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Multi-Label Learning Using Mathematical Programming

Hyunki LIM†, Jaesung LEE†, Nonmembers, and Dae-Won KIM†a), Member

SUMMARY We propose a new multi-label feature selection method
that does not require the multi-label problem to be transformed into a
single-label problem. Using quadratic programming, the proposed multi-
label feature selection algorithm provides markedly better learning perfor-
mance than conventional methods.
key words: multi-label learning, feature selection, quadratic programming

1. Introudction

Multi-label learning, i.e., the task of assigning an object
to multiple categories simultaneously, has emerged as a
popular problem for text categorization, multiple music-
emotion recognition, and semantic scene annotation [1]–
[3]. In multi-label learning, the accuracy of the output
is strongly influenced by the input features. Hence there
is a strong need for feature selection techniques that en-
hance multi-label learning [3]–[5]. In practical terms, multi-
label feature selection methods must consider multiple la-
bels concurrently; that is, an objective function should be
able to evaluate the significance of a selected feature sub-
set from the viewpoint of multiple labels. Previous studies,
however, used a pre-processing method that transforms the
multi-label problem into a single-label multi-class problem
and then applied single-label feature selection methods [5].
Such problem transformation-based methods may cause in-
formation about the relationships among labels to be lost. In
addition, they do not capture the relationships among fea-
tures, but the relationships between a feature and a trans-
formed label [2], [3]. In this study, we propose a multi-label
feature selection method based on a novel objective function
that is formulated as a quadratic programming (QP) problem
using information theory. The experimental results show
that the proposed method provides significant benefits over
conventional problem transformation-based multi-label fea-
ture selection methods. To the best of our knowledge, this is
the first multi-label feature selection method based on math-
ematical programming.

2. Related Work

Many studies have proposed two-step algorithms for multi-
label feature selection. In general, the first step transforms
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the multi-label problem into a single-label problem, and the
second step determines the importance of each feature in
accordance with the transformed label set. These measures
evaluate the effectiveness of each feature and select high-
rank features. Trohidis et al. proposed a transform method
named Label Powerset (LP), and used the χ2 statistic (CHI)
as a scoring function for the retrieval of music information,
specifically the recognition of six emotions that are simulta-
neously evoked by music clips [3]. LP transforms a multi-
label to a single label by assigning each pattern’s label set to
a single class. Although LP directly considers label depen-
dency, it yields considerably many classes. As a result, there
are considerably few patterns assigned to each class. Chen
et al. proposed Entropy-based Label Assignment (ELA),
which also use CHI as a scoring function [8]. ELA assigns
weights to a multi-labeled pattern based on the label entropy.
It was argued that the learning algorithm could avoid over-
fitting, but ELA tends to lose information regarding the de-
pendency among labels. Read proposed a Pruned Problem
Transformation (PPT) that improved the LP [9]. In the train-
ing process, this method removes patterns with infrequent
labels according to a predefined threshold τ. However, the
accuracy of multi-label learning may be limited if an inap-
propriate value of τ is selected. Conventional methods usu-
ally apply the ReliefF (RF) algorithm [5] or CHI to feature
selection after transforming the multi-label to a single label.

Recently, Rodriguez-Lujan et al. proposed a Quadratic
Programming Feature Selection (QPFS) method [10]. QPFS
formulates a quadratic objective function for the single-label
feature selection problem. The goal of the objective func-
tion is to maximize the dependency between the features and
the label, and minimize the dependency among features to
avoid redundancy. While considering two objectives con-
currently, QPFS assigns a weight to each feature to satisfy
the objective function. Thus, QPFS is not a heuristic greedy
approach, but has a mathematical foundation and draws on
a wider perspective. However, this method considers only
single-label datasets. In this paper, we propose the first
quadratic programming feature selection method for multi-
label datasets. We formulate the relations among features
and labels as a quadratic objective function. As a result, a
QP solver naturally finds the weight of each feature by solv-
ing the given objective function.

3. Proposed Method

Our goal is to formulate an objective function that can be
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solved by a QP solver. To simultaneously consider (1) the
dependency among features, and (2) the dependency be-
tween features and labels, two concepts should be incor-
porated in one objective function. Moreover, the objective
function should consider the importance of features to per-
form multi-label feature selection.

Given N features, input F = { f1, . . . , fN} and the la-
bel set Y = {y1, . . . , yM}, multi-label feature selection aims
to find a feature subset S ⊂ F with n � N features. The
proposed method solves this problem by 1) finding an N-
dimensional vector x ∈ RN that contains suitable feature
weights; and 2) selecting the n features with the highest
weight values. Because the number of features being se-
lected is limited to n, similar features should not be included
in S concurrently. Thus, dependency among the selected
features in S should be minimized, whereas dependency be-
tween S and Y should be maximized. This concept can be
naturally represented in the QP objective function. Our goal
is to find a weight vector x that minimizes the given objec-
tive function f (x), written as

f (x) =
1
2

xT Qx − cT x (1)

subject to x1, . . . , xN ≥ 0.
Let the symmetric positive semidefinite matrix Q ∈

R
N×N represent the dependency among the features of F.

In this work, Q is computed using the total dependency of
F [6], written as

C(F) =
N∑

i=1

H( fi) − H(F) =
N∑

i=1

H( fi) − H( f1, . . . , fN)

=
∑

fi, f j∈F

I( fi, f j) −
∑

fi, f j, fk∈F

I( fi, f j, fk) + · · ·

+(−1)N I( f1, . . . , fN) for i � j � k (2)

where I(T ) =
∑

U⊆T (−1)|U |H(U) is the interaction informa-
tion of a feature subset T , and H(T ) = −∑t∈T P(t) log P(t)
is the joint entropy of T . Because the computational cost
of calculating C(F) increases exponentially with N, and N
is typically a large value in feature selection problems, this
is computationally prohibitive. To circumvent this, we re-
lax the computational cost of C(F) by taking the first-order
interaction information of F because Q is naturally able to
represent the dependency between pairs of features:

Qi j = I( fi, f j) (3)

where Qi j ∈ Q represents the dependency between fi and f j.
A non-negative vector c ∈ RN in (1) represents the de-

pendency between a feature fi and the multiple labels in the
set Y; This can be computed using mutual information:

I( fi; Y) = H( fi) + H(Y) − H( fi,Y) (4)

Because Y is a set of labels, the number of joint states in
Y increases exponentially according to the size of Y . There-
fore, the calculation of H(Y) becomes prohibitive when M
is a large value. Using total dependency, (4) can be rewritten

Algorithm 1 Procedures of proposed method
1: procedure Proposed method(F,Y, n)
2: initialize c using (7) and Q using (3) � Initialization
3: solve arg min f (x) of (1) using a QP solver � Obatin x
4: sort F according to weights x in descending order
5: S ← top n features in F � Obtain output feature subset S
6: end procedure

as

I( fi; Y) = H( fi) + H(Y) − H( fi,Y)

= H( fi) +

⎛⎜⎜⎜⎜⎜⎝
M∑

k=1

H(yi) −C(Y)

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝H( fi) +

M∑

k=1

H(yi) −C( fi,Y)

⎞⎟⎟⎟⎟⎟⎠

= C( fi,Y) −C(Y) (5)

As shown in (2), total dependency can be rewritten using the
interaction information over all possible subsets of the given
variables. Because C( fi,Y) and C(Y) share variable subsets,
except for new subsets brought about by fi, the interaction
information terms from Y only in C( fi,Y) are cancelled by
C(Y). Therefore, (5) can be rewritten as

C( fi,Y) −C(Y) =
∑

y j∈Y
I( fi, y j) −

∑

y j,yk∈Y
I( fi, y j, yk)

· · · + (−1)M+1I( fi, y1, . . . , yM) (6)

Similar to our formulation of Q in (3), we relax (6) by
taking the first-order interaction information between fi and
Y . As a result, c can be computed as

ci =
∑

y j∈Y
I( fi, y j) (7)

After minimizing (1) for the given Q and c, the ele-
ments of x represent the weight of each feature. Therefore,
the selected feature subset S can be obtained by including
the n features with the highest weight values xi. Algorithm 1
outlines the procedure of the proposed method.

4. Experimental Results

We compared the proposed method with three transforma-
tion-based multi-label feature selection methods [5]. LP +
RF, ELA + CHI, and PPT + CHI. For the proposed method,
we employed the active-set method as the QP solver. The
feature subsets selected by each multi-label feature selection
method were evaluated using a Multi-Label Naive Bayes
(MLNB) classifier [4]. Table 1 lists the datasets [7] used in
our experiments; these have been widely used for compara-
tive purposes in multi-label classification. The performance
was assessed using four evaluation measures: Hamming
loss, Ranking loss, Coverage, and Subset accuracy [1], [4].
Low values of the Hamming loss, Ranking loss, and Cov-
erage, and high values of Subset accuracy, indicate good
multi-label classification performance.
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Fig. 1 Performance comparison of the proposed method and conventional feature selection methods.

Table 1 Datasets used in the experiments.

Datasets Patterns Features Labels
Scene 2,407 294 6
Yeast 2,417 103 14
Birds 645 260 19

Genbase 662 1,185 27

Figure 1 shows the Hamming loss performance of each
method. In each figure, the horizontal axis represents the
size of the selected feature subset and the vertical axis repre-
sents the Hamming loss value of the selected feature subset.
In Fig. 1 (a), we can see that the proposed method outper-
forms ELA+CHI and PPT+CHI regardless of the feature
subset size. For the Scene dataset, the proposed method
achieves the best Hamming loss performance when the
number of input features is about 5. Figure 1 (b) shows the
Hamming loss performance for the Yeast dataset. In this fig-
ure, the Hamming loss performance of the four methods is
similar. The proposed method, ELA+CHI, and PPT+CHI
achieve optimal performance with a small number of input
features, unlike LP+RF. However, as the number of fea-
ture subsets increases, the Hamming loss performance of
ELA+CHI and PPT+CHI becomes much worse than that of

Table 2 Performance comparison for each method.

Measures Datasets Proposed LP+RF ELA+CHI PPT+CHI
Scene 0.171† 0.179 0.174 0.174

Hamming Yeast 0.223 0.226 0.223 0.223
loss Birds 0.051† 0.052 0.053 0.052

Genbase 0.003† 0.006 0.023 0.005
Scene 0.118† 0.159 0.175 0.163

Ranking Yeast 0.193 0.194 0.194 0.200
loss Birds 0.080 0.092 0.080 0.080

Genbase 0.007 0.006 0.044 0.006
Scene 1.676† 1.893 1.924 1.873

Coverage
Yeast 7.616† 7.701 7.666 7.720
Birds 2.813 3.159 2.813 2.813

Genbase 1.558 1.579 2.609 1.557
Scene 0.196 0.251† 0.100 0.121

Subset Yeast 0.136† 0.128 0.129 0.127
accuracy Birds 0.488 0.472 0.449 0.486

Genbase 0.929† 0.895 0.533 0.883
† indicates that the proposed method is statistically superior to the con-
ventional methods based on the paired t-test (0.05 significance level).

the proposed method. In Fig. 1 (c), it can clearly be seen that
the proposed method outperforms the other three methods
for all the numbers of input features. The proposed method
gives consistently low Hamming loss values as the size of
the selected feature subset increases, whereas the Hamming
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loss of the other three methods increases continuously. The
results of the Genbase dataset, shown in Fig. 1 (d), show
that the proposed method achieves optimal the best perfor-
mance with 30 input features. The other three methods can-
not match the Hamming loss performance obtained by the
proposed method.

Table 2 summarizes the performance of each multi-
label feature selection method for each dataset. The best
value obtained for each dataset is marked in bold. Al-
though conventional multi-label feature selection methods
sometimes give better performance for three of the eval-
uation measures, the experimental results indicate that the
proposed method gave the best performance in most exper-
iments. This was confirmed by a paired t-test (0.05 signifi-
cance level, denoted by “†” in the table).

5. Conclusion

We proposed a QP multi-label feature selection method
based on information theory. An effective feature subset
for multi-label learning was determined using the QP frame-
work without resorting to problem transformation methods.
To efficiently calculate the dependency of a dataset, we used
first-order interaction information. Our comprehensive ex-
periments demonstrated the improvement in classification
performance produced by the proposed method.

Future work will focus on decreasing the time com-
plexity of calculating the Q matrix. Initializing of Q for a
given objective function may consume significant computa-
tional resources if F is composed of many features. In this
case, a matrix approximation technique or parallel program-
ming can be used.
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