(
a(p)

i × b(p)
j

)
α2i+2 j

⎞⎟⎟⎟⎟⎟⎟⎠ . (13)

Here, the terms in the parenthesis are given as



OKAMOTO et al.: FORMAL DESIGN OF ARITHMETIC CIRCUITS OVER GALOIS FIELDS BASED ON NORMAL BASIS REPRESENTATIONS
2273

m−1∑
j=0

(
a(p)

i × b(p)
j

)
α2i+2 j

= wi. (14)

The operation of Massey-Omura parallel multiplier is finally
represented by the following two equations:

m−1∑
i=0

wi = a × b, (15)

c =
m−1∑
i=0

wi. (16)

This suggests that at the 2nd-level of the hierarchy, a Massey-
Omura parallel multiplier is represented by a GF-ACG
with two nodes performing the operations corresponding to
Eqs. (15) and (16), respectively.

Equation (15) is then represented by

wi = a(p)
i α

2i ×
m−1∑
j=0

b(p)
j α

2 j

= a(e)
i × b, (17)

where a(e)
i is the i-th element obtained by the other decom-

position of a (a =
∑m−1

i=0 a(e)
i ) and b ∈ GF(2m). This means

that the 3rd-level node of Eq. (15) is represented by m nodes
performing the operations of Eq. (17). The node of Eq. (16)
is represented by m-1 2-input 1-output adders over GF(2m),

(a) (b) (c)

(d) (e)

Fig. 3 GF-ACGs for GF(23) Massey-Omura parallel multiplier: (a)–(e) GF-ACGs at five levels of
abstraction.

and these adders are given by 2-input 1-output adders over
GF(2).

For the 4th-level description, let a(p)
i × b(p)

j = si, j and

α2i+2 j
= δi, j in Eq. (14). Using wi =

∑m−1
k=0 w

(p)
i,k α

2k
and δi, j =∑m−1

k=0 δi, j,kα
2k

, we can divide the operation of Eq. (14) (i.e.,
Eq. (17)) into the following two operations:

si, j = a(p)
i × b(p)

j , 0 ≤ j ≤ m − 1, (18)

w
(p)
i,k =

m−1∑
j=0

si, jδi, j,k. (19)

Thus, the node of Eq. (17) can be given by the nodes per-
forming two operations of Eqs. (18) and (19). If the number
of δ satisfying δi, j,k = 1 is one, Eq. (19) is given as w(p)

i,k = si, j.
Finally, the node of Eq. (18) can be given by m multipliers
over GF(2), and the node of Eq. (19) is given by some 2-
input 1-output adders over GF(2).

Figure 3 shows the GF-ACGs for the Massey-Omura
parallel multiplier over GF(23), where the GF-ACGs are
represented by five levels of abstraction. The nodes in
Figs. 3 (a), (b), (c) and (d) correspond to the shaded parts
in Figs. 3 (b), (c), (d) and (e), respectively. Here, “GFA0”
and “GFA1” in Figs. 3 (c), (d) correspond to G16 and G17 in
Fig. 3 (e), respectively. Table 1 shows the details of nodes,
GFs and variables used in Fig. 3. In this example, α is β
raised to the cube (i.e., α = β3). Note that the decomposi-
tion/composition nodes are not shown in Table 1.



2274
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

Table 1 Nodes, Galois fields, and variables for GF(23) Massey-Omura parallel multiplier in Fig. 3.

Nodes
[Multiplier] n0 = ({c = a × b},G1)

[Partial Product Generator] n1 = ({∑2
i=0 wi = a × b},G2)

[PPG0] n3 = ({w0 = a(e)
0 × b},G4)

[SubPPG0]
n8 = ({s0,0 = a(p)

0 × b(p)
0 , w

(p)
0,0 = a(p)

0 × b(p)
1 , s0,2 = a(p)

0 × b(p)
2 },G7)

n17 = ({s0,0 = a(p)
0 × b(p)

0 }, nil)
n18 = ({w(p)

0,0 = a(p)
0 × b(p)

1 }, nil)

n19 = ({s0,2 = a(p)
0 × b(p)

2 }, nil)
[SubACC0] n9 = ({w(p)

0,1 = s0,0 + s0,2},G8)

n20 = ({w(p)
0,1 = s0,0 + s0,2}, nil)

[SubACC1] n10 = ({w(p)
0,2 = w

(p)
0,0 + s0,2},G9)

n21 = ({w(p)
0,2 = w

(p)
0,0 + s0,2}, nil)

[PPG1] n4 = ({w1 = a(e)
1 × b},G5)

[SubPPG1]
n11 = ({s1,0 = a(p)

1 × b(p)
0 , s1,1 = a(p)

1 × b(p)
1 , w

(p)
1,1 = a(p)

1 × b(p)
2 },G10)

n22 = ({s1,0 = a(p)
1 × b(p)

0 }, nil)
n23 = ({s1,1 = a(p)

1 × b(p)
1 }, nil)

n24 = ({w(p)
1,1 = a(p)

1 × b(p)
2 }, nil)

[SubACC2] n12 = ({w(p)
1,0 = s1,0 + w

(p)
1,1},G11)

n25 = ({w(p)
1,0 = s1,0 + w

(p)
1,1}, nil)

[SubACC3] n13 = ({w(p)
1,2 = s1,0 + s1,1},G12)

n26 = ({w(p)
1,2 = s1,0 + s1,1}, nil)

[PPG2] n5 = ({w2 = a(e)
2 × b},G6)

[SubPPG2]
n14 = ({w(p)

2,2 = a(p)
2 × b(p)

0 , s2,1 = a(p)
2 × b(p)

1 , s2,2 = a(p)
2 × b(p)

2 },G13)

n27 = ({w(p)
2,2 = a(p)

2 × b(p)
0 }, nil)

n28 = ({s2,1 = a(p)
2 × b(p)

1 }, nil)
n29 = ({s2,2 = a(p)

2 × b(p)
2 }, nil)

[SubACC4] n15 = ({w(p)
2,0 = s2,1 + s2,2},G14)

n30 = ({w(p)
2,0 = s2,1 + s2,2}, nil)

[SubACC5] n16 = ({w(p)
2,1 = w

(p)
2,2 + s2,1},G15)

n31 = ({w(p)
2,1 = w

(p)
2,2 + s2,1}, nil)

[Accumulator] n2 = ({c = ∑2
i=0 wi},G3)

[GFA0] n6 = ({w3 = w0 + w1},G16)
n32 = ({w(p)

3,0 = w
(p)
0,0 + w

(p)
1,0}, nil)

n33 = ({w(p)
3,1 = w

(p)
0,1 + w

(p)
1,1}, nil)

n34 = ({w(p)
3,2 = w

(p)
0,2 + w

(p)
1,2}, nil)

[GFA1] n7 = ({c = w2 + w3},G17)
n35 = ({c(p)

0 = w
(p)
2,0 + w

(p)
3,0}, nil)

n36 = ({c(p)
1 = w

(p)
2,1 + w

(p)
3,1}, nil)

n37 = ({c(p)
2 = w

(p)
2,2 + w

(p)
3,2}, nil)

Galois field

GF(23) = (
(
α22
, α21
, α20 )

, ({0, 1}, {0, 1}, {0, 1}) , β3 + β1 + β0) GF(2) = (
(
β0
)
, ({0, 1}) , nil)

Galois field variables
a, b, c = (GF(23), (2, 0))
a(e)

i = (GF(23), (i, i)), (0 ≤ i ≤ 2)
a(p)

i , b
(p)
i , c

(p)
i = (GF(2), (0, 0)), (0 ≤ i ≤ 2)

wi = (GF(23), (2, 0)), (0 ≤ i ≤ 3)
w

(p)
i, j = (GF(2), (0, 0)), (0 ≤ i ≤ 3, 0 ≤ j ≤ 2)

s0,i = (GF(2), (0, 0)), (i = 0, 2)

s1,i = (GF(2), (0, 0)), (i = 0, 1)
s2,i = (GF(2), (0, 0)), (i = 1, 2)

The 2nd-level nodes “Partial Product Generator” and
“Accumulator” in Fig. 3 (b) have functional assertions cor-
responding to Eqs. (15) and (16), respectively. The 3rd-level
nodes “PPGi” in Fig. 3 (c) have functional assertions cor-
responding to Eq. (17). The nodes “GFA0” and “GFA1”
in Figs. 3 (c) and (d) indicate 2-input 1-output adders over
GF(23) to construct “Accumulator”. The 4th-level nodes
“SubPPGi” and “SubACCl” in Fig. 3 (d) have functional as-
sertions corresponding to Eqs. (18) and (19), respectively. If
the number of δ satisfying δi, j,k = 1 is one, si, j becomes w(p)

i,k
in the functional assertion of “SubPPGi” instead of Eq. (19).
It is important to note that we can simply extend the above
GF-ACG description to describe any Massey-Omura paral-
lel multiplier over GF(2m) (2 ≤ m).

In order to demonstrate the capability of the proposed
method, we verify a set of the designed Massey-Omura par-
allel multipliers over GF(2m) (2 ≤ m ≤ 64). In this exper-
iment, we performed the proposed verification techniques
using Risa/Asir on a Linux PC with an Intel Xeon E5450
3.00 GHz processor and 32 GB RAM. Both the original al-
gorithm and the extended algorithm were performed in the
same condition. For comparison, we also performed the
Verilog-XL simulation using the corresponding HDL de-
scriptions. Table 2 shows the verification results. We were
not able to succeed the complete simulation of GF(216) and
larger multipliers in this experiment because the verification

Table 2 Verification times of Massey-Omura parallel multipliers [sec].

GF(24) GF(28) GF(216) GF(232) GF(264)
(a) 0.282 0.436 N/A N/A N/A
(b) 2.550 4.021 257.4 N/A N/A
(c) 2.334 3.618 5.482 16.24 372.5

(a) Verilog-XL simulation, (b) previous work [9], (c) this work

time increases exponentially as the signal length increases.
On the other hand, using our extended method, we were able
to succeed the complete verification even for the 64-bit mul-
tiplier over GF(264).

5. Application to Exponentiation Circuits over GF(2m)

This section applies the extended GF-ACG to GF(2m) expo-
nentiation circuits given by NB representation and shows the
performance of them. One major feature of NB representa-
tion is that the squaring operation is done by a cyclic shift
(i.e., wiring) without any hardware component. A set of GF
exponentiation circuits designed here include such squaring
operations depending on the exponent.

Let a ∈ GF(2m) be the input. Let b (=
∑n−1

k=0 bk2k) and
c ∈ GF(2m) be the exponent and the output, respectively.
The exponentiation operation (i.e., c = ab) is calculated by
a combination of multiplication and squaring operations and
is represented as



OKAMOTO et al.: FORMAL DESIGN OF ARITHMETIC CIRCUITS OVER GALOIS FIELDS BASED ON NORMAL BASIS REPRESENTATIONS
2275

(a) (b)

Fig. 4 GF-ACGs for cubic circuit: (a)–(b) GF-ACGs at two levels of
abstraction.

Table 3 Nodes, Galois fields, and variables for cubic circuit in Fig. 4.

Nodes
[Exponentiation Circuit] n0 = ({c = a3},G1)

[Cyclic Shift] n1 = ({w0 = a2},G2)
[Multiplier] n2 = ({c = a × w0},G2)

Galois field

GF(2m) = (
(
α2m
, α2m−1

, · · · , α20 )
, ({0, 1}, {0, 1}, · · · , {0, 1}) ,

βm + βm−1 + · · · + β0)
GF(2) = (

(
β0
)
, ({0, 1}) , nil)

Galois field variables
a, c, w0 = (GF(2m), (m − 1, 0))

Fig. 5 Performance of GF(28) exponentiation circuits.

c = abn−12n−1 × abn−22n−2 × · · · × ab020
. (20)

We design such exponentiation circuits based on NB by
the GF-ACGs. The Massey-Omura parallel multipliers de-
scribed in the above section are used for the multiplication,
and the graphs performing the cyclic shift are added for the
squaring. Figure 4 shows an example of the GF-ACGs for
a cubic circuit given as c = a3. Table 3 shows the details
of nodes, GFs and variables used in Fig. 4. Note here that
Cyclic Shift is implemented by wiring and have no internal
structures.

The area and delay of the exponentiation circuits were
evaluated using Synopsys Design Compiler with a TSMC
65-nm cell library. The extension degree used in this ex-
periment was 8 (i.e., GF(28)). For comparison, we also de-
signed the corresponding exponentiation circuits based on
PB representation presented in [9]. Figure 5 shows the area
and delay of the exponentiation circuits, respectively. We
confirmed here that as the exponent b increased, the area and
the delay of PB-based exponentiation circuits increased by

O(log b), because they were constructed by a tree structure
of some multipliers. On the other hand, the NB-based expo-
nentiation circuits showed better performance the PB-based
ones for both area and delay because squaring operations
were free of cost in the NB-based circuits.

6. Application to Inversion Circuit over GF(((22)2)2)

This section presents a further extension of GF-ACGs to
composite fields based on NB and shows an application of
the extended GF-ACG to a multiplicative inversion circuit
over composite field GF(((22)2)2) that can be implemented
more compactly than the counterpart based on PB [16].

In order to describe a composite field based on NB, the
representation of coefficient sets is extended in such a way
as to include all the elements of its basic field. In the follow-
ing, we present the GF((22)2) description as an example. Let
GF(22) be the basic field, given as

GF(22) = (
(
β21

0 , β
20

0

)
, ({0, 1}, {0, 1}) , β2

0 + β
1
0 + β

0
0).

(21)

The composite field GF((22)2) is then given as

GF((22)2) = (
(
β(22)1

1 , β(22)0

1

)
,
(
{0, 1, γ0, γ

2
0}, {0, 1, γ0, γ

2
0}
)
,

β2
1 + β

1
1 + β0), (22)

where the elements of GF(22) are included with the primi-
tive element γ0 in the exponential representation.

Figure 6 shows a GF-ACG for the inversion circuit at
three levels of abstraction, and Table 4 shows the nodes,
GFs and variables in Fig. 6. The “Inversion” in Fig. 6 (a)
is the highest-level node. Each node exhibits an internal
structure given as a combination of lower-level nodes in
the corresponding shaded part. Note again that decompo-
sition/composition nodes are not shown in Table 4.

The functional assertion of the “Inversion” is given as
y = x254 according to the definition of multiplicative inver-
sion. The circuit outputs a value of zero when the input
is zero. As shown in Fig. 6 (b), the internal structure con-
sists of three multipliers, two adders, one squaring coeffi-
cient multiplier and one inverter over GF((22)2). Each cir-
cuit over GF((22)2) is recursively described with lower-level
GF(22) circuits, which are shown in Fig. 6 (c). The lower-
level nodes in Fig. 6 (c) are also described with the lowest-
level nodes over GF(2). The “Inversion” was verified with
the proposed verification technique in about 2.5 s on the PC
mentioned in Sect. 4.

The area and delay of the inversion circuit described
in Fig. 6 and the corresponding inversion circuit based on
PB in [10] were evaluated under the same condition men-
tioned in Sect. 4. Table 5 shows the comparison result. We
confirmed that the NB-based inversion circuit showed better
performance than the PB-based inversion circuit. This sug-
gests the feasibility and advantage of the extended design
and verification method.



2276
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

(a) (b) (c)

Fig. 6 GF-ACG for a multiplicative inversion circuit over GF(((22)2)2): (a)–(c) GF-ACGs at three
levels of abstraction.

Table 4 Nodes, Galois fields, and variables for the GF(((22)2)2) inversion circuit in Fig. 6.

Nodes
[Inversion over GF(((22)2)2)]
n0 = ({y = x254},G1)

[Multiplier over GF((22)2)]
n1 = ({w0 = x0 × x1},G2)

n8 = ({w5 = x0,0 + x0,1},G9)
n9 = ({w6 = x1,0 + x1,1},G10)
n10 = ({w7 = x0,0 × x1,0},G11)
n11 = ({w8 = w5 × w6},G12)
n12 = ({w9 = x0,1 × x1,1},G13)
n13 = ({w10 = w8 × β2

0},G14)
n14 = ({w0,1 = w7 + w10},G15)
n15 = ({w0,0 = w10 + w9},G16)

[Adder over GF((22)2)]
n2 = ({w0 = x0 + x1},G3)

n16 = ({w1,0 = x0,0 + x1,0},G17)
n17 = ({w1,1 = x0,1 + x1,1},G18)

[Squaring ×β11
1 ]

n3 = ({w2 = w
2
1 × β11

1 },G4)
n18 = ({w11 = w1,0 × β2

0},G19)

n19 = ({w12 = w1,0 + w0,0},G20)
n20 = ({w2,0 = w

2
11},G21)

n21 = ({w2,1 = w
2
12},G22)

[Adder over GF((22)2)]
n4 = ({w3 = w0 + w2},G5)

n22 = ({w3,0 = w0,0 + w2,0},G23)
n23 = ({w3,1 = w0,1 + w2,1},G24)

[Inversion over GF((22)2)]
n5 = ({w4 = w

14
3 },G6)

n24 = ({w13 = w3,0 × w3,1},G25)
n25 = ({w14 = w3,0 + w3,1},G26)
n26 = ({w15 = w

2
14 × β2

0},G27)
n27 = ({w16 = w13 + w15},G28)
n28 = ({w17 = w

2
16},G29)

n29 = ({w4,0 = w3,1 × w17},G30)
n30 = ({w4,1 = w17 × w3,0},G31)

[Multiplier over GF((22)2)]
n6 = ({y0 = x1 × w4},G7)

n31 = ({w18 = x1,0 + x1,1},G32)
n32 = ({w19 = w4,0 + w4,1},G33)
n33 = ({w20 = x1,0 × w4,0},G34)
n34 = ({w21 = w18 × w19},G35)
n35 = ({w22 = x1,1 × w4,1},G36)
n36 = ({w23 = w21 × β2

0},G37)
n37 = ({y0,0 = w20 + w23},G38)
n38 = ({y0,1 = w23 + w22},G39)

[Multiplier over GF((22)2)]
n7 = ({y1 = w4 × x0},G8)

n39 = ({w24 = x0,0 + x0,1},G40)
n40 = ({w25 = w4,0 + w4,1},G41)
n41 = ({w26 = w4,0 × x0,0},G42)
n42 = ({w27 = w24 × w25},G43)
n43 = ({w28 = w4,1 × x0,1},G44)
n44 = ({w29 = w27 × β2

0},G45)
n45 = ({y0,0 = w26 + w29},G46)
n46 = ({y0,1 = w29 + w28},G47)

Galois field

GF(((22)2)2) = (
(
β((22)2)1

2 , β((22)2)0

2

)
,
(
{0, 1, γ1

1 , . . . , γ
14
1 }, {0, 1, γ1

1 , . . . , γ
14
1 }
)
, β2

2 + β
1
2 + β

11
1 ) GF(22) = (

(
β21

0 , β
20

0

)
, ({0, 1}, {0, 1}) , β2

0 + β
1
0 + β

0
0)

GF((22)2) = (
(
β(22)1

1 , β(22)0

1

)
,
(
{0, 1, γ1

0 , γ
2
0}, {0, 1, γ1

0, γ
2
0}
)
, β2

1 + β
1
1 + β

2
0) GF(2) = (

(
β0

0

)
, ({0, 1}) , nil)

Galois field variables
x, y = (GF(((22)2)2), (1, 0)) xi, j, yi, j = (GF(22), (1, 0)), (0 ≤ i, j ≤ 1) wi, j = (GF(22), (1, 0)), (0 ≤ i ≤ 4, 0 ≤ j ≤ 1)
xi, yi = (GF((22)2), (1, 0)), (0 ≤ i ≤ 1) wi = (GF((22)2), (1, 0)), (0 ≤ i ≤ 4) wi = (GF(22), (1, 0)), (5 ≤ j ≤ 29)

7. Conclusion

This paper presented a formal design of GF arithmetic cir-

cuits represented by normal basis (NB). First, we extended
GF-ACG to describe any GF based on NB in addition to
polynomial basis (PB) and presented a formal design of
Massey-Omura parallel multipliers with the extended GF-



OKAMOTO et al.: FORMAL DESIGN OF ARITHMETIC CIRCUITS OVER GALOIS FIELDS BASED ON NORMAL BASIS REPRESENTATIONS
2277

Table 5 Performance of GF(((22)2)2) inversion circuits.

Basis Area [gates] Delay [ns]

Polynomial Basis 502.0 3.41
Normal Basis 375.3 3.08

ACG. The experimental result showed that the verification
time was greatly reduced as compared with that of the con-
ventional methods. For example, a multiplier over GF(264)
was verified within 7 minutes. For another application,
we also designed a set of NB-based exponentiation circuits
and evaluated the performance in comparison with that of
the corresponding PB-based circuits. In addition, we pre-
sented a further extension of GF-ACG to composite fields
based on NB and applied it to an inversion circuit based
on GF((22)2). The proposed method is applicable for both
binary and multiple-valued implementations since the GF-
ACG description is technology-independent except for the
lowest-level description. The formal design of GF arith-
metic circuits based on both PB and NB would remain in
the future study.

Acknowledgments

We sincerely thank Prof. Y. Nogami of Okayama University
for his valuable advice about the normal basis theory.

References

[1] K. Okamoto, N. Homma, and T. Aoki, “A graph-based approach
to designing parallel multipliers over Galois fields based on normal
basis representations,” Proc. 43rd IEEE Int. Symp. Multiple-Valued
Logic, pp.158–163, May 2013.

[2] E. Savas and K.C. Koc, “Finite field arithmetic for cryptography,”
IEEE Circuits Syst. Mag., vol.10, no.2, pp.40–56, Aug. 2010.

[3] R. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Trans. Comput., vol.C-35, no.8, pp.677–691, Aug.
1986.

[4] E.R. Bryant and Y.A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” Proc. 32nd Design Automation Conf.,
pp.535–541, 1995.

[5] R. Drechsler, ed., Advanced Formal Verification, Kluwer Academic
Publishers, 2004.

[6] R. Stankovic and R. Drechsler, “Circuit design from Kronecker
Galois field decision diagrams for multiple-valued functions,” Proc.
27th IEEE Int. Symp. Multiple-Valued Logic, pp.275–280, 1997.

[7] S. Morioka, Y. Katayama, and T. Yamane, “Towards efficient
verification of arithmetic algorithms over Galois fields GF(2m),”
Proc. 13th Conf. on Computer Aided Verification, LNCS, vol.2102,
pp.465–477, 2001.

[8] D. Mukhopadhyay, G. Sengar, and R.D. Chowdhury, “Hierarchical
verification of Galois field circuits,” IEEE Trans. Comput.-Aided In-
tegr. Circuits Syst., vol.26, no.10, pp.1893–1898, 2007.

[9] N. Homma, K. Saito, and T. Aoki, “A formal approach to design-
ing cryptographic processors based on GF(2m) arithmetic circuits,”
IEEE Trans. Information Forensics and Security, vol.7, no.1, pp.3–
13, Feb. 2012.

[10] N. Homma, K. Saito, and T. Aoki, “Toward formal design of practi-
cal cryptographic hardware based on Galois field arithmetic,” IEEE
Trans. Comput., DOI: http://doi.ieeecomputersociety.org/10.1109/
TC.2013.131, 2013.

[11] D.A. Cox, J.B. Little, and D. O’Shea, Ideals, Varieties, and Algo-
rithms, 2nd ed., Springer-Verlag, NY, 1996.

[12] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson,
“Optimal normal bases in GF(pn),” Discrete Applied Mathematics,
vol.22, no.2, pp.149–161, 1989.

[13] S. Gao, Normal bases over finite fields, Citeseer, 1993.
[14] A. Reyhani-Masoleh and M. Hasan, “A new construction of Massey-

Omura parallel multiplier over GF(2m),” IEEE Trans. Comput.,
vol.51, no.5, pp.511–520, May 2001.

[15] J. Massey and J. Omura, “Computational method and apparatus for
finite field arithmetic,” 1986. US Patent.

[16] D. Canright, “A very compact S-box for AES,” CHES 2005, pp.441–
455, May 2005.

Kotaro Okamoto received the B.E. degree
in information engineering and the M.S degree
in information sciences from Tohoku University,
Sendai, Japan, in 2012 and 2014, respectively.
From 2014, he joined Hitachi, Ltd. His research
interest includes Galois-field arithmetic and its
circuit design.

Naofumi Homma received the B.E. de-
gree in information engineering, and the M.S.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 1997, 1999
and 2001, respectively. He is currently an As-
sociate Professor of the Graduate School of In-
formation Sciences at Tohoku University. For
2002–2006, he also joined the Japan Science
and Technology Agency (JST) as a researcher
for the PRESTO project. His research inter-
ests include computer arithmetic, EDA method-

ology, high-performance/secure VLSI computing, and hardware security.
Dr. Homma received the IP Award at the 2005 LSI IP Design Award, and
the Best Paper Award at the Workshop on Synthesis And System Integra-
tion of Mixed Information Technologies in 2007.

Takafumi Aoki received the B.E., M.E., and
D.E. degrees in electronic engineering from To-
hoku University, Sendai, Japan, in 1988, 1990,
and 1992, respectively. He is currently a Profes-
sor of the Graduate School of Information Sci-
ences at Tohoku University. For 1997–1999, he
also joined the PRESTO project, Japan Science
and Technology Corporation (JST). His research
interests include theoretical aspects of computa-
tion, digital signal processing, computer vision,
image processing, biometric authentication, and

security issues in computer systems. Dr. Aoki received the Outstanding
Paper Award at the 1990, 2000, 2001 and 2006 IEEE International Sym-
posiums on Multiple-Valued Logic, the Outstanding Transactions Paper
Award from the Institute of Electronics, Information and Communication
Engineers (IEICE) of Japan in 1989 and 1997, the IEE Ambrose Flem-
ing Premium Award in 1994, the IEICE Inose Award in 1997, the IEE
Mountbatten Premium Award in 1999, the Best Paper Award at the 1999
IEEE International Symposium on Intelligent Signal Processing and Com-
munication Systems, the IP Award at the 7th LSI IP Design Award in 2005,
and the Best Paper Award at the 14th Workshop on Synthesis And System
Integration of Mixed Information technologies in 2007.


