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LETTER

High-Order Bi-orthogonal Fourier Transform and Its Applications
in Non-stability Signal Analysis

Hong WANG†a), Nonmember, Yue-hua LI†b), Member, and Ben-qing WANG†, Nonmember

SUMMARY This paper presents a novel signal analysis algorithm,
named High-order Bi-orthogonal Fourier Transform (HBFT), which can be
seen as an expansion of Fourier transform. The HBFT formula and discrete
HBFT formula are derived, some of their main characteristics are briefly
discusses. This paper also uses HBFT to analyze the multi-LFM signals,
obtain the modulate rate parameters, analyze the high dynamic signals, and
obtain the accelerated and varying accelerated motion parameters. The re-
sult proves that HBFT is suitable for analysis of the non-stability signals
with high-order components.
key words: high-order bi-orthogonal Fourier transform, Bi-orthogonal
base, non-stability signal, multi-LFM signal, high dynamic signals

1. Introduction

Fourier analysis is suitable for analyzing certainty or sta-
tionary signals, and it plays an important role in the fields
of signal processing, image processing, and microwave and
antenna technology [1]. In practical applications, the signals
are always the non-stability signals whose frequency is vari-
able over time, such as linear frequency modulated (LFM)
signals or signals of high dynamic receivers. This kind of
signal is needed to analyze the second-order modulated rate
parameter, even the second and third-order accelerated and
varying accelerated motion parameters, Fourier analysis is
no longer the best tool. So varieties of derivative signal
analysis algorithms based on Fourier Transform have been
developed, such as short time Fourier transform (STFT) [2],
Gabor transform (GT) [3], [4], fractional Fourier Transform
(FRFT) [5] and the fractional Gabor transform [6]. They
all improve Fourier transform in some aspects, for exam-
ple time-frequency characteristic, but they are not suitable
for high-order parameter analysis of non-stability signals.

High-order Bi-orthogonal Fourier Transform (HBFT)
presented in this paper can be seen as high-order expansion
of Fourier transform, since the first-order HBFT is the same
as Fourier Transform. The transform kernel of second-order
HBFT has the same form with modulated rate parameter of
LFM signal, so it’s good for analysis FM signals. And the
HBFT is also suitable for analysis the accelerated and vary-
ing accelerated motion parameter of high dynamic signals.
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2. High-order Bi-orthogonal Fourier Transform

There exist two function series {φk(t)|k ∈ Z} and {φ̃l(t)|l ∈ Z}
of L2[0,T ],

< φk, φ̃l >=

∫ T

0
φk, φ̃

∗
l dt = δ(k − l). (1)

{φk(t)} and {φ̃l(t)} compose normative bi-orthogonal basis
functions of L2[0,T ]. Let

φk(t) = exp(i2πk
tn

T n
)

φ̃l(t) =
ntn−1

T n
exp(i2πl

tn

T n
)

, (2)

where n ∈ Z+, n � +∞. Now it is possible to expand these
signal functions into a bi-orthogonal series.

Let f (t) be a continuous function of L2[0,T ], and then
it can be expressed using linear combination of above bi-
orthogonal basis function, namely

f (t) =
+∞∑

k=−∞
< f (t), φ̃k(t) > φk(t). (3)

So Eq. (3) can be written as follow

f (t) =
+∞∑

k=−∞
F(k)φk(t) =

+∞∑
k=−∞

F(k) exp(i2πk
tn

T n
)

F(k) =< f (t), φ̃k(t) >=
n

T n

∫ T

0
f (t)tn−1 exp(−i2πk

tn

T n
)dt

(4)

When T → +∞, it results

F(ωn) = n
∫ +∞

0
f (t)tn−1 exp(−iωntn)dt ≡ HBFTn[ f (t)]

f (t) =
1

2π

∫ +∞
−∞

F(ωn) exp(iωntn)dωn ≡ IHBFTn[F(ωn)]

(5)

Equation (5) is called nth-order bi-orthogonal Fourier
transform and its inverse transform. Variable ωn is nth-order
bi-orthogonal frequency and F(ωn) is called nth-order bi-
orthogonal frequency spectrum.

In practice, the signal after sampled is discrete, so dis-
crete HBFT is presented refers to discrete Fourier transform.
The sampling frequency is fs, sampling point number is
N, and then translating the variables into discrete values,
namely t = lΔt and ωn = kΔωn, signal time length T = NΔt
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Fig. 1 The third-order HBFT spectrum of rectangular pulse function.

and spectrum length Ωn = NΔωn are given by

Δt =
1
fs
, Δωn =

2π
T n
, Ωn =

2π
ΔtT n−1

=
2π

T n−1
fs. (6)

When a discrete signal is f (l) and discrete spectrum is
F(k), the discrete HBFT is

F(k) =
n

f n−1
s

N∑
l=0

f (l)ln−1 exp(−i
2π
Nn

kln)

f (l) =
1

Nn

N∑
k=0

F(k) exp(i
2π
Nn

kln)

. (7)

From Eq. (6), it can be seen that the frequency resolu-
tion Δωn is only related with the signal length T, while the
max nth-order frequency Ωn is not only dominated by the
time interval Δt (or sampling frequency fs), but also the sig-
nal length T .

A normalized rectangular pulse function is defined by

E(t) =

{
1 0 < t < T
0 t ≥ T

. (8)

Its nth-order HBFT is

HBFTn[E(t)] =
i
ωn

[exp(−iωnT n) − 1]

= T nsinc(
ωnT n

2
) exp(−i

ωnT n

2
). (9)

Taking absolute value, the nth-order amplitude spectrum is

|HBFTn[E(t)]| = T nsinc(
ωnT n

2
). (10)

The nth-order amplitude spectrum of rectangular pulse func-
tion is shown as sinc function.

Setting n = 3, and the time length of rectangular pulse
is T =

3√
2π s for example. The third-order HBFT spectrums

are shown in Fig. 1.
By simulation, even higher order HBFT spectrums of

rectangular pulse function are similar to Fig. 1.
Let T → +∞, then the nth-order HBFT amplitude

spectrum of E(t) is

HBFTn[1] = lim
T→∞HBFT[E(t)] = 2πδ(ωn). (11)

For nth-order FM signal whose expression is

f (t) = A exp(iKtn). (12)

Where K is FM rate parameter and A is envelope, its nth-
order HBFT amplitude spectrum is

F(ωn) = HBFTn[A exp(iKtn)] = 2πAδ(ωn − K) (13)

3. HBFT of Non-stability Signal

Like other algorithms, HBFT can be applied for filtering, de-
noising, analysis and synthesis of signals. Moreover HBFT
has the unique feature that other algorithms do not have,
such as FM rate estimation, and the accelerated and varying
accelerated motion parameters analysis, so it is particularly
suitable for analysis the non-stability signals [7], [8].

3.1 FM Rate Estimation of Multi-LFM Signal

An important application of HBFT is to use the second-
order discrete HBFT for detection and analysis different FM
rate multi-LFM signal. If a multi-LFM signal is defined as

fm(t) =
m∑

i=1

Ai exp(i( f0t + Kit
2), (14)

Where Ki is FM rate and Ai is corresponding normalized
amplitude. After down conversion, the fundamental fre-
quency component f0 is removed. Setting m=9,

K9 = {100, 120, 160, 450, 455, 560, 570, 840, 880}
A9 = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.6, 0.7, 0.8} ,

and sampling time length T0 =
√

2π s, the spectrum resolu-
tion Δω2 = 1 rad/s2, the sampling point number of signals
N0 = 1000, then Ω2 = 1000 rad/s2 and the sampling fre-
quency fs = 282Hz. The second-order discrete HBFT (2nd
HBFT) of signal is shown in Fig. 2 (a).

When the simulation conditions are replaced with T =
2T0 and N = N0, then Δω2 = 1/4 rad/s2 and Ω2 = 250
rad/s2, the 2nd HBFT is shown in Fig. 2 (b); when T = T0

and N = 2N0, that Δω2 = 1 rad/s2 and Ω2 = 2000 rad/s2,
the 2nd HBFT is shown in Fig. 2 (c); when T = 2T0 and
N = 2N0, that Δω2 = 1/4 rad/s2 and Ω2 = 500 rad/s2, 2nd
HBFT is shown in Fig. 2 (d).

From the Fig. 2, we can see there is no cross-term be-
tween the multi-LFM signals, and using HBFT provides bet-
ter performance estimating the FM rate. Figure 2 (b) and
Fig. 2 (d) show that when some FM rate components exceed
the maximum spectrum range, it does not affect the analysis
of the other components.

In fact, even if sampling frequency meets sampling law,
the discrete HBFT spectrum will still have noise because bi-
orthogonal basis function of HBFT does not fit cyclic con-
volution condition (except for first-order).

Nonlinear FM signals are common in nature, such
as bat sonar system and in artificial applications that use
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Fig. 2 The second-order discrete HBFT spectrums of 9 LFM signals.

second-order or the third-order FM signals for echo loca-
tion [8], [9]. Very good results can be achieved by using the
second-order or higher order HBFT to process these signals;
the basic idea is similar to LFM signal analysis.

3.2 HBFT of High Dynamic Signals

Another application of HBFT is high-order accelerated and
varying accelerated motion parameters analysis. The ac-
celerated motion always happens in high dynamic carriers,
such as aircraft and missile. The signal-to-noise ratio of the
receivers on carriers is always worse for the high order mod-
ulated components which come from varying accelerated
motion. For example missile-borne SAR, from the imaging
principle of SAR, the carrier should be uniform motion, but
the missile is always in accelerated motion, or even varying
accelerated motion. The motion leads to range migration of
missile borne SAR, and the imaging precision of some algo-
rithms decrease, even no image [9], [10]. So the high-order
accelerated and varying accelerated motion parameters anal-
ysis is demanded, which can be based on to de-noise or filter.

Suppose there is no noise outside, after demodulated,
the signal of high dynamic receiver is

s(t) = Aejθ(t). (15)

Where A is amplitude, and phase θ(t) is defined as integra-
tion of Doppler frequency fd(t)

θ(t) =
∫ t

0
2π fd(τ)dτ. (16)

Doppler frequency (suppose all the k-order varying
rates are existing) can be expressed as the Taylor series ex-
pansion, when the time is t0, as below

fd(t) =
∞∑

k=0

fk
(t − t0)k

k!
, where fk =

∂k fd(t)
∂tk

∣∣∣t=t0 . (17)

When t0 = 0,

θ(t) = θ0 + 2π

[
f0t +

f1
2

t2 +
f2
6

t3

]

= θ0 + ω0t +
ω1

2
t2 +
ω2

6
t3

. (18)

Where f0 is Doppler frequency (Hz), f1 is second order
varying rate (Hz/s), f2 is third order varying rate (Hz/s2).
And ω0, ω1, ω2 are angular frequency, respectively related
to dynamic speed, acceleration, and varying acceleration of
receiver.

When the receiver is in high dynamic moving, nor-
malized the amplitude to 1 and omitted the constant
term, the instantaneous angular frequency [ω0, ω1, ω2] =
[500, 200, 60]. The duration of the signal T0 =

√
2π, spec-

trum resolution Δω2 = 1 rad/s2, sample point N0 = 1000.
The first order, second order and third order HBFT are
shown in Fig. 3 (a), (b), (c).

We can see from Fig. 3, for the change of acceleration



192
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

Fig. 3 HBFT of high dynamic signal.

and varying acceleration are great, this not only lead to the
expansion of spectrum, but also emerge the high-order noise
modulation, as shown in Fig. 3 (a). The second order accel-
eration spectrum also emerge the high-order noise modula-

tion, for the third order varying acceleration term, as shown
in Fig. 3 (b). The third order varying acceleration parame-
ters is shown in Fig. 3 (c).

After using HBFT, the high-order parameters of the
signal are obtained, and can be filtered or de-noised accord-
ing to requirement.

4. Conclusions

This paper introduces HBFT, discusses some major charac-
teristics of this new algorithm and applies HBFT to analyze
the non-stability signals. The results indicate that HBFT is
good at analyzing the high-order parameters of some FM
signals and high dynamic signals. In the above discussion,
the order n has been restrained to positive integer, when in
fact the values of n could be extended to rational domain,
leading to rational order bi-orthogonal Fourier transform.
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