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SUMMARY Oblivious RAM (ORAM) schemes, the concept intro-
duced by Goldreich and Ostrovsky, are very useful technique for protecting
users’ privacy when storing data in remote untrusted servers and running
software on untrusted systems. However they are usually considered im-
practical due to their huge overhead. In order to reduce overhead, many im-
provements have been presented. Thanks to these improvements, ORAM
schemes can be considered practical on cloud environment where users can
expect huge storage and high computational power. Especially for private
information retrieval (PIR), some literatures demonstrated they are usable.
Also dedicated PIRs have been proposed and shown that they are usable in
practice. Yet, they are still impractical for protecting software running on
untrusted systems. We first survey recent researches on ORAM and PIR.
Then, we present a practical software-based memory protection scheme ap-
plicable to several environments. The main feature of our scheme is that it
records the history of accesses and uses the history to hide the access pat-
tern. We also address implementing issues of ORAM and propose practical
solutions for these issues.
key words: access pattern protection, oblivious RAM, private information
retrieval

1. Introduction

The emergence of Internet of Things (IoT) and cloud com-
puting bring new problems in accessing to remote untrusted
servers and running software on untrusted systems. The
leakage of information and its protection arising from both
running software on untrusted systems, as well as storing
data in remote untrusted servers have attracted much atten-
tion. Encryption can ensure the confidentiality, however,
sometimes confidentiality is not enough as the pattern of
accesses to servers can leak important information. In the
data storing environment, one can identify the main moti-
vation for protecting access pattern to the storage: the ac-
cess pattern may leak which data is important for the user,
as the important data will typically be accessed more of-
ten. The traditional solution for memory access pattern pro-
tection is known as Oblivious RAM (ORAM) [3], [4]. The
similar solution is called private information retrieval (PIR),
which enables the client to hide his/her access pattern from
the honest-but-curious servers [5]. Both schemes required
huge overheads and were considered unpractical. After the
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first proposals, a lot of improvements have been proposed.
In this paper, we first introduce a series of related works

on ORAM and PIR, and compare their overhead. The tar-
get of both schemes is the same: how to efficiently pro-
tect the pattern of accesses. ORAM supports both the read
and write operations to RAM (or server) while PIR usu-
ally consider the read operation. We then introduce our
lightweight scheme and consider practical implementation
of the scheme. The main feature of our scheme is based on
the history of accesses. We also propose three techniques
for the higher performance.

2. Related Works

We briefly introduce below some of the main research re-
sults related to our work.

2.1 Oblivious RAM

Software piracy has been a major concern for all software
developers as it is very easy to copy software and use copied
software. Many software protection mechanisms have been
proposed such as licence management mechanisms, obfus-
cation mechanisms and combination of secure hardware.
Many of those mechanisms are, however, ad-hoc and not
based on theoretical foundations. Goldreich [3], later ex-
tended by Goldreich and Ostrovsky [4], proposed software
protection mechanism called Oblivious RAM. By using
ORAM schemes, one can execute a program in a way that a
polynomial-time adversary can only know how long it takes
to finish the program even if the adversary can alter mem-
ory contents during execution. The application of ORAM
to realise a private access to remote servers has also been
considered, for example [6], [10]. Goldreich and Ostrovsky
proposed two main constructions, called hierarchical solu-
tion and square root solution.

The square root solution attaches area called shelter,
which can contain

√
N blocks, to main memory and adds√

N dummy blocks. Then original N data blocks and
√

N
dummy blocks are permuted by the secret permutation π.
When the client accesses to data block x, one first scans en-
tire shelter to confirm if x is inside the shelter. One accesses
to dummy location in memory if x is in the shelter, accesses
to π(x) to copy the block x to the shelter, otherwise. As
one block is copied to the shelter at each access, the shel-
ter gets full after

√
N accesses. Once the shelter gets full,

new permutation π′ is chosen and all blocks are re-shuffled
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according to π′, which causes huge overhead. The security
of this scheme is based on an one-way function. The one-
way function is a function which can be easily computed in
one-way, that is computing y = f (x) for given x, however,
computing the other way, that is f −1(y) for given y, is com-
putationally infeasible.

In the hierarchical solution for RAM with N items, the
data structure is organised in n = O(log N) levels consisting
of hash-tables with 2i buckets (1 ≤ i ≤ n), each bucket con-
taining O(log N) items. The storage requirement is therefore
O(N log N). Data is mapped into the levels using different
secret hash functions hi, known by the client only.

An element r is read with the read(r) operation as fol-
lows:

1. Scan the entire first level.
2. If the element is not found, then for each level i (2 ≤

i ≤ n), compute j = hi(r) and read the j-th bucket in
the level i buffer, until the requested element is found.

3. Once the element is found (including during the scan
of the first level), continue with the procedure in step
2. by reading a dummy location in each level i given
by hi(dummy ◦ t), where t is a counter.

4. The entire first level is scanned again, and the element
r is written to the first level.

When we wish to update an element r with the write(r, x)
operation, we perform the read(r) procedure as above, but
insert the new value x into the first level at the step 4. It
follows that the number of access operations for a data item
request (either read or write) is O(log2 N).

Because of the writing in step 4, buffer levels eventu-
ally overflow with data. Indeed, after 2i requests, the buffer
at level i will be full, and its full contents are moved down
to level i + 1. Every time content is moved to a lower level,
all data in both levels are permuted and a new random hash
function is chosen. This process requires the re-shuffling of
data, which needs to be done obliviously. This is the most
complex component of the construction, and is the main fac-
tor in its (amortised) complexity overhead.

Based on the constructions above, the original scheme
from [4] requires O(N log N) in storage, and has amor-
tised computation overhead of O(log3 N) per query using
the AKS algorithm for the oblivious sorting [7]. Due to the
very large constants, the complexity is considered O(log4 N)
in practice (by using Batcher’s sorting network [8]).

In the past few years, several improvements have been
proposed and many applications using ORAM schemes
have been proposed, for example [6], [9]–[20]. Improve-
ments typically arise from the use of different data struc-
tures and hash function schemes, more efficient sorting al-
gorithms (for the oblivious shuffling), and the use of secure
local (client) memory. Currently, the best amortised over-
head is O(log2 N/ log log N) presented in [16] whose secu-
rity is based on the one-way function.

One can show that the combination of the scanning
method described above, and frequent oblivious re-shuffling
can provide a high level of memory access pattern privacy

protection. In particular, the re-shuffling following level
overflow ensures that a data item is not visited twice in the
same level (for 2 ≤ i ≤ n) using the same hash function hi.
We note however that it was shown in [16] that the choice
of hash function may still leak information to adversaries.

Despite much recent progress, where the asymptotic ef-
ficiency as well as the constant terms of ORAM solutions
have been improved (making it particularly attractive for re-
mote storage access pattern protection), current solutions re-
main inefficient for preventing leakage of relatively limited-
in-size memory access pattern. In these cases, the constant
terms involved in the computational complexity make the
overhead unacceptably high. This motivates the proposal of
other methods, which while not achieving the same level of
protection as ORAM, offer low computation (and storage)
overheads, and may therefore achieve both security and per-
formance levels acceptable in practice.

Suppose that we are accessing the data ‘a’ several times
in the ORAM. The Read(a) process searches for ‘a’ in the
set of (At ∪ Pt) where At indicates all element in the top
level and Pt indicates the path which is determined by the
hash function h(a) and h(dummy). At the next access to ‘a’,
the read operation searches for ‘a’ in the set of (At+1∪Pt+1).
Here, we have to consider two cases: 1) re-shuffle has been
done or 2) re-shuffle has not been done.

1. Since the re-shuffle has not been done, we are using the
same hash functions. But, ‘a’ must be in the top level,
and search dummy location for the lower levels. Hence
Pt and Pt+1 have no correlation.

2. Since the re-shuffle has been done, new hash functions
are chosen. Therefore Pt and Pt+1 have no correlation.

As shown, Pt and Pt+1 are indistinguishable. And At and
At+1 are also indistinguishable, since the all data always is
accessed in the top level. Therefore the adversary cannot
tell if ‘a’ is being accessed more than once. Re-shuffling the
elements is critical for the security of ORAM, but it is also
critical for the cost of ORAM. The best amortised overhead
is O(log2 N/ log log N) presented in [16].

Williams et al. [21] introduced a collection of new tech-
niques, which are supporting parallel queries and a new
de-amortisation construction, to improve their performance.
By applying the collection to ORAM proposed in [22],
they implemented which is called PD-ORAM (“Parallel De-
amortised ORAM”). Supporting parallel queries from mul-
tiple client can decrease a response time, especially when
the client is accessing the database through a relatively high
latency network. A new de-amortisation construction en-
abled the database to process queries simultaneously with
re-shuffling. As the re-shuffling process is one of the heavi-
est task of ORAM, this new construction contributed for the
improvement.

Recently the third construction called the tree construc-
tion is proposed by Shi et al. [14]. It has an N-element
database in a binary tree of depth log N. Each node in the
tree has a bucket which can store k data items. Their scheme
uses O(N log N) storage at the server. The client needs O(1)
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Table 1 Comparison of ORAM and related schemes. r is a small constant of r > 1. B is a size of
data block (B = χ log N). �m and �h are respectively the size of buffer and history table. k is the security
parameter whose typical setting may be k ∈ [50, 80].

Computational Overhead Server Storage Client Storage Security

GO [4] O(log3 N) O(N log N) O(1) random oracle

PR [11] O(log2 N) O(N) O(1) random oracle

BMP [12] O(
√

N) O(N) O(
√

N) random oracle

DMN [13] O(log3 N) O(N) O(1) information theoretic

GM [24] O(log N) O(N) O(N1/r) one-way function

GMOT [15], [25] O(log N) O(N) O(N1/r) random oracle†

SCSL [14] O(log3 N) O(N log N) O(1) random oracle

SO [26] O(log N) O(N) O(1) one-way function

KLO [16] O( log2 N
log log N ) O(N) O(1) one-way function

SSS [18] O(log2 N) O(N) O(
√

N) random oracle

WS [19] O(log2 N log log N) O(N) O(log N) one-way function

SDSFRY [20] O(log2 N/ logχ) O(N) O(log2 N/ logχ) · ω(1) randomised encryption

GGHJRW [23] O(k log2 N/ log k) O(N) O(1) random oracle

ZZLP [27] 2 O(N) O(1) probabilistic

Ours 1 [1] 3 + 2�h O(N) O(1) probabilistic

Ours 2 [1] 2(�m + �h + 1) O(N) O(1) probabilistic
† This can be realised without a random oracle by using [13]

memory and computation complexity is O(log3 N). The
scheme is proven secure given the access to a random or-
acle. Later, the tree construction is optimised by Gentry
et al. [23]. The optimisations can reduce the storage over-
head by an O(k) factor and computation complexity by an
O(log k) factor, where k is a security parameter.

Comparison of computation overhead, storage over-
head and security is summarised in Table 1. As shown in
Table 1, the security of SDSFRY [20] is based on the ran-
domised encryption. It is an encryption algorithm which
uses randomness on the encryption and resulting ciphertexts
correspond to the same plaintext are indistinguishable from
one another.

2.2 Private Information Retrieval

Emerging of cloud storage services enables users to store
and access their data very easily. Moreover, users can store
huge data which is too large to store locally. However, it
also raises a new security challenge, which is how to pro-
tect user’s privacy. When the user request data to the server,
the server will notice which data the user wants. The server
might be curious about the user’s request and try to extract
user’s private information. Encryption can provide confi-
dentiality of data, however, sometimes it is not sufficient.
For instance, if the particular file is accessed very often, it
implies that file is more important for the user than the ones
accessed less often. An adversary may try to delete those
files.

Private Information Retrieval is a technology that al-
lows clients to query a database in a way that even the
database cannot learn anything about the clients’ queries. A
trivial solution is to download everything every query. This
solution, however, is impractical due to a high communica-

tion overhead and a high storage overhead at the client side.
There are two PIR schemes: computational PIR

(CPIR) [28], [29] and information theoretic PIR (IT-
PIR) [30]. In the CPIR, the client queries the database an
encrypted query and the server returns the encrypted result
to the client in order to prevent the computationally lim-
ited server from learning anything about the query. For
example, Chor and Gilboa’s scheme [28] and Kushilevitz
and Ostrovsky’s scheme [29] require O(N) server storage
for storing data of size N, the same as evaluated in ORAM
schemes, and communication overhead is O(Nε). We eval-
uate the efficiency of PIR schemes in terms of the commu-
nication cost, not the computational cost, as the efficiency
is generally measured by the communication cost. The se-
curity of Chor and Gilboa’s scheme is based on an one-way
function and Kushilevitz and Ostrovsky’s one is based on
the hardness of deciding quadratic residuosity. An integer
q is called quadratic residue (QR) if there exists an integer
x such that x2 = q mod n, and q is called quadratic non-
residue (QNR) otherwise. It is considered hard to predicate
if q is QR or QNR when n is a product of two distinct prime
numbers of equal length. On the other hand, the ITPIR can
offer perfect security, that is, the server cannot acquire any
information about the client’s query even if the server has
unlimited computational resources and unlimited time. In
order to achieve the ITPIR, we usually need multiple servers
and an assumption that these servers do not collude. The
t-private �-server PIR can information theoretically guaran-
tee the privacy of the query even if up to t out of � servers
collude. Beimel and Stahl [31] introduced a notation called
t-private k-out-of-� PIR in which k out of � servers need to
respond and up to t servers may collude without compro-
mising the security. In addition they examined a situation
that v out of k servers can return incorrect answers, due to
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a malicious servers or database failure, which is termed as
t-private v-Byzantine-robust k-out-of-� PIR. Chor et al. [5],
[30] have proposed several schemes. Their proposals enable
the client to retrieve one bit with O(

√
N) communication

cost in a simple �-server scheme, O(N1/�) communication in
a general �-server scheme and 1

3 (1+o(1))·log2 N·log log(2N)
communication cost in 1

3 log N + 1-server scheme. Their
scheme is information theoretic secure.

After the first proposal of PIR in [5], several im-
provements in terms of communication cost have been
shown [10], [31]–[37]. The scheme proposed in [35] re-
quires O(N) server storage and O(1) communication over-
head, and is information theoretic secure. This scheme
was implemented as an open-source project on Source-
Forge [38]. Smith et al. [32], [33] proposed a scheme with a
tamper-proof device. The client sends the secure coproces-
sor (SC) with encrypted query. The SC receives the query
and decrypt it. Then the SC reads the entire database and
get the requested data item. When returning the data item
to the client, the SC encrypts the item and send it back to
the client. Williams and Sion [10] proposed a single-server
PIR with an ORAM and a secure coprocessor. The commu-
nication and computational complexities of their scheme is
O(log2 N) and O(

√
N) client storage is required. The secu-

rity of their scheme is proven when it has the access to a
random oracle. Devet et al. [37] improved the scheme pre-
sented by Goldberg [35] and evaluated the performance of
the scheme. They showed that their implementation was
several thousands times faster than the scheme of [35].

Bao et al. [39] and Schnorr et al. [40] independently
proposed similar PIR schemes using homomorphic encryp-
tion. Their schemes requires only O(1) computation to be
done on-line. The idea of the schemes is to do as many
operations as possible off-line to achieve practical on-line
overhead. However, because of heavy off-line computation,
the client has to wait until the server is ready to be queried,
and this latency may make the schemes less practical. The
schemes work as follows: When the client wants to obtain
a data item, which is encrypted with the servers secret key
and publicly available, first the client download the item and
encrypts it with the client’s secret key. After the encryption
at the client, the client sends the item to the server and asks
to remove the server’s encryption. Finally, the client obtain
the data item by decrypting one’s own encryption.

Asonov and Freytag’s scheme [34] also assumes the SC
inside the server and SC first shuffles the entire database ac-
cording to a random permutation π. When the client request
the data item i1, the SC fetches the item from π(i1). This
only requires O(1) of computation and communication. For
the second query of requesting the item i2, the SC first has
to read π(i1) and then read π(i2). When i1 = i2 (the second
and the first query request the same data item), the SC reads
π(i1) and a random item in order to hide the fact that the
client is reading the same data item twice. Therefore, for
the n-th query, the SC has to read all previously read items
before reads π(in). At a certain point, the SC has to pick a

new permutation π′ and shuffle the database with π′.
The PIR schemes can protect user’s privacy from an

honest-but-curious servers. However, PIR schemes can not
offer a protection from a dishonest user. Gertner et al. [41]
proposed a symmetric private information retrieval (SPIR)
that prevents the user from learning additional informa-
tion. Henry et al. [42] considered an application of SPIR
for e-commerce and proposed a protocol that extended the
PIR scheme [35] to a priced symmetric private informa-
tion retrieval (PSPIR). Their PSPIR scheme maintain user’s
anonymity and does not leak any information about the
record of user’s purchases.

Recently implementations of CPIR and evaluating per-
formances on real environments are attracting more atten-
tions. Melchor and Gaborit [43], [44] proposed a lattice-
based new scheme with a reasonable communication cost
and with computational complexity being improved by a
factor of one hundred. Later, Olumofin and Goldberg [45]
implemented the lattice-based scheme and evaluated the
performance. They demonstrated that the overhead of
Olumofin and Goldberg’s scheme was 10 to 1000 times
smaller than the trivial scheme (i.e. downloading entire
database).

Recent schemes can outsource the database to un-
trusted servers and yet can protect both the privacy of the
database owner and clients. Huang and Goldberg [46] pro-
posed a scheme for outsourcing Private Information Re-
trieval. Their scheme requires O(

√
N) computational over-

head and the server stores O(
√

N) data. The security of the
scheme is proven when it has the access to a random ora-
cle. They also implemented their scheme and evaluated the
performance. When the client updates 1MB record in the
1 TB database, an amortised end-to-end latency is smaller
than 300 ms.

The comparison of PIR schemes is summarised in Ta-
ble 2. In Table 2, we compared communication overhead
of schemes since they are generally evaluated by commu-
nication overhead†, while ORAM schemes are evaluated by
computational overhead.

2.3 Hardware-Assisted Control Flow Obfuscation

ORAM constructions remain too expensive to be imple-
mented on embedded processors. In [27], Zhuang et al. pro-
posed a practical, hardware-assisted scheme for embedded
processors, with low computational overhead. Their control
flow obfuscation scheme for embedded processors employs
a small secure hardware obfuscator (called shuffle buffer) to
hide program recurrence. We give a brief description of the
scheme below; for more details, refer to [27].

Let n be the size (in blocks) of memory, and m 
 n be
the size of the shuffle buffer. The shuffle buffer is within the
CPU trusted boundary, i.e. it is considered secure local stor-
age (cache), and an adversary is not able to observe access

†All literatures referred in Table 2 evaluate their own scheme
in terms of the communication overhead, except Huang and
Goldberg’s scheme [46].
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Table 2 Comparison of PIR. � is the total number of servers and k is the minimal number of servers
which are available at the time of retrieval. c is a constant of c ≥ 2 and ε is a small constant of ε ≥ 0.

Communication Overhead Server Storage Client Storage Security

CG [28] O(Nε ) O(N) O(1) one-way function

KO [29] O(Nε ) O(N) O(1) quadratic residuosity problem

CKGS [5], [30] O(log2 N log log N) O(N log N) O(1) information theoretic

AF [34] O(1) O(N) O(1) secure coprocessor

G [35] O(1) O(N) O(1) information theoretic

BS [31] O(N1/k) O(N) O(1) information theoretic

WS [10] O(log2 N) O(N log N) O(
√

N) random oracle

GMOT [36] O(1) O(N) O(N1/c) one-way function

HG [46] O(
√

N)‡ O(N) O(1) random oracle
‡ They evaluated the scheme in terms of computational overhead.

pattern in the shuffle buffer. As in other parts of this paper,
we assume that data is stored encrypted and access opera-
tions consist of sequential read and write operations. A
random permutation is initially applied to data before load-
ing it to RAM. The scheme then works as follows.

1. The first m blocks in memory are moved to the shuffle
buffer.

2. When making a request for a data item, if the block is
found in the shuffle buffer, access the block.

3. If the block is not found in the shuffle buffer, pick a
random block in the shuffle buffer and swap it with the
requested data block in memory (the accessed data item
is now in the shuffle buffer).

4. When the program finishes its entire process, the full
contents of shuffle buffer are written back into memory.

Note that item 3. implies that the permutation used to
map data in memory is dynamically modified as the program
runs. Although the dynamic secret permutation helps to pro-
tect the privacy of individual items being accessed (or being
repeatedly accessed), it also means that the scheme needs
to make use of a block address table to map data items into
memory (describing the permutation at time t). As a re-
sult there is the storage requirement of size O(n) within the
trusted environment to represent this mapping (albeit with
constant < 1).

The scheme trades security for low overhead. Besides
the costs of having a secure on-chip buffer, the scheme triv-
ially leaks information about access of data items during ex-
ecution of program. In fact, the lack of memory access in
step 2 indicates that when step 3 is executed, one knows
the exact block being accessed (the one in memory, be-
ing brought into the buffer). Thus a step 2 followed by a
step 3 indicates that the data items being accessed are defi-
nitely distinct (i.e. there is no 2-recurrence at this particular
stage). Likewise, a step 3 followed by a step 2 indicates a
2-recurrence with probability 1/m. Furthermore, an access
in memory to a data item which was previously swapped
out from the buffer indicates with high probability the exis-
tence of repeated access to a particular data. These could be
confirmed by running the program several times.

Despite the limitations of the proposal, it adds a
very low overhead to the program execution (besides the

read/write and encryption/decryption overhead, only an ex-
tra read/write operation due to cache misses). We will adapt
some of the ideas from this scheme in our proposal.

2.4 Lightweight Memory Access Pattern Protection
Scheme

We first defined a new security notion called δ-length ε-
security [1].

Definition 1 We say that an access pattern protection
scheme is δ-length ε-secure if the probability that an ad-
versary identifies any d-distance access in A(y) is at most ε
for every d ≤ δ.
Then we proposed a practice-oriented scheme for protecting
RAM access pattern and considered two instances, which
satisfy δ-length ε-security. The first instance is similar to
the proposal by Zhuang et al. [27], and relies on the use of a
secure (trusted) hardware buffer. However it achieves higher
security by adapting ideas from Goldreich and Ostrovsky’s
square root solution, yet without the expensive (re-)shuffling
of buffers. The second instance requires no special hardware
and can offer the same level of security as the first instance,
but as a result leads to a higher overhead.

The main feature of the proposal in [1] is to main-
tain the history of access, which together with the access
of dummy data, helps one to hide data access pattern with-
out frequent oblivious re-shuffling. The history table H is
stored inside secure memory, in case of the first instance,
along with the bufferM and random permutation E. As we
do not require secure memory for the second instance, all of
them are stored in unsecured memory.

When the program is invoked, our scheme first ran-
domly permutes all data blocks according to the permuta-
tion E. Note that unlike ORAM, this permutation is done
only once. As different mapping is chosen every time the
program is invoked, our scheme has to hold the mapping
table inside the secure region. After the shuffling, the pro-
gram starts accessing data blocks on RAM. The scheme
swaps data blocks between the secure buffer and main mem-
ory for every access. The buffer temporarily holds M data
blocks and corresponding addresses, which were recently
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accessed. As the size of buffer is limited, the buffer will
be full at some time, thereafter every time the program ac-
cesses a data block, two blocks should be removed from the
buffer and kicked back to memory. The addresses of those
blocks, which are kicked out from the buffer, are stored in
the history table. The history table can hold up to H ad-
dresses. When the history table gets full, two random entries
are overwritten by new entries.

Let us explain the scheme using an example in which
the program accesses the data block ‘a’ stored in the address
ia. The scheme always brings two blocks from memory
into the buffer and evict two blocks instead. Which blocks
should be evicted can be randomly determined. The choice
of which blocks should be brought is described as follows:

1. if ‘a’ is in M, we replace two random elements (not
‘a’) fromM by a random element ‘r’ from main mem-
ory and a random element ‘p’ from main memory
which had already been accessed before (as recorded
in the history table), and we access ‘a’.

2. if ‘a’ is not inM, and its address is in the history table,
we replace two random elements fromM by a random
element ‘r’ from main memory and ‘a’ (as recorded in
the history table). Note that H holds only addresses
and data itself is stored in main memory.

3. if ‘a’ is not inM, and its address is not in the history
table either, we replace two random elements fromM
by ‘a’ and a random element ‘p’ from main memory
which had already been accessed before (as recorded
in the history table).

In words, the choice is determined as one of the blocks al-
ways looks randomly chosen and the other always looks one
in the history table. Let us take the case 2 as an example, two
blocks (r, a) are copied to the buffer. The block ‘r’ looks as
it is randomly chosen, and it is indeed. The block ‘a’ looks
as if it is chosen not because it is requested, but because its
address is registered in the history table from the adversary’s
view point. As the first instance of their scheme assumes se-
cure hardware, the program can access the block ‘a’ directly
after bringing two blocks. In the second instance, the pro-
gram has to access all data blocks in the buffer otherwise the
adversary might be able to notice which block is actually the
program is accessing. We have a pseudocode of our scheme
in Algorithm 1.

2.5 Difference between ORAM and PIR

The target of both ORAM and PIR is the same: how to
efficiently protect the pattern of accesses. The main dif-
ference is that ORAM supports both the read and write
operations to RAM (or server) while PIR usually consider
only the read operation. As the functionality of PIR is lim-
ited compared to ORAM, PIR tends to be more practical,
in terms of communication and storage cost, than ORAM.
PIR works very well when one server or cloud operator pro-
vides a large database and many clients want to download
part of the database in a privacy preserving manner. How-

Algorithm 1 Pseudocode of access pattern protection
scheme
1: scanM for ‘a’
2: if ‘a’ ∈ M then
3: replace two random elements (not ‘a’) in M with two random

blocks inL, one of them is chosen from the historyH and the other
is randomly chosen from L

4: else
5: scanH for ‘ia’
6: if ‘ia’ ∈ H then
7: replace two random blocks inM with a random block in L and

‘a’
8: else
9: replace two random blocks in M with ‘a’ and a random block

whose address is registered inH
10: end if
11: end if
12: choose �h elements from �h + 2 to update history tableH
13: access ‘a’

ever, as PIR does not support write operation, it does not
work well in some services for example file hosting services
where clients upload their files and they often update part
of their files. Neither does PIR work well when a software
developer wants to protect his/her software from reverse en-
gineering. ORAM is usually less practical than PIR in terms
of performance, however, ORAM supports both read and
write operations. Hence ORAM is suitable for protecting
access pattern in a database which is often updated and a
software protection.

PIRs usually offer less functionality than ORAMs,
hence they are lighter than ORAMs and oppose smaller
overhead. Because of their lightweightness, PIRs are more
attractive for users who wish to hide only their reading pat-
tern. Some ORAM schemes are practical and their applica-
tions to realise a private access to remote servers have also
been considered. Our scheme is as light as one of the most
efficient PIRs, our scheme can be used instead of PIRs with-
out sacrificing performance.

3. Implementation Issues of ORAM

Considering the practical implementation of ORAM, there
were several questions to be addressed and improvements to
be achieved. We propose practical solutions for these issues.
The issues are;

• Management of data blocks in the buffer
• Construction of a secure area
• Size of each block.

In Sect. 3.1, we propose a better management of data blocks.
The construction of secure area based only on software is
discussed in Sect. 3.2. Finally we discuss better use of each
block for saving storage in Sect. 3.3.

3.1 Managing Data in Buffer Using Flags

The square-root based solutions first scan all data blocks in
order to know if the accessing block is in the shelter or not
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at the beginning of the process. If the accessing block is in
the shelter, the block from a dummy location will be fetched
into the shelter. When the dummy block is being fetched,
there is a chance that the block which is already in the shel-
ter is chosen again. If this block is the dummy one, it is not a
problem. However, if the block is the real one, which is the
one actually accessed by the program, we cannot distinguish
which block is newer. As the result, the program may mis-
behave in the software protection scenario and the database
may be ruined in the database access protection scenario.
Therefore, we must ensure that all blocks in the shelter are
the latest and there is no duplication.

The trivial solution to ensure that is to scan the entire
shelter before fetching the data block, which impose large
overhead. We can omit this scan by using n 1-bit flags Fi

indicating whether the data block is in the buffer or not. We
set Fi = 1 when data stored in address i is stored in the
buffer and Fi = 0 otherwise. When bringing two blocks into
the buffer, we check flag of each block. If it is 0, we bring
the block into the block. If it is 1, we pick different block
and check the flag again.

The same situation can happen in the lightweight
scheme proposed in [1]. Their scheme always fetches two
blocks in to the shelter, the chance of the block which is al-
ready in the shelter being chosen is higher than the square-
root solution. We have confirmed that this solution can im-
prove the performance by roughly 3 times in many parame-
ter settings with a prototype implementation. When the hier-
archical solution is applied, there is no need for the manage-
ment of newer data as newer data blocks are always upper
level. The scheme proposed in [27] does not either require
this management as their scheme swaps two blocks between
the shelter and main area.

3.2 Constructing Secure Region

ORAM of square-root solution has a shelter of size
√

N and
the scheme has to access all data blocks in the shelter at least
twice per one access. As the size of the program or database
grows, the size of the shelter also grows, which increase the
computational overhead of the implementation. ORAM of
hierarchical solution also has the same problem as it also
has to access all data blocks in the top level buffer. Though
it may not be serious as square-root solution, as the size of
top level buffer is fixed and usually smaller than

√
N.

The cost of accessing shelter or top leverl buffer can be
reduced by using secure hardware where only the client can
access as done in [1], [27]. Though this is looks promising,
requiring secure hardware may compromise the practical-
ity. The third option is to construct a secure region with
obfuscation. Let access(K) be the complexity of accessing
K blocks and ob f (V) be the complexity of obfuscating vari-
ables V . Also let X be the variables after the obfuscation.
Then the obfuscation can offer higher performance than ac-
cessing all data blocks in the buffer when the following in-
equation holds;

access(K) ≤ ob f (V) + access(X).

In the square root construction, the size of the shelter tends
to large as its size is

√
N. Therefore, it is likely that we

can improve the performance of ORAM scheme with this
method. Depending on the size of the top level buffer
for hierarchical solution and the complexity of obfuscation
ob f (V), this method is also applicable to the hierarchical
solutions. It is also applicable and for the scheme of [1].

We use the scheme proposed in [47] for obfuscation.
By using obfuscation with the memory protection scheme,
we only need to protect the shelter (square-root), top level
buffer (hierarchical) or buffer and history table ([1]), which
are much smaller than N. As described in the following,
we divide the buffer and history table into smaller ones and
apply the obfuscation repeatedly. Hence we can further de-
crease the overhead due to obfuscation.

By obfuscating data blocks inside the secure region,
the accesses to memory is also “obfuscated”, that is, the ac-
cess to a certain data block is transformed into the access(es)
to obfuscated block(s). When the protection scheme needs
to access one of data blocks, it accesses obfuscated blocks
and unlock the obfuscation in order to obtain the real value.
As the correspondence between the original access and the
“obfuscated” access(es) is secret, an adversary cannot un-
derstand which block is actually accessed. The obfuscation
does not affect any operation done by the protection scheme
as it only encodes the data blocks. The obfuscation also re-
alise less access overhead than that of accessing all blocks in
the buffer by appropriately choosing the parameters, which
we discuss later this section. Thus, by using obfuscation for
data blocks, we can construct a secure area without hard-
ware, and less overhead than accessing all blocks in the
buffer.

Each block which requires to be secret is implemented
as variables, and these variables are encoded into obfuscated
variables. The following is a small example of the obfusca-
tion from a set of variables {v1, v2, v3} into a set of obfuscated
variables {x1, x2, x3, x4, x5};
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 1
0 0 1 1
1 1 0 1
0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

y5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where the matrix is chosen as its rank to be the same as the
number of elements in the original variables (in this exam-
ple, it is 4). Each element of the matrix is randomly chosen
except the rightmost column, which is set to all 1s. A ran-
dom variable d is generated by a pseudo-random number
generator and it is attached to the original variables. Finally
a secret vector {y1, y2, y3, y4, y5} is exclusive-ORed, this op-
eration acts like random masking. We repeatedly apply the
same obfuscation for the multiple sets of the original val-
ues until we obtain enough size of the secure region. In this
example, we obtain the secure region of size 4 per one iter-
ation.
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Fig. 1 Constructing secure area using obfuscation.

When one of vis, say v1, is requested, we first determine
which set of obfuscated variables to access depending on the
index of v1, then access all xis to decode v1. Suppose v1 is
updated to v′1 after the operation, then we apply the same ob-
fuscation as given in Eq. (1) with newly generated random
number d′. We use different random numbers every time the
program accesses to the secure region. As the correspond-
ing column to d is set to all 1s, the change of d will cause the
changes of all variables of {xi} even if none of variables {vi}
are changed (i.e. read operation). Moreover, as the encod-
ing applies the secret matrix, the adversary cannot detect the
correspondence between {vi} and {xi}. Though the adversary
may be able to detect which one of {xi} is being accessed,
one cannot understand which one of {vi} is being accessed.
Thus, we can construct a secure region using obfuscation.

There is, however, a limitation to use obfuscation for
constructing secure area, which is the size and number of all
variables must be pre-determined. In order to overcome this
limitation, we divide the secure region into smaller units.
Figure 1 shows an example when 8 blocks to be obfus-
cated into 16 blocks with one random number. We can of
course use different matrices and vectors for each obfusca-
tion unit, which makes obfuscation more difficult to be anal-
ysed, though this will increase the code size. We also note
that we can of course choose arbitrary size for the unit of
obfuscation.

3.3 Reducing Storage Overhead

In the scheme of [27], the uniform unit of data was defined
as a block of size 128-bit. However, some programs uses a
byte block or smaller as the smallest unit. When one byte
data is allocated to 16 byte block, it wastes remaining 15
bytes. For the better management of storage, we modify the
scheme so that one block can store multiple smaller blocks.

This modification not only saves storage, but also im-
proves the performance for operations such as data copy and
move. When a program copies for example four integer-type
blocks, the original scheme requires four copy operations.
On the other hand, our proposal only requires one copy op-
eration when these four blocks are in the same 128-bit block.
By carefully choosing smaller blocks on storing them into a
large block, we can expect speed-up and saving storage at
the same time.

3.4 Implementation Result

We implemented our scheme to which three modifications
are applied. Then we measured the required time to write

Fig. 2 Performance evaluation in various settings.

1MB data on RAM using the protection scheme. The evalu-
ation was done on the PC of CPU: Intel Core i7 3930K and
RAM: 8 GB which runs Ubuntu 13.04 x64 and gcc 4.7.3. As
our scheme has two parameters (e.g. number of blocks in the
buffer and history table) which affects the performance, we
measured the required time while we change the number of
blocks in the buffer and the history table from 100 to 1000.
Figure 2 shows the relation between parameters and perfor-
mance of our efficient implementation. The x-axis denotes
the number of blocks (from 100 to 1,000 for every 100) in
the secure buffer, the y-axis denotes required time to load
1 MB data to the protection scheme and each curve corre-
sponds to each size of the history table. In the fastest setting,
our scheme only requires 0.125[s] to write 1 MB data. As
shown in the figure, the overhead grows linear to the size of
buffer and history table. This is because more time required
to scan the entire buffer and history table as their size grow.
However, growth of overhead is very slow compared to that
of size of buffer and history table thanks to the efficient im-
plementation of scanning process.

4. Conclusion

In this paper, we summarised series of researches on ORAM
and PIR, and compared the overhead of each scheme. We
also introduced two lightweight scheme. Then discussed
three general implementation issues, namely management
of data blocks in the buffer, construction of a secure area
and size of each block, and their solutions. The solutions
can be widely used for implementing ORAM and improv-
ing the performance.
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