
444
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

LETTER

Reducing I/O Cost in OLAP Query Processing with MapReduce

Woo-Lam KANG†, Nonmember, Hyeon-Gyu KIM††a), Member, and Yoon-Joon LEE†, Nonmember

SUMMARY This paper presents a method to reduce I/O cost in Map-
Reduce when online analytical processing (OLAP) queries are used for data
analysis. The proposed method consists of two basic ideas. First, to reduce
network transmission cost, mappers are organized to receive only data nec-
essary to perform a map task, not an entire set of input data. Second, to
reduce storage consumption, only record IDs are stored for checkpointing,
not the raw records. Experiments conducted with TPC-H benchmark show
that the proposed method is about 40% faster than Hive, the well-known
data warehouse solution for MapReduce, while reducing the size of data
stored for checkpoining to about 80%.
key words: MapReduce, Hadoop, OLAP, data warehouse, TPC-H bench-
mark

1. Introduction

Nowadays, Google’s MapReduce (MR) has become a de
facto framework for analysis of big data, which can be char-
acterized by three properties, including volume, velocity
and variety [1]. For example, to analyze accumulated SNS
data, Facebook developed Hive [2] on top of Hadoop [3],
which is the most popular open-source implementation of
MapReduce. Walmart also used MapReduce to find users’
interests from a huge amount of social media feeds [4].

On the other hand, much research has addressed the ef-
ficiency issue of MapReduce due to frequent local and net-
work I/Os required for fine-grained fault-tolerance [5]. To
perform an MR job, an input file in the distributed file sys-
tem (DFS) is first partitioned into multiple data segments,
called input splits. A master node picks idle nodes and as-
signs each one a map or a reduce task. Then, the following
two steps are performed.

(1) Map phase: Each input split is transferred to a mapper.
Each mapper performs filtering or preprocessing input
records (key-value pairs). A mapper’s outputs are writ-
ten into its own local disk for checkpointing.

(2) Reduce phase: After mappers finish their jobs, reduc-
ers read the mappers’ outputs through the network, and
merges them according to their keys. For each key, an

Manuscript received July 14, 2014.
Manuscript revised September 30, 2014.
Manuscript publicized October 22, 2014.
†The authors are with the Department of Computer Science,

KAIST, 291 Daehak-ro, Yuseong-Gu, Daejeon 305–701, Republic
of Korea.
††The author is with the Department of Computer Engineering,

Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139–
742, Republic of Korea.

a) E-mail: hgkim@syu.ac.kr
DOI: 10.1587/transinf.2014EDL8143

aggregate result is produced.

As shown in the above, MapReduce performs frequent
checkpointing to increase fault-tolerance of long-time anal-
ysis, which may reduce efficiency significantly. Regarding
this, Pavlo et al. [6] showed that Hadoop is 2 to 50 times
slower than parallel database systems except in the case of
data loading. Anderson and Tucek [7] noted that Hadoop is
scalable but achieves very low efficiency per node, less than
5 MBytes per second processing rate.

This paper presents a method to improve performance
of job processing in MapReduce. More specifically, the pro-
posed method focuses on how to reduce I/O cost in MapRe-
duce when online analytical processing (OLAP) queries are
used for data analysis.

2. Proposed Method

The basic idea of the proposed method is to avoid transmis-
sion of unnecessary data as much as possible. For example,
consider a data set where the schema is (A, B, C, D): A is
a key, B is an attribute used for selection in mappers, and C
and D are attributes used for aggregation in reducers. Then,
attributes C and D are not transferred to mappers in the pro-
posed method, because those attributes are not used for the
map task. Currently in the MR framework, all input data is
transferred to mappers.

Note that, in this method, mappers’ outputs may not
have all information necessary to perform a reduce task.
This is because mappers do not receive a complete data set.
Due to this, reducers should read their inputs from the DFS,
not from mappers. At the same time, they must know which
records are selected from mappers. To notify reducers as to
the records selected, a list of record IDs is generated from
mappers and transmitted to reducers.

To support the method, SQL-to-MR translation is re-
quired. To translate an SQL query into a corresponding MR
program, attributes necessary for map and reduce phases
must be identified first from the query. For example, con-
sider a data set shown in Table 1, including logs of stock
exchanges. Suppose we want to get the sum of quantities
where the stock name is equal to “Samsung”; the sum needs
to be calculated for each buyer. This requirement can then
be specified as the following SQL query.

Q1. SELECT Buyer, SUM(Quantity)

FROM StockExchanges

WHERE Stock = "Samsung"

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

LETTER
445

Table 1 StockExchanges: a data set including logs of stock exchanges.

GROUP BY Buyer

The attributes for the map phase include (i) a key used
for aggregation and (ii) attributes used for record selection.
The aggregate key is necessary to generate the list of IDs for
the records selected from the map phase. In general, the key
becomes an attribute defined in the GROUP BY clause. This
is because aggregate results are typically calculated based
on the GROUP BY attribute values. On the other hand, se-
lection attributes can easily be identified from the WHERE
clause. In the example of Q1, Buyer and S tock will be iden-
tified as attributes necessary for the map phase.

The attributes necessary for the reduce phase include
those that need to be outputted as a final result. The output
attributes can be identified from the SELECT clause in the
query. For Q1, Buyer and Quantity are those attributes, so
they will used in the reduce function.

After the attributes are identified, an MR program can
be generated from the SQL query. The program consists
of two MR functions, including map() and reduce(). The
following shows map() generated from Q1. For simplicity,
a pseudo code is used for discussion.

Function Map(rowID, record)
Parse record into (Buyer, S tock)
If S tock = ”Samsung”

Output (Buyer, rowID)
End If

Map() has two input parameters: row ID and record.
The former is a logical ID denoting the position where the
record is stored in the DFS, while the latter is the record
data itself. The function is invoked for each record in run
time. When map() is executed, it first parses a given record,
and then checks whether the record should be transferred
to a reducer. For the record selection, the condition in the
WHERE clause is used.

When the selection condition is satisfied, a key-value
pair is outputted. As a key, the aggregate key (e.g., Buyer
for Q1) is outputted. As discussed above, when the GROUP
BY clause is defined with some attributes in a query, those
attributes become the (composite) aggregate key. If there
is no GROUP BY clause in the query, it can be viewed as

there is a single large group including all input records. In
this case, a constant key “null” is outputted as a key.

As a value of the key-value pair, the row ID is out-
putted in the proposed method. This is distinguished from
the original MR approach, where a whole record is outputted
as a value from map(). In MapReduce, each mapper’s out-
puts are stored in its own local disk for checkpointing. From
this, storage consumption can be reduced significantly in the
proposed method, because only record IDs are stored in the
method.

Based on the record IDs generated from mappers, re-
duce() can identify which records are selected from the map
phase. Reduce() is called whenever a distinct key with list
of values is outputted from map().

For example, assume that there is only one mapper and
all records are fed into it. Then, for each key, map() is in-
voked and a key-value pair is outputted. For the first record,
a key-value pair <“hkim76”, 1> is outputted because it sat-
isfies the selection condition, i.e., S tock = “Samsung”. On
the other hand, for the second record, there will be no out-
put. After map() is applied to all records, reduce() is then
invoked. It is called for each distinct key generated from
map(). For each key k, a list of values with key k is given as
an input parameter. In this example, for the selected records
with key “hkim76”, reduce() will be invoked with two pa-
rameters “hkim76” and the list of row IDs, (1, 4).

The following describes a pseudo code of reduce() gen-
erated from Q1. The function has two input parameters, key
and rowIDs, denoting an aggregate key and a list of record
IDs with the key, respectively.

Function Reduce(key, rowIDs)
sum Duration := 0
records := getRecordsFromDFS (rowIDs)
For each record in records

Parse record into (Buyer, Quantity)
sum Quantity := sum Quantity + Quantity

End for
Output (key, sum Quantity)

Above, getRecordsFromDFS () is a function to read
the selected records from the DFS. For each record returned
from the function, Buyer and Quantity are parsed. Then,
the sum of Quantity is calculated. Note that the postfix
“ Quantity” is added to all variables used to calculate the ag-
gregate. In this way, attribute names are added to distinguish
various aggregates in the generated function. If aggregates
are defined with “*”, no postfix is added.

As discussed above, storage consumption is reduced in
the proposed method. This leads to economic benefit. Sup-
pose that the size of input data is 1 TByte, and half of the
input records are outputted from the map phase. Then, the
size of output records in the original MR approach is 500
GBytes. On the other hand, the size of the record ID list
in the proposed method is relatively small. In our experi-
ments, the size is about 25% of the original data, from which
the intermediate data size can be calculated as 125 GBytes.

446
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 1 Performance of MR-ORG, MR-COS, Hive, and OUR for TPC-Q1.

Assume we use a commercial cloud storage service which
costs about 3 dollars a Gigabyte†. In this case, about $1125
can be saved. As the data size increases, more cost can be
reduced.

3. Experimental Results

Experiments were conducted over a cluster consisting of 8
nodes; one was a master and the other 7 nodes were slaves.
All nodes were equipped with an Intel i5-2500 3.3 GHz pro-
cessor with 8 GB memory and a 1 TBytes hard disk, running
on CentOS 6.4. They were connected via a Gigabit switch-
ing hub. As an MR framework, Hadoop 1.2.1 was used. Two
map/reduce slots were assigned to each node, and 6 reducers
were assigned and run for a job.

For experiments, TPC-H benchmark [8] was employed,
which has been widely used for performance evaluation of
OLAP queries. Among its queries, TPC-Q1 was used. The
proposed method was compared with three systems: MR-
ORG, MR-COS, and HIVE. The first two systems are the
MR framework without and with column-oriented storage,
respectively. The last is a well-known data warehouse so-
lution for Hadoop, developed in Facebook [2]. As the in-
put file format, TextInputFormat (a default input format in
Hadoop) was used for MR-ORG. As the column-oriented
storage format, CIF was used for MR-COS and our method,
while RCFile was used for HIVE. To compare their perfor-
mances, the following four measures were checked.

†Amazon EC2 currently provides cloud service with 640
GBytes for about $1800 a year, which works out to about 3 dol-
lars a Gigabyte.

(1) Size of input data transferred to mappers
(2) Size of data transferred to reducers (including the list

of record IDs in the proposed method)
(3) Size of intermediate results
(4) Total size of transferred data
(5) Execution time

In case of Hive, only the last two parameters were mea-
sured, due to difficulty of capturing run-time parameters; to
measure internal data sizes (i.e., the first two parameters),
mechanisms of query translation and data transmission in
Hive need to be fully understood. But without those pa-
rameters, superiority of the proposed method can be shown
properly.

First, we checked how much data transfer can be re-
duced by excluding unnecessary attributes in the map phase.
In MR-ORG, all input data is transmitted to mappers. On
the other hand, in MR-COS, projection can be performed to
exclude unnecessary attributes from the data. In TPC-Q1,
7 attributes are used in the query, where their size is about
30% of a record†. From this, about 70% of data transfer to
mappers can be reduced in MR-COS.

In the proposed method, more data reduction is pos-
sible. In TPC-Q1, only 3 attributes are used for the map
phase. The size of those attributes is only 6 bytes for each
record, where the total size of a record is 140 bytes. Thus,
about 95% of input data needs not be transferred to mappers.
Figure 1 (a) shows the sizes of data transferred to mappers
in the three approaches; the proposed method is denoted as
OUR in the figure.

†For more details, refer to TPC-H benchmark specification [8].

LETTER
447

We also checked the size of data transferred to reduc-
ers, whose result is shown in Fig. 1 (b). In MR-ORG and
MR-COS, the size is equal to the size of records which are
selected from mappers and stored in their local disks. On
the other hand, in the proposed method, the list of record
IDs is stored in the mappers’ local disks and needs to be
transferred to reducers. Selected records indicated by the
record IDs must also be fetched from the DFS to reducers.
Therefore, the size of data transmission slightly increases in
the proposed method. The difference only lies in the size
of data transmission to fetch the record ID list, because the
cost to transfer selected records is the same in all the three
methods.

Note that storage consumption decreases in the pro-
posed method. This is because our method only stores the
list of record IDs as intermediate results in mappers’ disks.
Regarding this, Fig. 1 (c) shows the sizes of intermediate re-
sults generated from mappers in the three methods. In the
result, the size of the ID list was on the average 20% of the
data sizes shown in MR-ORG and MR-COS. This implies
that the proposed method requires smaller storage than the
existing methods.

Figure 1 (d) shows the total size of data transmission
in the four methods, which is the sum of the sizes shown in
Figs. 1 (a) and (b). In the result, the size of data transmission
was smallest in the proposed method. It was about 6% of
MR-ORG, and was about 35% of MR-COS and Hive. This
shows that the benefit from reducing the size of input data
transferred to mappers is much larger than the overhead to
transfer the ID list to reducers in our method.

Finally, we measured execution time of each method,
where the result is shown in Fig. 1 (e). Figures 1 (d) and (e)
together also show that the execution time is proportional to
the total size of data transmission. In the execution time, the
proposed method also provided the best performance. Its
execution time was about 4 times and 25% faster than MR-
ORG and MR-COS, respectively. It was also about 40%
faster than Hive.

4. Conclusion

In this paper, we proposed a method to reduce I/O cost when
processing OLAP queries in MapReduce. In the proposed
method, only data necessary to perform a map task are trans-
ferred to mappers. Reducers are organized to read their in-
puts from the DFS, not from mappers. To notify reducers

as to information about selected records, record IDs are out-
putted from mappers, not the raw records.

To support this method, SQL-to-MR translation is re-
quired. In this process, attributes necessary for mappers and
reducers are first identified from a given SQL query. Based
on the information, a corresponding MR program is gener-
ated, which consists of map() and reduce(). Map() has a se-
lection condition defined in the WHERE clause of the query,
while reduce() includes aggregation functions defined in the
GROUP-BY and SELECT clauses.

To see the performance benefit of the proposed method,
experiments were conducted with TPC-H benchmark. In
the experiments, the method was compared with the orig-
inal MR approach (adopting the column-oriented storage),
denoted MR-COS, and Hive. In the results, the proposed
method showed the best performance in both storage con-
sumption and execution time. Compared with MR-COS,
about 80% of data stored in mappers for checkpointing was
reduced. In case of execution time, the method was 25%
and 40% faster than MR-COS and Hive, respectively.

Acknowledgments

This work was partly supported by the R&D program of
MSIP/COMPA [2014K000139, Building an education ser-
vice platform for learning history] and the NRF grant (No.
2011-0016282).

References

[1] S. Madden, “From databases to big data,” INTERNET COMPUT,
IEEE, vol.16, no.3, pp.4–6, May 2012.

[2] A. Thusoo et al., “Hive - A petabyte scale data warehouse using
Hadoop,” 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE), pp.996–1005, 2010.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pp.1–10, 2010.

[4] R. Adduci et al., “Big data: Big opportunities to create business
value,” Technical report, EMC Corporation, 2011.

[5] K.H. Lee et al., “Parallel data processing with MapReduce: A survey,”
SIGMOD REC, vol.40, no.4, pp.11–20, 2012.

[6] A. Pavlo et al., “A comparison of approaches to large-scale data anal-
ysis,” Proc. 2009 ACM SIGMOD International Conference on Man-
agement of data, pp.165–178, 2009.

[7] E. Anderson and J. Tucek, “Efficiency matters!,” Sigops Oper Syst
Rev, vol.44, no.1, pp.40–45, 2010.

[8] M. Poess and C. Floyd, “New TPC benchmarks for decision support
and web commerce,” SIGMOD REC, vol.29, no.4, pp.64–71, 2000.

