
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014
2955

LETTER

Axis Communication Method for Algebraic Multigrid Solver

Akihiro FUJII†a), Member and Osni MARQUES††, Nonmember

SUMMARY Communication costs have become a performance bot-
tleneck in many applications, and are a big issue for high performance
computing on massively parallel machines. This paper proposes a halo
exchange method for unstructured sparse matrix vector products within
the algebraic multigrid method, and evaluate it on a supercomputer with
mesh/torus networks. In our numerical tests with a Poisson problem, the
proposed method accelerates the linear solver more than 14 times with
23040 cores.
key words: strong scaling, liner solver, Algebraic multigrid method

1. Introduction and Background

This paper reports the effectiveness of algebraic multi-grid
(AMG) method [1], [2], which uses “axis communication”
on a Supercomputer with mesh/torus network.

AMG is one of the most efficient linear solvers for
many applications. Its calculation complexity is O(n), where
n is the number of unknowns. If n is very large, the problem
is usually very time consuming to solve directly, so AMG
creates coarser levels with smaller matrix equations that re-
semble the original problem matrix equation. This phase
is called setup. Then, the iterative phase solves the prob-
lem using the multi-level structure. This implies matrices at
each level and between levels; coarser level matrices tend
to become denser and more unstructured than the matrix on
the finer level. When a massively parallel machine is used,
the coarser level matrices are distributed to each node, and
the communication cost often becomes a performance bot-
tleneck.

Sparse matrix vector products with each level and inter-
level matrices form the majority of the AMG algorithm.
Sparse matrix vector products are often based on one dimen-
sional block row distribution; our AMG routines also use
this distribution for all matrices. Peer to peer direct com-
munication is usually used for halo exchange. This paper
proposes a new communication method for AMG that im-
proves its scaling performance and effectiveness.

Peer to peer communication costs can be modeled as a
sum of latency and messagesize/bandwidth times. Sparse
matrix vector product has relatively a small halo in many
cases but all processes must exchange their halo at the same

Manuscript received March 20, 2014.
Manuscript revised June 10, 2014.
†The author is with Kogakuin University, Tokyo, 163–8677

Japan.
††The author is with Lawrence Berkeley National Laboratory,

Berkeley CA 94720, US.
a) E-mail: fujii@cc.kogakuin.ac.jp

DOI: 10.1587/transinf.2014EDL8052

time. Therefore, latency tends to become more important
than message size or bandwidth. In particular, when one
process is connected to many processes via its halo, it must
receive small messages from many processes. In this case,
the latency cost seems to worsen the halo communication
performance severely. In addition, if the network is con-
gested, the effect of message collision cannot be ignored.
Therefore, we propose axis communication for the AMG
method in order to reduce latency and message collision ef-
fects.

Axis communication assumes a 3D topology of pro-
cesses. It aggregates messages sent from neighboring ranks
and then transfers them along each axis in order. Although
it uses multiple peer to peer communication sessions to en-
sure that a message arrives at its destination, it reduces the
number of messages on the network. It can limit the number
of messages a process receives from other processes at the
same time, regardless of halo structure. That limit number
becomes the number of nodes on the same axis.

Since the AMG solver has halo communications at all
levels and between levels with sparse matrix vector product,
the halo structures differ from one another. Therefore, we
propose to incorporate axis communication into AMG so
that it can switch the communication routines.

This contribution is organized as follows. Section 2
describes axis communication, and Sect. 3 explains how to
incorporate axis communication to AMG solver. Section 4
evaluate the AMG solver with axis communication then
conclusions are summarized in Sect. 5.

2. Axis Communication

This section describes the axis communication, which is
a method to exchange halo data among processes. This
method sends and receives messages along each axis in
order, based on the process topology defined by the user.
This process topology is not necessarily the same as the one
the computing environment offers. The fastest topology for
axis communication may be different from the one the envi-
ronment specifies because each process may have different
amount of communication data. Some processes may have
no data to send and receive. Here, a process topology for
axis communication is explained at first, then communica-
tion procedure is described.

This paper considers a process topology for axis com-
munication as 3-D torus. The user can specify the number
of processes a node has and the number of nodes in each

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



2956
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

X,Y,Z-direction. Therefore, the topology is specified by 4
numbers as C, X,Y,Z. For example, the topology specified
by C = 2, X = 2,Y = 3,Z = 4 means 48 processes con-
nected 3-D torus with 2 nodes in X direction, 3 nodes in
Y, 4 nodes in Z, and each node has 2 processes. Process
ranks are assumed to be sequential in the same node; the
ranks increase in the order of X, Y Z-direction. Therefore,
X,Y,Z-coordinates in the topology can be determined from
the process rank r as (r/C)%X, (r/C)/X%Y, (r/C)/(X ∗ Y),
respectively.

The communication steps are listed as follows.

1. Each node determines one process that communicates
messages between nodes, and that process collects all
sent messages from the node.

2. The collected messages are sorted and aggregated by
its destination process rank’s X-coordinate.

3. Sorted and aggregated messages of each node are ex-
changed only in X-direction.

4. Received messages are sorted and exchanged in Y-
direction in the same way as step 2, 3

5. Received messages are sorted and exchanged in Z-
direction the same way as step 2, 3

6. Received messages are distributed to destination pro-
cesses in the node.

In our implementation, the process with the lowest rank in
the node manages communication between nodes.

By recording the message sizes, destination process
ranks and message buffer shuffling patterns beforehand, the
0 sized messages can be omitted and all operations come to
buffer copying and send receive communications.

This communication method contains multi-step pro-
cedure and it may cause more delay than usual peer to peer
direct communication, but it can prevent that many pro-
cesses send messages to one process at the same time, which
cause serious performance degradation. In addition, the
messages are aggregated, so the network is less congested.

3. AMG Solver with Axis Communication

Axis communication is a method for exchange of halo data.
The parallel AMG solver possesses halo information for
each level’s problem matrix and for inter level operations.
After each level is created in the setup phase, the solver
tests the performance of the communication methods among
usual peer to peer communication and axis communica-
tion with various process topologies. Given a set of topol-
ogy combinations (e.g. as in Table 1, third column), the
fastest communication pattern is determined for each halo
exchange and it is used until the end of iterative phase. This
corresponds to an autotuning feature of the library.

For example, if the AMG solver has 3 levels, then 3
communication tables for halo exchanges are created for
all levels, and 2 communication tables for inter-level opera-
tion. For each communication table, all process topologies
(C,X,Y,Z) are checked, and the best topology for axis com-
munication is set. This means that the communication rou-

Table 1 Nodes, cores, and topology setting.

Cores Topology of nodes Topology for axis comm.
X×Y×Z (C,X,Y,Z)

32 2 × 1 × 1 (16,2,1,1) (4,8,1,1) (2,16,1,1) (4,4,2,1)
128 2 × 2 × 2 (16,2,2,2) (4,8,2,2) (2,16,2,2) (1,32,4,1)
192 2 × 3 × 2 (16,2,3,2) (4,8,3,2) (4,8,6,1) (1,32,6,1)

1536 4 × 6 × 4 (16,4,6,4) (4,16,6,4) (8,8,24,1)
(4,16,24,1)(1,64,24,1)

3072 4 × 6 × 8 (16,4,6,8) (4,16,6,8)
(1,16,12,16) (1,64,48,1)

tine setting may become different for each communication
table.

4. Numerical Test and Evaluation

4.1 Test Problem Setting

This paper compares our AMG solver (AMGS) [3] with axis
communication, AMGS with usual peer to peer commu-
nication routine, and AMG-BICGSTAB solver of PETSc-
gamg (version 3.4.3) [4]. PETSc is a widely used library,
and this paper uses its performance as a baseline. AMGS
employs a smoothed aggregation based algebraic multigrid
method [1]. PETSc-gamg parameters are set as default. Al-
though one might be able to get a better performance with
a clever choice of those parameters, the default gives us a
baseline for comparison. For consistency, the parameters
for AMGS are the same in all test cases.

The problems are two 3 dimensional Poisson equation.
The first one (referred to as 1st problem) is a straightforward
isotropic Poisson equation and the second one (referred to as
2nd problem) is a ground water flow problem through het-
erogeneous porous media. This problem leads to a Poisson
equation with varying heterogeneous diffusion coefficients
from 10−5 to 105.

The problem equations are input to the solvers as a
sparse matrix equation, and AMG computes the coarser lev-
els. Therefore, the coarser level matrices and inter level ma-
trices become unstructured. The problem domain is cubic
with 200 × 200 × 200 vertexes. The problem matrix is dis-
tributed to each process using ParMETIS [5].

In order to consider the scenario where communica-
tion cost is increasingly higher, this test is done with flat
MPI with a fixed problem size and increasing number of
processes (strong scaling).

The machine used in our experiments is a Fujitsu FX10
Supercomputer System at the University of Tokyo [6]. Each
node has a SPARC64 IXfx processor with 16 cores. It al-
lows a user to specify 3-D torus process topology. We spec-
ified 3-D topologies of 16-core nodes and topologies for
axis communication as shown in Table 1. Topologies for
axis communication (C,X,Y,Z) can have arbitrary values, if
C*X*Y*Z=number of processes. Here, we pick up 3 to 5
topologies like the topology of nodes the system manages.



LETTER
2957

Fig. 1 Total time for 1st Poisson problem.

Fig. 2 Total time for 2nd Poisson problem.

4.2 Test Results

Figure 1, 2 show the performance result for AMGS with
axis communication, AMGS without axis communication,
and PETSc-gamg solver. The times do not include the dis-
tribution of the matrix. Here, we pay attention to how the
total time increases with the parallelism.

PETSc and AMGS without axis communication solver
exhibit performance degradation as the number of processes
increases. On the other hand, performance degradation of
AMGS with axis communication is less than those of other
solvers. PETSc-gamg has a functionality which controls a
degree of parallelism by redistributing the coarser level ma-
trix. AMGS does not have such a functionality. This is
the reason why PETSc-gamg had better performance than
AMGS original version in Fig. 1. Table 2 shows the time
for the setup phase and iterative phase for each problem set-
ting. The setup phase has some overhead for checking vari-
ous axis communication topology. The iterative phase with
axis communication uses optimized communication routine
among usual peer to peer communication routine and topol-
ogy based communication routines. From this table, the per-
formance of iterative phase of AMGS is improved by 1.6
and 2.8 times for the 1st and 2nd problems in the case of
1536 cores.

Table 2 AMG solver time breakdown for each number of processes
setup phase time[sec]/ and iterative phase time[sec]. “AMGS w axis”
means AMGS with axis comm. and “AMGS w/o axis” means AMGS with-
out axis comm. Level num. and Iteration num. show the number of levels
and the iteration number of AMG-BiCGSTAB for convergence, respec-
tively.

Solvers 32 128 192 1536 3072

1st problem
AMGS w axis 6.2/22.8 1.8/6.0 1.3/3.9 1.9/2.8 2.6/3.4

AMGS w/o axis 6.1/23.0 1.7/5.9 1.2/3.9 1.7/4.7 2.2/18.5
Level num. 4 4 4 4 4

Iteration num. 11 10 9 11 12
2nd problem

AMGS w axis 8.2/20.1 2.3/6.5 1.7/4.1 2.8/1.1 4.5/1.1
AMGS w/o axis 8.1/20.0 2.2/6.9 1.6/4.4 2.5/3.1 4.0/4.2

Level num. 5 5 5 5 5
Iteration num. 17 19 17 19 20

Table 3 Max numbers of neighboring processes to one process for 1st
and 2nd problems. left and right numbers correspond to max number for
communication at all level or between levels, respectively.

32 128 192 1536 3072

1st 19/31 35/127 48/191 105/1533 136/3007
2nd 31/31 112/127 121/190 299/1038 364/1485

Table 3 has max numbers of neighboring processes
from one process at all levels or between levels. They corre-
spond to communication tables for smoothers at each level
or ones for inter-level operations. From Table 3, the number
of neighboring processes from one process becomes as large
as 3007 for inter-level operation for 1st problem. It causes
the performance degradation in the case of 3072 cores for
1st problem.

Our solver calculates the solution at the coarsest level
by one process. Therefore the solution vector must be gath-
ered to one process at the coarsest level. Thus, the number
of neighboring processes becomes very large for inter-level
operations, especially when problem matrix is distributed to
many processes. From Table 2, the number of levels for 1st
problem is less than that for 2nd problem. This leads to more
distributed matrices at the second coarsest level for 1st prob-
lem than for 2nd problem. Thus max number of neighboring
processes between levels for 1st problem is larger than that
of 2nd problem. And the performance degradation for 1st
problem becomes very large.

There are 2 approaches to deal with this increasing
neighboring communication. First one is to redistribute the
matrices for coarser levels in order to reduce the neighboring
messages. However, this case needs an overhead to redis-
tribute the matrices. Second one is to prepare communica-
tion routines like collective communication, which can deal
with many neighboring communication efficiently. This pa-
per took second approach and proposed axis communication
method. It turned out to improve the performance very well
from Fig. 1 and Fig. 2.

Next we consider the effectiveness of axis communi-
cation. Table 2 includes ten tests from 32 cores to 3072
cores for 2 problem cases, which contains 74 different halo



2958
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

Fig. 3 Axis comm. improvement rate.

Fig. 4 Total time for 2nd Poisson problem with size of 300x300x300.

communications. In order to compare ordinary peer to peer
communication routine and axis communication routine, we
measure the communication time using MPI Barrier in the
test code. Figure 3 shows the improvement rates (ordinary
peer to peer communication time/axis communication time)
plotted on the max number of neighboring processes from
one process in the halo communication. Here, the axis
communication time corresponds to the fastest one among
various topologies for axis communication. If the ratio is
higher than 1.0, axis communication is faster than ordi-
nary communication. From this figure, when max neighbor-
ing processes are more than 44, axis communication is al-
ways faster than ordinary communication. For the test cases
where both numbers in Table 3 are more than 100, axis com-
munication clearly shortens the time of iterative phase.

In the end, we tested 2nd Poisson problem with the do-
main size of 300× 300× 300 using up to 23040 cores (1440
nodes) to evaluate AMGS with the axis communication for
a problem with larger domain size on more and more cores.
The solver was executed by flat MPI model in the same way
as Fig. 1 and Fig. 2. Figure 4 shows the result. In this fig-
ure, AMGS with axis comm. is always fastest among the
three solvers. Axis communication turns out to improve the
strong scaling performance very much.

5. Conclusion and Future Work

AMG usually creates coarser levels that are more unstruc-

tured than finer levels, and halo communication of the
coarser level and inter-level operation becomes more com-
plex than that of the finer level. Especially for strong scaling
test, the communication costs become bigger, resulting in an
overall performance degradation as the number of cores in-
creases.

This paper described an axis communication method
and incorporated it into an AMG library that can switch
the communication strategy between ordinary routine and
axis communication routine. Axis communication can limit
the number of neighboring processes in halo communica-
tion. Therefore, it is effective especially when there are
many neighboring processes from one process with small
sized messages in the communication. In addition, ordinary
peer to peer communication is also checked to minimize the
communication time, and this implementation method will
reduce the communication time with any sized problems.
In numerical tests, this technique shortened the communica-
tion time and improved the strong scaling performance. In
the test with 23040 cores, the total time is accelerated by up
to 14 times.

In our experiments, axis communication works more
effectively than ordinary peer to peer communication for
halo exchange with more than 44 neighboring processes
from one process. This paper investigated axis communica-
tion effectiveness on a supercomputer with mesh/torus net-
work. In the near future, we plan to study its effectiveness
on a systems with other types of network.

Acknowledgements

This research was supported by JST, CREST.

References

[1] P. Vank, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems,” Comput-
ing, vol.56, no.3, pp.179–196, 1996.

[2] A. Baker, R. Falgout, T. Kolev, and U. Yang, “Scaling hypre’s multi-
grid solvers to 100,000 cores,” in High-Performance Scientific Com-
puting, ed. M.W. Berry, K.A. Gallivan, E. Gallopoulos, A. Grama, B.
Philippe, Y. Saad, and F. Saied, pp.261–279, Springer London, 2012.

[3] A. Fujii, A. Nishida, and Y. Oyanagi, “Evaluation of parallel ag-
gregate creation orders: Smoothed aggregation algebraic multigrid
method,” in High Performance Computational Science and Engineer-
ing, ed. M. Ng, A. Doncescu, L. Yang, and T. Leng, IFIP — The Inter-
national Federation for Information Processing, vol.172, pp.99–122,
Springer US, 2005.

[4] S. Balay, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Ei-
jkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K.
Rupp, B.F. Smith, and H. Zhang, “PETSc users manual,” Tech. Rep.
ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[5] G. Karypis and V. Kumar, “MeTis: Unstructured graph partitioning
and sparse matrix ordering system, Version 4.0,”
http://www.cs.umn.edu/˜metis, 2009.

[6] Information Technology Center, The University of Tokyo.


