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Foreground Segmentation via Dynamic Programming

Bing LUO†a), Chao HUANG†, Lei MA†, Wei LI†, Nonmembers, and Qingbo WU†, Student Member

SUMMARY This paper proposes a novel method to segment the object
of a specific class based on a rough detection window (such as Deformable
Part Model (DPM) in this paper), which is robust to the positions of the
bounding boxes. In our method, the DPM is first used to generate the root
and part windows of the object. Then a set of object part candidates are
generated by randomly sampling windows around the root window. Fur-
thermore, an undirected graph (the minimum spanning tree) is constructed
to describe the spatial relationships between the part windows. Finally,
the object is segmented by grouping the part proposals on the undirected
graph, which is formulated as an energy function minimization problem. A
novel energy function consisting of the data term and the smoothness term
is designed to characterize the combination of the part proposals, which is
globally minimized by the dynamic programming on a tree. Our experi-
mental results on challenging dataset demonstrate the effectiveness of the
proposed method.
key words: object segmentation, undirected graph, dynamic programming

1. Introduction

Foreground segmentation is challenging since the fore-
ground prior is usually lacked in the segmentation process.
In the last decade, various object prior discovery methods
have been used to achieve the foreground extraction, which
can be roughly classified into two classes, i.e., unsupervised
foreground segmentation [1]–[4] and supervised foreground
segmentation [5]–[10]. While the former focuses on jointly
discovering the foreground prior from the multiple images
automatically, the later requires the pixel-level labels for the
training set. Bounding box based segmentation method [6]
is an important supervised method, which is usually used
as the successor process of the object detection task. In the
last decade, the bounding box based segmentation has been
paid much attention, and several bounding box foreground
segmentation methods have been proposed, such as Grab-
Cut [6] and bounding box prior [11]. However, the success-
ful object segmentation of these existing bounding box seg-
mentation methods is usually based on the assumption that
the bounding box has covered the object region well enough.
In other words, when the bounding boxes do not cover the
object region accurately enough, such as the usual outputs of
the object detection methods that only partially contain the
object regions, these methods will lead to unsuccessful ob-
ject segmentation, which is usually happened in the practice
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Fig. 1 The explanation of segmentation from the complex background.

Fig. 2 The flowchart of the proposed method.

foreground extraction after the object detection process.
In this paper, we propose a novel method to accurately

segment the foreground object from the rough bounding
boxes obtained by the Deformable Part Model (DPM) ob-
ject detection method [12]. Our method is motivated by the
observation that the object or its local parts can be well seg-
mented by moving and scaling the rectangle around the ob-
ject via GrabCut. Thus, the accurate object extraction can
be achieved by segmenting and combining these local seg-
ments using their similarities and the spatial relationships.
The proposed method consists of four steps. In the first
step, we detect the objects by DPM and obtain two types
of windows, i.e., a root window and a set of part windows.
To handle complex background, we randomly sample a set
of boxes around the root window by varying the window’s
size and positions, and perform the GrabCut on the sam-
pling boxes to obtain a large number of local part segment
proposals, as shown in Fig. 1. In the second step, we con-
struct a minimum spanning tree (MST) to describe the spa-
tial relationships of the object local parts by the part win-
dows. The foreground extraction is then formulated as se-
lecting and combing a subset of segment proposals that best
fit the local similarities and spatial relationships of the tree.
Thirdly, based on the MST, an objective function consist-
ing of unary term and smoothness term is defined to model
the proposals selection. Finally, we use the dynamic pro-
gramming method to minimize the objective function on
the tree structure to achieve the foreground extraction. The
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flowchart of the proposed method is illustrated in Fig. 2.
Our contributions include: (1) we propose a novel

method to segment the foreground object from the rough
bounding boxes obtained by DPM, which is robust to the po-
sitions of the bounding boxes. (2) Foreground segmentation
is constructed by a minimum spanning tree structure which
is minimized by dynamic programming techniques. (3) The
segmentation quality evaluation is introduced to segment the
foreground objects.

2. Proposed Method

2.1 Object Proposal Generation

Given an image I, we perform DPM [12] on the image and
obtain a root detection window with a set of part detection
windows. We denote them as W = (w0, w1, w2, . . . , wK),
where w0 is the root window, wi, 1 ≤ i ≤ K are the ith
part window, and K is the number of the part windows. To
handle the shape variations of the object and complex back-
ground, we randomly select N object windows around the
center of the root window w0 by varying its size and the
central position. In the sampling, the centers of the sam-
ple windows are set to be uniformly distributed around the
root window. Furthermore, the sizes of the windows (the
width and the hight) are uniformly sampled, i.e., W = αWr,
H = αHr and α ∼ U( 1

4 ,
1
2 ), where Wr and Hr are the width

and hight of the root window, respectively. Based on the
sampling windows, we use the GrabCut to obtain a set of
segment proposals which is denoted as U = {ui, 1 ≤ i ≤ N}.

2.2 Graph Construction

Based on the assumption that the local parts of the object are
contained in the segment proposals U, the object segmenta-
tion can be formulated as properly selecting and combining
the right segment proposals in U that best fit the shape struc-
ture of the object part regions.

To obtain the object shape structure, we construct graph
G = (V, E) to represent the spatial relationships between
the object parts, where V and E are the node set and edge
set respectively. In the graph generation, we first gener-
ate the nodes of the graph based on the given part win-
dows, i.e., V = {v1, . . . , vK} and vi represents wi. Then, the
edges e = (vi, v j) between each node pair (vi, v j) are added
to describe the relationship between the local window pair
(wi, w j). Each edge e = (vi, v j) is assigned a weight ωi j to
represent the relationship. We set ωi j = ‖zi − z j‖ as the spa-
tial distance between the windows (wi, w j), where zi and z j

are center position of wi and w j, respectively. It is seen that
the constructed graph is fully connected.

Based on G, we next search the MST Q on the graph
to clearly describe the structure model of the object parts, as
shown in Fig. 3. The advantage of the minimum spanning
tree structure is that there are no cycles so that it is able to
benefit and simplify the selection information propagation.
Based on Q, the segmentation problem changes to search the

Fig. 3 The graph construction. The left: the original image. The center:
the detection results by DPM. The right: the MST constructed by the spatial
relationships of the part windows.

object proposal xi for each node vi that not only xi fulfill vi,
but also the proposal pairs (xi, x j) satisfies the relationships
between (vi, v j). Here, we propose a new energy minimiza-
tion model to obtain X = {x1, . . . , xK}. We next detail the
energy function generation and minimization.

2.3 The Energy Function

We model the selection X = {x1, . . . , xK} as

E(x1, . . . , xK) =
∑

vi∈V
Di(xi) +

∑

(vi,v j)∈E
Vi, j(xi, x j) (1)

where D and V are the unary term and pairwise term, re-
spectively. K is the number of local parts in the tree.

2.3.1 The Unary Potential D

The unary potential is used to describe the fitness between
the proposal uxi and the corresponding local part wi. We
consider four terms to define D, i.e.,

Di(xi) = Esal(xi) + Ecurv(xi) + Etp(xi) + Epos(xi) (2)

The details of the terms are described as follows.

(1) The Saliency Term Esal

As we know, the target objects are usually the salient object.
The proposal covering the salient regions tends to be the
local part of the object. Let A be the image saliency map.
We calculate saliency value S i of the proposal uxi by [3]:

S i =

∑
p∈uxi

A(p)

mi
· m

′
i

M′ (3)

where mi is the number of non-zero pixels in uxi . M
′

is the
number of the salient pixels in the image, and m

′
i is the num-

ber of the salient pixels in the proposals uxi . We consider the
pixel as the saliency pixel when its saliency value is larger

than threshold Ts = 0.3.
m
′
i

M′ is introduced to avoid the small
regions with large mean saliency value. Based on S i, we
define the saliency term as:

Esal(xi) = 1 − normalized(S i) (4)

where normalized(·) is the normalized function.
In our method, the saliency map A is efficiently calcu-

lated by overlapping the segmentation mask of the proposals
U. Let A(p) denote the image saliency value at pixel p, the
saliency map is obtained by:
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A(p) =
1
Nz

N∑

l=1

δ(ul(p)) (5)

where Nz is a normalized constant, N is the number of pro-
posals.

(2) The Boundary Curvature Term Ecurv

It is observed that good segments usually have smooth
boundaries. On the contrary, a rough boundary corresponds
to bad segments. Motivated by such observation, we use
boundary smoothness to select the right potentials. The
boundary smoothness is represented by the boundary cur-
vature Ecurv, which is defined as [13], [14]:

Ecurv(xi) = curv(uxi ) =
∑

k

det(u
′′
xi

(pk))

(1 + (u′xi
(pk))2)

3
2

(6)

where u
′′
xi

(pk) and u
′
xi

(pk) are the Hessian matrix and the
first-order derivation at pixel pk of proposal uxi , respectively.

(3) The Boundary Turning Points Term Etp

By observing the boundary of the segment proposal uxi , it
is concluded that the boundary of a bad segment usually
has many turning points. Motivated by [15], we introduce
boundary turning points term depicted as:

Etp(xi) =

∑
k δ((uxi ∗ φ)(pk) < ηxi )

|C| (7)

where φ is the low-pass filter, and (uxi ∗φ)(pk) is the response
of the low-pass filter on pixel pk. ηxi is the threshold, C is
the set of boundary pixels pk.

(4) The Position Term Epos

We intend to select the proposals near the corresponding lo-
cal part window. The position term Epos is introduced for
the near proposal selection, which is defined as the spatial
distance between the centers of xi and part window wi, i.e.,

Epos(xi) = d(zuxi
, zwi ) (8)

where zuxi
and zwi are the center position of uxi and wi, re-

spectively. d(·) is the normalized Euclidean distance.

2.3.2 The Smoothness Potential V

The smoothness potential V is used to punish the two pro-
posals that do not satisfy the spatial relationships. We define
this evaluation by two terms represented as

Vi, j(xi, x j) = Ecol(xi, x j) + Ecurv(xi, x j) (9)

where Ecol and Ecurv are color similarity term and co-
occurrence curvature term respectively.

2.3.3 The Color Similarity Ecol(xi, x j)

When the proposals are similar, they are more likely to be
combined to the same object. Otherwise, the combination

should be punished. We define Ecol(xi, x j) as:

Ecol(xi, x j) = 1 − exp(−χ2(hxi , hxj )) (10)

χ2(hxi , hxj ) =
1
2

Nd∑

b=1

(hxi (b) − hxj (b))2

hxi (b) + hxj (b)
(11)

where hxi is the color histogram of proposal uxi selected by
node vi, Nd is the dimension length of the color histogram.

2.3.4 The Co-occurrence Curvature Term

The co-occurrence curvature term is based on the obser-
vation that a good combination of the segments leads to a
smooth boundary. We tend to select the proposal pairs that
makes the boundary of their combinational region smooth,
which is denoted as:

Ecurv(xi, x j) = curv(uxi

⋂
uxj ) (12)

2.4 Optimization by Dynamic Programming on a Tree

We next minimize the energy in Eq. (1). Inspired by the
method in [16], the energy function is minimized by the dy-
namic programming technique on the MST structure. We
first randomly select root node from MST structure since
the minimization is robust to the random root selection. We
denote the root vertex as vr. For each node vi except the
leave nodes, the cost of assigning best label x∗i consists of
the cost of its children with the cost of assigning label xi to
the node, which can be represented by a recursive equation:

Bi(xi) = Di(xi) +
∑

v j∈Ci

minxj∈X(Bj(x j) + Vi j(xi, x j)) (13)

where Bi(xi) is the value of storing the cost of the subtree
from the leaf nodes to current node, X is the label set, and Ci

denotes the children nodes of vi. For each leaf node without
children node, the cost can be depicted as Bi(xi) = Di(xi).
Then, the cost of the whole MST tree is represented as
Br(xr), where xr is the label of the root node vr.

Finally, we trace the recursive equation back to find the
global optimal solution:

x∗i = argminxi∈X(Bi(xi) + Vi j(xi, x j)) (14)

An minimization example is shown in Fig. 4, where we

Fig. 4 The process of the dynamic programming on a tree. (a) The
orginal MST. (b) The reshaped tree and the root node. (c) Calculating the
assigning cost on the leaves nodes. (d) Expanding the subtrees by adding
their parents recursively. (e) The final result by finishing the root node.
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first select a node as the root node randomly, as the red
node in Fig. 4 (a). Then, the original MST is reshaped to
a general abstract tree based on the root node, as shown in
Fig. 4 (b). Based on the general abstract tree, we next cal-
culate the cost of assigning the labels to the leaves nodes as
shown in Fig. 4 (c). Finally, the subtrees are expanded to the
parent node, and the root node is labeled to get the global
minimization as shown in Fig. 4 (d)-(e).

3. Experiment

In this section, classes car and person in Graz-02 dataset are
used to verify the proposed method. Similar to [4], [7], we
select the first 300 images, where 150 images are used as the
training data and the rest images are used for verification.

In the parameter setting, we quantize the color his-
togram into 12 bins, i.e., Nd = 12, and set the number of
the candidate object windows to N = 100. Moreover, in the
initial proposal generation, we discard the proposals whose
area is smaller than 1 percent of the window area.

We compare our method with the state-of-the-art al-
gorithms, including [4], [7]–[10] and DPM+GrabCut. Be-
cause the result of [7] is a soft segmentation mask, we select
the objective evaluation metric in [4], i.e., the F-measure
F = 2 × rec × pre/(rec + pre) calculated by the pixel-wise
precision and recall. Table 1 shows the comparison results
by the proposed method and the comparison methods.

From Table 1, we can see that the proposed method
achieves the result of 61.5% in terms of the F-measure
on car class, which outperforms the methods in [7], [8]
and DPM+GrabCut. Furthermore, the performance of the
proposed method is also better than the comparison meth-
ods [4], [7], [8], [10] and DPM+GrabCut on person. Mean-
while, the [9] has a best performance in the state of the
art. They proposed a pylon model by hierarchical segmen-

Table 1 The objective segmentation results in terms of F-measure (%).

method car person average
Marszalek & Schmid [7] 53.8 44.1 49.0

Fulkerson et al. [8] 54.7 51.4 53.1
Aldavert et al. [10] 62.9 58.6 60.8
Lempitsky et al. [9] 83.7 84.9 84.3

Kuettle et al. [4] 74.8 66.4 70.6
DPM+GrabCut 61.3 54.3 57.8

Our Method 61.5 69.7 65.6

Fig. 5 The example results of the two subsets in Graz-02 dataset. The
top row: the original images. The second and bottom rows: the results by
DPM+GrabCut and proposed method, respectively.

tation tree to get the semantic segmentation. Their methods
use the pixel-wise labels as the groundtruth for the train-
ing set, while our method only needs the bounding boxes of
the objects. In Fig. 5, we show some subjective results by
the proposed method (in the bottom row) compared with the
DPM+GrabCut method (in the second row). It is seen that
the proposed method obtains better performance.

4. Discussion

We also test our method on bike. The F-measure value is
43.0%, which is lower than the state-of-the-art methods.
The first reason is that curvature and tuning points in the
unary potential are not suitable for bike. Bicycle has fine
structures and the segmentation of its parts is rough and not
irregular, which results in a high potential. The second rea-
son is that the segmentation candidates have the similar fea-
tures with the background segments in the color space.

5. Conclusion

In this paper, we propose a full automatic and bounding
box based foreground segmentation method. The minimum
spanning tree is constructed to describe the spatial relation-
ships and the dynamic programming is used to minimize
the energy function. Without using the pixel-wise annota-
tion, the proposed method makes use of bounding boxes in
the training set for the target objects. Experimental results
demonstrate the effectiveness of the proposed method.
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