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Md. Anisuzzaman SIDDIQUE†a), Hao TIAN†, Nonmembers, and Yasuhiko MORIMOTO†, Member

SUMMARY Filtering uninteresting data is important to utilize “big
data”. Skyline query is popular technique to filter uninteresting data, in
which it selects a set of objects that are not dominated by another from a
given large database. However, a skyline query often retrieves too many
objects to analyze intensively especially for high-dimensional dataset. To
solve the problem, k-dominant skyline queries have been introduced. The
size of databases sometimes become too large to compute in a centralized
environment. Conventional algorithms for computing k-dominant skyline
queries are not well suited for parallel and distributed environments, such as
the MapReduce framework. In this paper, we consider an efficient parallel
algorithm to process k-dominant skyline query in MapReduce framework.
Extensive experiments demonstrate the scalability of proposed algorithm
for synthetic big datasets under different settings of data distribution, di-
mensionality, and cardinality.
key words: skyline query, k-dominant skyline query, MapReduce, big data

1. Introduction

Filtering uninteresting data is an important step to utilize
“big data”. Moreover, to select representative distinctive ob-
jects in a database is important to understand the data in an
early stage of knowledge discovery process. Skyline query
is one of popular techniques for such data processing.

Let DS be an m-dimensional database. An object O is
said to dominate another object O′ if O is not worse than O′
in any of the m dimensions and O is better than O′ in at least
one of the m dimensions. A skyline query retrieves a set of
objects, each of which is not dominated by another object.
Consider a symbolic skyline dataset with two attributes a1

and a2 as shown in Fig. 1. Without loss of generality, we
assume smaller value is better in each dimension. Skyline
query retrieves {o3, o4, o5, o6} (see Figure 1 (b)).

Since the notion of the skyline operator [3] was intro-
duced by Borzsonyi in 2001, it has attracted considerable
attention due to its broad applications including product or
restaurant recommendations [11], review evaluations with
user ratings [10], querying wireless sensor networks [21],
and graph analysis [24]. A number of efficient algorithms
for computing skyline objects have been reported in the lit-
erature [5], [9], [15], [22].

One of known weakness of the skyline query is that it
can not control the size of retrieved objects. It retrieves too
many objects especially for high-dimensional databases. As
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Fig. 1 Skyline example.

Table 1 k-dominant skyline dataset.

Ob ject a1 a2 a3 a4 a5 a6

O1 4 1 5 3 1 4
O2 8 2 2 1 7 5
O3 6 6 9 7 1 9
O4 2 8 1 7 2 2
O5 8 9 6 7 5 6
O6 3 3 8 2 4 5
O7 1 5 9 2 8 6
O8 5 2 2 4 7 9

a result, a user may be overwhelmed as s/he may have to
examine numerous skyline objects manually to examine.

To solve the weakness, Chan et al. considered k-
dominant skyline query [4]. They relaxed the definition of
“dominated” so that an object is more likely to be dom-
inated by another object according to the parameter “k”.
Given an m-dimensional dataset DS , an object O is said to
k-dominates another object O′ if there are k (k ≤ m) dimen-
sions in which O is better than or equal to O′. A k-dominant
skyline object is an object that is not k-dominated by any
other object.

Assume another symbolic dataset for illustrating k-
dominant skyline as listed in Table 1. In the table, each
object has six dimensions from a1 to a6. Skyline query for
this database returns six objects {O1,O2,O4,O6,O7,O8} out
of eight objects. Naturally, users want to eliminate less im-
portant objects from the result set. The k-dominant skyline
query can control the selectivity by changing k. Consider the
case where k = 5. Object “O1” 5-dominates object “O8” be-
cause all attributes of “O1” except a3 are equal or better than
those of “O8”. Similarly, “O7” is 5-dominated by “O2”. Oth-
ers are not 5-dominated. Therefore, {O1,O2,O4,O6} are 5-
dominant skyline objects. If k = 4, object “O1” 4-dominates
“O2” and “O6”. Therefore, {O1,O4} are 4-dominant sky-
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line objects. If we decrease the value of k by one, “O1”
3-dominates “O4” and “O1” is 3-dominated by “O4”. There-
fore, 3-dominant skyline query retrieves empty set.

The size of databases sometimes becomes too large to
compute in a centralized environment. Conventional algo-
rithms for computing k-dominant skyline queries are not
well suited for parallel and distributed environments, such
as MapReduce framework. In this paper, we consider an
efficient parallel algorithm to process k-dominant skyline
queries in MapReduce framework. We utilize an spatial
index structure, called object-based bound tree to split the
data space so that we can compute sub-processes of the
k-dominant skyline query on each subspace independently.
Extensive performance study shows that our proposed algo-
rithm is scalable to handle “big data”.

The rest of this paper is organized as follows: Sect. 2
reviews related work. Section 3 presents the notions and
properties of k-dominant skyline computation. We provide
detailed examples and analysis of k-dominant skyline algo-
rithm in Sect. 4. We experimentally evaluate the proposed
algorithm in Sect. 5 under a variety of settings. Finally,
Sect. 6 concludes the paper.

2. Related Work

Our work is motivated by previous studies of skyline query
processing as well as MapReduce based query processing.

2.1 Skyline and k-Dominant Query Processing

Borzsonyi et al. first introduced the skyline operator over
large databases and proposed three algorithms: Block
Nested-Loops (BNL), Divide-and-Conquer (D&C), and B-
tree-based schemes [3]. BNL compares each object of the
database with every other object, and reports it as a result
only if any other object does not dominate it. A window W
is allocated in main memory, and the input relation is se-
quentially scanned. In this way, a block of skyline objects is
produced in every iteration. In case the window saturates, a
temporary file is used to store objects that cannot be placed
in W. This file is used as the input to the next pass. D&C
divides the dataset into several partitions such that each par-
tition can fit into memory. Skyline objects for each indi-
vidual partition are then computed by a main-memory sky-
line algorithm. The final skyline is obtained by merging the
skyline objects for each partition. Chomicki et al. improved
BNL by presorting, they proposed Sort-Filter-Skyline (SFS)
as a variant of BNL [5]. Among index-based methods, Tan
et al. proposed two progressive skyline computing meth-
ods Bitmap and Index [17]. In the Bitmap approach, ev-
ery dimension value of an object is represented by a few
bits. By applying bit-wise AND operation on these vectors,
a given object can be checked if it is in the skyline without
referring to other objects. The index method organizes a set
of m-dimensional objects into m lists such that an object O
is assigned to list i if and only if its value at attribute i is
the best among all attributes of O. Each list is indexed by

a B-tree, and the skyline is computed by scanning the B-
tree until an object that dominates the remaining entries in
the B-trees is found. The current most efficient method is
Branch-and-Bound S kyline (BBS), proposed by Papadias
et al., which is a progressive algorithm based on the best-
first nearest neighbor (BF-NN) algorithm [15]. Instead of
searching for nearest neighbor repeatedly, it directly prunes
using the R*-tree structure.

Chan et al. introduce k-dominant skyline query [4].
They proposed three algorithms, namely, One-S can
Algorithm (OSA), Two-S can Algorithm (TSA), and S orted
Retrieval Algorithm (SRA). OSA uses the property that a
k-dominant skyline object cannot be worse than any skyline
object on more than k dimensions. This algorithm maintains
the skyline objects in a buffer during the scan of the dataset
and uses them to prune away objects that are k-dominated.
TSA retrieves a candidate set of dominant skyline objects in
the first scan by comparing every object with a set of can-
didates. The second scan verifies whether these objects are
truly dominant skyline objects or not. This method turns
out to be much more efficient than the one-scan method. A
theoretical analysis is provided to show the reason for its su-
periority. The third algorithm, SRA is motivated by the rank
aggregation algorithm proposed by Fagin et al., which pre-
sorts data objects separately according to each dimension
and then merges these ranked lists [7].

Another study on computing k-dominant skyline is k-
ZSearch proposed by Lee et al. [12]. They introduced a con-
cept called filter-and-reexamine approach. In the filtering
phase, it remove all k-dominated objects and retain possi-
ble skyline candidates, which may contain false hits. In the
reexamination phase, all candidates are reexamined to elim-
inate false hits.

Recently, more aspects of skyline computation have
been explored. Lin et al. proposed n-of-N skyline query to
support online query on data streams, i.e., to find the sky-
line of the set composed of the most recent n elements. In
the cases where the datasets are very large and stored dis-
tributedly, it is impossible to handle them in a centralized
fashion [13]. Balke et al. first mined skyline in a distributed
environment by partitioning the data vertically [1]. Vlachou
et al. introduce the concept of extended skyline set, which
contains all data elements that are necessary to answer a sky-
line query in any arbitrary subspace [20]. Tao et al. discuss
skyline queries in arbitrary subspaces [18]. More skyline
variants such as dynamic skyline [14] and reverse skyline [6]
operators also have recently attracted considerable attention.

2.2 MapReduce Based Query Processing

In order to handle “big data”, the MapReduce [2], [8], [19]
framework has recently attracted a lot of attentions. MapRe-
duce is a programming model that allows easy development
of scalable parallel applications to process big data on large
clusters of commodity machines. Ideally, a MapReduce sys-
tem should achieve a high degree of load balancing among
the participating machines and minimize the space uses,
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CPU and I/O time, and network transfer at each machine.
In [23], the authors discussed three skyline algorithms

adapted to the MapReduce framework. MapReduce-based
Block Nested Loop (MR-BNL) first partitions the data
space into two dimensional subspaces base on the medi-
ans of each dimension and computes the local skyline for
each subspace using BNL algorithm. Then, all the local
skylines are merged into one machine to compute global
skyline. MapReduce-based S ort-Filter-S kyline (MR-SFS)
modifies MR-BNL by achieving presorting. MapReduce-
based Bitmap (MR-Bitmap) builds the bitmap structure to
examine each object in parallel. Both MR-BNL and MR-
SFS concentrate on one machine to compute the global sky-
line. They suffer from dimensional curse because the size
of local skyline will be much larger when dimensionality is
large. MR-Bitmap requires a large amount of disk space to
store bitmap structure if the bitmap structure cannot fit in a
main memory. So MR-Bitmap has to spend the largest I/O
cost.

Another parallel skyline algorithm based on MapRe-
duce, namely SKY-MR, is proposed in [16]. The idea is
based on a sky-quadtree to subdivide the data space recur-
sively into sub-regions. The local skyline objects of each
region are computed independently and then checked with
objects from other regions which may dominate objects in
this region. Partitioning based on sky-quadtree leads to un-
balance in global skyline computation. The servers corre-
sponding to the regions which are closer to the max corner
of data space receive larger data to check than other servers,
even though they do not contribute to the global skyline at
all.

In this paper, we consider MapReduce based k-
dominant skyline query. To the best of the authors’
knowledge, there is no MapReduce based algorithm for k-
dominant skyline query.

3. Preliminaries

In this section, we present some definitions and basic prop-
erties of our algorithm.

3.1 Skyline and k-Dominant Skyline

Assume we have a database DS with m-attributes
{a1, a2, · · · , am}. The database is distributed into n datasets
{DS 1,DS 2, · · · ,DS n} on different locations. We use Oi, j.ak

to denote the k-th attribute’s value of object Oi, j where i de-
notes datasets ID and j denotes object ID in the correspond-
ing dataset DS i.

For simplicity, assume that the symbolic k-dominant
skyline dataset shown in Table 1 is splitted into two smaller
datasets, DS 1 and DS 2, and distributed in different locations
as shown in Table 2 and 3, respectively. In Table 2 and 3,
the first suffix of object ID represents data source ID number
and the second one represents object ID in the correspond-
ing data source. For example, O2,2 is an object of DS 2 and
its ID in DS 2 is “2”.

Table 2 Distributed k-dominant skyline dataset DS 1.

ID a1 a2 a3 a4 a5 a6

O1,1 4 1 5 3 1 4
O1,2 8 2 2 1 7 5
O1,3 6 6 9 7 1 9
O1,4 2 8 1 7 2 2

Table 3 Distributed k-dominant skyline dataset DS 2.

ID a1 a2 a3 a4 a5 a6

O2,1 8 9 6 7 5 6
O2,2 3 3 8 2 4 5
O2,3 1 5 9 2 8 6
O2,4 5 2 2 4 7 9

Definition Dominate: For objects Oi, j and Ox,y (where
if i = x then j � y or if j = y then i � x), an object Oi, j is said
to dominate another object Ox,y, denoted by Oi, j ≤ Ox,y,
if Oi, j.as ≤ Ox,y.as for all attributes (s = 1, · · · ,m) and
Oi, j.as < Ox,y.as for at least one attribute s in the m at-
tributes. We call such Oi, j as dominant object and such Ox,y

as dominated object between Oi, j and Ox,y. If Oi, j dominates
Ox,y, then Oi, j is more preferable than Ox,y.

Definition Skyline: An object O ∈ DS is in skyline
of DS (i.e., a skyline object in DS ) if O is not dominated
by any other object in DS . The skyline of DS , denoted
by Sky(DS ), is the set of skyline objects in DS . For dis-
tributed skyline dataset DS (shown in Table 2 and 3), ob-
ject O1,1 dominates O1,3 and O2,1. The other objects, i.e.,
O1,1,O1,2,O1,4,O2,2,O2,3, and O2,4 are not dominated by an-
other object in DS . Thus, skyline query on Table 2 and 3
will retrieve Sky(DS ) = {O1,1,O1,2,O1,4,O2,2,O2,3,O2,4}.

Definition k-Dominate: For objects Oi, j and Ox,y

(where if i = x then j � y or if j = y then i � x), an ob-
ject Oi, j is said to k-dominate another object Ox,y, denoted
by Oi, j ≤k Ox,y, if Oi, j.as ≤ Ox,y.as for k(k ≤ m) attributes
among the m attributes and Oi, j.as < Ox,y.as for at least one
attribute. We call such Oi, j as k-dominant object and such
Ox,y as k-dominated object between Oi, j and Ox,y. Similar
to skyline object, if Oi, j k-dominates Ox,y, then Oi, j is more
preferable than Ox,y.

Definition k-dominant Skyline: An object O ∈ DS
is in k-dominant skyline of DS if O is not k-dominated
by another object in DS . The k-dominant skyline of
DS , denoted by Skyk(DS ), is the set of k-dominant sky-
line objects in DS . In DS (shown in Table 2 and 3),
{O1,1,O1,2,O1,4,O2,2,O2,3,O2,4} are not dominated by an-
other object. Thus, Sky6(DS ), which is Sky(DS ), will re-
trieve {O1,1,O1,2,O1,4,O2,2,O2,3,O2,4}. Now, if we consider
5-dominant skyline, O1,1 5-dominates O2,4 because O1,1 is
equal or better in a1, a2, a4, a5, and a6. Similarly, O1,2

5-dominates O2,3. The other objects are not 5-dominated.
Thus, Sky5(DS ) = {O1,1,O1,2,O1,4,O2,2}. If k = 4, O1,1 4-
dominates O1,2, O2,2. Thus, Sky4(DS ) = {O1,1,O1,4}. Since
O1,1 3-dominates O1,4 and O1,1 is 3-dominated by O1,4,
Sky3(DS ) becomes an empty set, since all objects are 3-
dominated by each other.
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3.2 Hadoop MapReduce

MapReduce was proposed by Google as a parallel and dis-
tributed programming framework for large-scale data pro-
cessing. In the MapReduce framework, data are represented
as key/value pairs and computation is distributed across a
shared nothing cluster of commodity machines. A job to be
performed using the MapReduce framework mainly refers
to two user-defined functions, called Map and Reduce:

Map(k1, v1)→ list(k2, v2) (1)

Reduce(k2, list(v2))→ list(v3) (2)

The Map function (also called Mapper) processes on
each (key, value) pair of input data, and produces new (key,
value) pairs. The intermediate (key, value) pairs are then
grouped and sorted associated with the same intermediate
key. The Reduce function (also called Reducer) takes a key
and a list of values for that key, applies the processing logic,
and generates the final result as a list of values.

Hadoop is an open source implementation of the
MapReduce framework. The Hadoop MapReduce frame-
work is designed to allow users to program a MapReduce
job only by defining the map and reduce functions. A
MapReduce job usually splits the input dataset into equal-
sized segments of typically 64 MB per segment.

4. k-Dominant Skyline Processing

In this section, we present our approach to process k-
dominant skyline queries in MapReduce. Proposed algo-
rithm consists of the following three stages, which are (1)
object-based bound tree construction, (2) MapReduce for
candidate selection, and (3) MapReduce for final skyline.

4.1 Object-Based Bound Tree Construction

As the first stage, we choose an adequate size samples
from a database and then construct a tree called Object-
based bound tree (OB-Tree), from the samples. Using
Euclidean distance order we find an object closest to the
origin. We use the closest object as root pivot Oν =
(Oν.s1,Oν.s2, . . . ,Oν.sm). Next, by using the pivot, we di-
vide the m-dimensional space S m into m non-disjoint sub-
spaces S m

1 , S
m
2 , . . . , S

m
m, where S m

i (i = 1, . . . ,m) is the lower
subspace divided by hyperplane si = Oν.si. If there are
subspaces that contain more samples than a user-specified
value, we recursively divide such subspaces.

Assume we have a dataset shown in Fig. 2. The m-ary
tree in the figure is an OB-Tree constructed from the eight
sample objects. In this sample, o3 is the root pivot. We use
o3 = (3, 3) to divide the 2D space into S 1 (a1 ≤ 3) and
S 2 (a2 ≤ 3). S 1 contains five objects {o1, o2, o3, o4, o6}. S 2

contains two objects {o3, o5}. If the user-specified value for
sample size is 3, we recursively divide S 1 to S 1.1 and S 1.2

by using o4. Finally, we have three subspaces S 1.1 (a1 ≤ 2),

Fig. 2 2D sample and OB-Tree.

Fig. 3 OB-Tree of k-dominant skyline dataset.

S 1.2 (a1 ≤ 3 and a2 ≤ 4), and S 2 (a2 ≤ 3).

4.2 MapReduce for Candidate Selection

We filter and dispatch each object in the database by us-
ing OB-Tree. Assume we have OB-Tree as in Fig. 3 which
is constructed from Table 1. Since the symbolic dataset is
small and relatively high dimensional, the depth of the OB-
Tree is one and we assume that O1,1 = (4, 1, 5, 3, 1, 4) is
the root pivot that splits the space into six non-disjoint sub-
spaces, say S 1, S 2, . . . , S 6.

We generate key-value pairs as the second column in
Fig. 4. In the key-value pair, key is subspace and value is a
triplet of an object. For example, object O1,2 is contained in
two subspaces S 3 and S 4. For each subspace that contains
O1,2, we generate key-value pair for O1,2 with (O1,2, 2,+),
where O1,2 is id of an object, “2” is the number of generated
pairs for the object, and “+” is a sign that shows whether
the object can be a candidate of k-dominant skyline. In this
example, we compute each sign with k = 5.

Let S (O) and |S (O)| be subspaces that contain O and
the number of the subspaces, respectively. We can apply
following theorems.

Theorem 1: If O is a skyline object (m-dominant skyline
object), |S (O)| ≥ 1.

Proof: If O is a skyline object, O can not be dominated
by any pivot in an OB-Tree. Therefore, O must be included
in at least one subspace. �

According to Theorem 1, we can conclude that all k-
dominant skyline objects must be in at least one subspace,
since a k-dominant skyline object (k ≤ m) must be a skyline
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Fig. 4 MapReduce data flow of candidate selection.

object. This also means that all k-dominant skyline objects
must contained in the key-value pairs.

Theorem 2: If O in the m-dimensional space is not k-
dominated by a pivot, then |S (O)| ≥ m − k + 1. In other
words, if |S (O)| < m−k+1, then the object O is k-dominated
by a pivot and cannot be a candidate of k-dominant skyline
object.

Proof: Each internal node of OB-Tree has m child-
nodes. If O is contained only in m − k subspaces (child-
nodes) of a pivot (an internal node), the pivot is strictly bet-
ter than O in k dimensions. If the number of subspaces that
contains O, |S (O)|, is at most m−k, one of pivots in OB-Tree
k-dominates O. �

By using Theorem 2, we compute the sign of each key-
value pair. Since |S (O1,3)| < 2(m − k + 1 = 6 − 5 + 1) and
|S (O2,4)| < 2, objects O1,3 and O2,4 cannot be 5-dominate
skyline. Therefore, the sign of the triplet of those objects is
“−”.

Each mapper dispatch the key-value pairs to reducers
based on the key as in Fig. 4. Each reducer then examines
the “local” k-dominance for each “+” object and outputs lo-
cal k-dominant skyline. For example, reducer S 4 receives
four + objects (as in the 3rd column). It examines each of
the four objects whether it is locally 5-dominated by another
object in the four objects. The reducer finds that O2,3 is 5-
dominated by O1,2 and removes O2,3 (as in the 4th column).

From the union of each reducer’s output, we can gen-
erate key-value pairs for the next MapReduce computation.
Each pair consists of candidate object “id” and the number
of subspaces that contain the object.

4.3 MapReduce for Final Skyline

The output of key-value pairs of the candidate selection

stage become the input of the final skyline stage. In this
stage, mappers dispatch key-value pairs based on the key
(object “id” such as O1,1,O1,4, etc.). Each reducer counts
the number of key-value pairs for each candidate object.

Let |O| be the number of the key-value pairs for O in
the input. The results of Fig. 4 are |O1,1| = 6, |O1,2| = 2,
|O1,4| = 3, |O2,2| = 2, and |O2,3| = 1. Notice that |O2,3| =
1 < |S (O2,3)| = 2 (The number of key-value pairs for O2,3

is smaller than the number of subspaces that contain O2,3.),
which implies that O2,3 is 5-dominated by another object in
at least one of subspaces in S (O2,3).

Theorem 3: Given two objects O and O′. If O is not a
pivot object and can k-dominate O′, then S (O)∩ S (O′) ≥ 1.

Proof: Let us consider two objects, O and O′ such
that object O is not a pivot and it k-dominates O′. We
first consider a case where OB-Tree has only one pivot ob-
ject, which implies the depth of the tree is one. Assume
that S (O) ∩ S (O′) = ∅. According to Theorem 2, at least
m−k+1 subspaces contains O′. In other words, at most k−1
subspaces do not contain O′. Object O may be better than
or equal to O′ in all the corresponding (k − 1)-dimensions.
However, since O k-dominates O′, O must be better than or
equal to O′ in at least k dimensions. This implies that O must
be better than or equal to O′ in at least one dimension that
corresponds to the subspace containing O′. So, O must exist
in at least one subspace that contains O′. This contradicts
the assumption S (O) ∩ S (O′) = ∅, thus S (O) ∩ S (O′) ≥ 1.

However, if the depth of OB-Tree is greater than one,
which means that there exists more than one pivot objects.
Then, a subspace splitted by another pivot (except the root
pivot) contains both O and O′. By applying similar proce-
dure we can prove that at least one child-subspace contains
both objects. �

From Theorem 1 and Theorem 3, it is clear that if an
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Fig. 5 Data flow of candidate selection in the 2nd level of OB-Tree.

object O has the property |S (O)| ≥ 1 and is not k-dominated
by any pivots as well as other objects in S (O), O is a member
of the global k-dominant skyline. Therefore, the 5-dominant
skyline of Table 1 is Sky5(DS ) = {O1,1, O1,2, O1,4, O2,2}.

4.4 Procedures in the 2nd Level of OB-Tree

To make better understanding, we explain our candidate se-
lection procedures in a case where the depth of OB-Tree
is greater than one. Assume that the user specified value
(the maximum number of objects in a subspace) is 3. Then,
the subspaces that have more than three objects are split.
In the example of Fig. 4, S 1, S 3, and S 4 among six child
nodes of the root are further splitted. Here, we present the
split of S 4 in Fig. 5. Using Euclidean distance order, we
choose object O2,2 as our new pivot because it is the closest
from the origin. By applying the splitting procedure with
O2,2, S 4 is split into six subspaces, say S 4.1, · · · , S 4.6. Each
mapper sends the key-value pairs to reducers based on the
key. Next, each reducer checks intermediate k-dominance
for each “+” object and outputs intermediate k-dominant
skyline. For example, reducer S 4.1 and S 4.4 receive 2 and
3 “+” objects, respectively and find that in both subspaces
object O2,2 becomes 5-dominant of object O2,3. Finally, by
computing the number of the key-value pairs for each ob-
ject we get Sky5(S 4) = {O2,2,O1,1,O1,2} as intermediate 5-
dominant skyline result for S 4.

Note that the user specified value (the maximum num-
ber of objects in a subspace), i.e., 3, in this subsection is too
small. We used this value just to explain the split procedure
in the 2nd level of the OB-Tree.

5. Performance Evaluation

We set up a cluster of 4 commodity PCs in a high speed Gi-
gabit networks, each of which has an Intel Core i7 3.4GHz
CPU, 4GB memory and Windows 8.0 OS. The machines
are connected with a Gbps LAN connection. We compile

the source codes under JDK 1.6. We conduct a series of
experiments with different data distributions, dimensionali-
ties, and data cardinalities to evaluate the effectiveness and
efficiency of our proposed methods. Each experiment is re-
peated five times and the average result is considered for
performance evaluation. Three data distributions proposed
in [3] are considered as follows:
Correlated: a correlated dataset represents an environment
in which, objects are good in one dimension are also good
in the other dimensions. In a correlated dataset, fairly few
objects dominate many other objects.
Anti-Correlated: an anti-correlated dataset represents an
environment in which, if an object has a small coordinate on
some dimensions, it tends to have a large coordinate on at
least another dimension.
Independent: for this type of dataset, all attribute values
are generated independently using uniform distribution. Un-
der this distribution, the total number of non-dominating ob-
jects is between that of the correlated and the anti-correlated
datasets.

We implemented the proposed algorithm described
in Sect. 4, denoted as MR-DSKY. In lack of techniques
dealing directly with the problem of MapReduce based k-
dominant skyline computation, we compare our method
against TSA, which was the most efficient k-dominant sky-
line search proposed in [4]. To handle parallel computation
in MapReduce environment, we adapt a variant of the TSA
called MR-TSA (MapReduce based Two-Scan Algorithm).
MR-TSA assigns map task to several workers to compute
candidate skyline objects, then utilizes the algorithm TSA,
to perform k-dominant skyline computation in one reduce
worker. We set dimension m = 10, data cardinality = 1M,
and k = 8 as the default values. Due to curse of dimen-
sionality when m increases the number of pruned objects
decreases. As a result, both MR-TSA and MR-DSKY be-
come slower. Increasing value of k has also a similar effects
on both algorithms.

However, in MR-TSA since the map workers need to
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Fig. 7 Varying dimensionality.

Fig. 8 Varying cardinality.

Fig. 6 Varying number of machines.

compute local skyline first and then local skyline objects of
map workers are sent to the one reduce worker to compute
k-dominant skyline. It generally take more execution over-
head than MR-DSKY. This is because MR-DSKY do not
need skyline computation for k-dominant candidate genera-
tion. In addition during the skyline computation procedure if
the number of pruned objects decreases then the MR-TSA
become inefficient. In MR-TSA huge number of pruned
skyline objects are sent to the single reducer, as a result, it
becomes inefficient due to high network costs. Decreasing
value of k has also similar effect because it can not skip sky-
line computation.

5.1 Effect of Scalability

Figure 6 presents the runtime of the both algorithms by vary-
ing the number of machines. Our proposed algorithm MR-
DSKY shows the best scalability since MR-DSKY effec-
tively prunes data by partitioning with the OB-Tree and uti-
lize pivot objects to prune unnecessary objects. As a result,
MR-DSKY succeeded to avoid many unnecessary compar-
isons and had less computational overhead rather than MR-

TSA.

5.2 Effect of Dimensionality

We study the effect of dimensionality on our MapReduce
techniques. We fix the data cardinality to 1M, vary dimen-
sion m from 2 to 10, and for each case set k to (m-1). The
runtime results for this experiment are shown in Fig. 7 (a),
(b), and (c). The result shows that as the k increases the
performance of MR-TSA become slower. It is interesting
to note that there exist significant performance difference
between both methods. However, MR-DSKY always out-
perform than MR-TSA.

5.3 Effect of Cardinality

For this experiment, we fix the data domensionality m to
10, k to 8, and vary dataset cardinality ranges from 100K
to 10M. Figure 8 (a), (b), and (c) shows the performance on
three data distributions. Both of the techniques are highly
affected by data cardinality. If the data cardinality increases
then the performances decreases. It shows that the perfor-
mance of MR-DSKY is two times faster than MR-TSA.

6. Conclusion

This paper addresses a distributed computation of k-
dominant skyline query in MapReduce environment. Pro-
posed k-dominant skyline computation algorithm utilizes an
object-based bound tree (OB-Tree) to split data space for
parallel computation. It has been seen that by construct-
ing OB-Tree, we can easily distribute necessary workload
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among the map workers and compute the k-dominant sky-
line query result efficiently. Using synthetic datasets, we
demonstrate the scalability of proposed method. Intensive
experiments show the effectiveness and superiority against
conventional methods.

It is worthy of being mentioned that this work can be
expanded in a number of directions. First, from the per-
spective of parallel computing, how to compute k-dominant
skyline from streaming dataset. Secondly, to design more
efficient index based such as R-tree or B-tree based MapRe-
duce algorithm are promising research topics.

Acknowledgments

This work is supported by KAKENHI (23500180,
25.03040) Japan.

References
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