LETTER

Computational Complexity of Generalized Forty Thieves

Chuzo IWAMOTO ${ }^{\dagger \text { a) }}$, Member and Yuta MATSUI ${ }^{\dagger}$, Nonmember

Abstract

SUMMARY Forty Thieves is a solitaire game with two 52-card decks. The object is to move all cards from ten tableau piles of four cards to eight foundations. Each foundation is built up by suit from ace to king of the same suit, and each tableau pile is built down by suit. You may move the top card from any tableau pile to a tableau or foundation pile, and from the stock to a foundation pile. We prove that the generalized version of Forty Thieves is NP-complete. key words: computational complexity, NP-completeness, puzzle

1. Introduction

Forty Thieves is a solitaire game with two 52-card decks. The object is to move all cards from ten tableau piles of four cards to eight foundations (see Fig. 1). Each foundation is built up by suit from ace to king of the same suit, and each tableau pile is built down by suit. You may move the top card from any tableau pile to a tableau or foundation pile, and from the stock to a foundation pile. (You can play Forty Thieves online at many sites on the Internet.)

A card is exposed if no cards cover it. Exposed cards in tableau piles may be moved to a foundation (resp. tableau pile) if they are one rank higher (resp. lower) than the top card of the foundation (resp. tableau pile). (Here, empty foundations are regarded as cards of rank zero.) If no cards may be moved, then the top card of the stock may be moved to a foundation or to the waste. The cards in the waste position cannot be reused. Once no more cards can be moved, the game ends. The aim of the game is to move all cards in the tableau piles to eight foundations.

Figure 1 is an initial layout of Forty Thieves, where cards of the first and second decks are denoted as $\uparrow A, \uparrow 2$, $\bullet 3, \cdots$ and $\bullet A^{\prime}, \leftrightarrow 2^{\prime}, \leftrightarrow 3^{\prime}, \cdots$, respectively. (1) In the figure, \leftrightarrow A is immediately moved to a foundation. Then, one of the two exposed cards $\boldsymbol{\bullet} 2$ and $\bullet 2^{\prime}$ can be moved to the foundation, since they are one rank higher than $\uparrow A$. (2) One of the two cards $\diamond 4$ and $\diamond 4^{\prime}$ can be moved to the fifth tableau pile, since they are one rank lower than the top card $\diamond 5$. (3) If $\leftrightarrow 2$ was moved to the foundation at step (1) and if $\diamond 4$ was moved to the fifth tableau pile at step (2), then $\odot 2^{\prime}$ and $\odot A$ are exposed. Consequently, $\vee \mathrm{A}, \stackrel{\wedge}{ }{ }^{\prime}$, and $\vee 3$ are moved to a foundation in that order. At this point, there are no cards in

[^0]

Fig. 1 Initial layout of Forty Thieves.
tableau piles which can be moved to foundations. (4) Fortunately, if the top card $\triangleright 6$ of the stock is discarded, and $\diamond \mathrm{A}^{\prime}$ is moved to a foundation, then (5) four cards $\diamond 2^{\prime}, \diamond 3, \diamond 4$, and $\diamond 5$ can be moved to the foundation.

In this paper, we consider the generalized version of Forty Thieves, which uses two generalized $4 k$-card decks. A $4 k$-card deck includes k ranks of each of the four suits, spades (\uparrow), hearts (() , diamonds (\diamond), and clubs (\downarrow). The instance of the Generalized Forty Thieves is the initial layout of $4 \times l$ cards and a stock of s cards, where l is an integer and $s=8 k-4 l$. The Generalized Forty Thieves Problem is to decide whether the player can move all of the $4 \times l$ cards to the foundations. We will show that the problem is NPcomplete, even if the number of stock cards is zero. It is not difficult to show that the problem belongs to NP, since each card can be moved at most twice.

There has been a huge amount of literature on the computational complexities of games and puzzles. In 2009, a survey of games, puzzles, and their complexities was reported by Hearn and Demaine [4]. Recently, Block Sum [3], Pyramid [7], String Puzzle [9], Tantrix Match [10], Yosenabe [6], and Zen Puzzle Garden [5] were shown to be NPcomplete, and Chat Noir [8] is PSPACE-complete.

2. Reduction from 3SAT to Generalized Forty Thieves

The definition of 3SAT is mostly from [2]. Let $U=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of Boolean variables. Boolean variables take on values 0 (false) and 1 (true). If x is a variable in U, then x and \bar{x} are literals over U. The value of \bar{x} is 1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U, such as $\left\{x_{1}, x_{2}, \overline{x_{3}}\right\}$. It represents the disjunction of those literals and is satisfied by a truth assignment if and only if at least one of its members is true under that assignment. An instance of 3SAT is a collection $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of clauses over U such that $\left|c_{j}\right|=2$ or $\left|c_{j}\right|=3$ for each c_{j}. The 3SAT problem asks whether there exists some truth assignment for U that simultaneously satisfies all the clauses in C. (An example of C is given in the caption of Fig. 3.) It is known that 3SAT is NP-complete even if each variable occurs exactly once positively and exactly twice negatively in C [1].

We present a polynomial-time transformation from an arbitrary instance C of 3SAT to tableau piles of cards such that C is satisfiable if and only if all cards can be moved to the foundations. Let n and m be the numbers of variables and clauses of C, respectively. Without loss of generality, we can assume n and m are divisible by four and two, respectively. We use two $4 k$-card decks, where $k=15 m-2 n+4$.

Each variable $x_{i} \in U$ is transformed into six non-white cards in Fig. 2. (See also Fig. 3 when $n=m=4$. Those cards for x_{1} are $\uparrow 1, \wedge 2, \wedge 2^{\prime}, \uparrow 9, \uparrow 12, \wedge 15$.) Figure 2 consists of cards $\uparrow 1, \leftrightarrow 3, \ldots, \uparrow 2 i-1, \ldots, \uparrow 2 n-1$ (labeled with $x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}$); $\uparrow 2 i, \uparrow 2 i$ (labeled with " $x_{i}=1$ ", " $x_{i}=$ 0 "); $\square 2 n+3 j_{1}-2$, $\square 2 n+3 j_{2}-2$, $\square 2 n+3 j_{3}-2$ (labeled with

Fig. 2 Variable gadget for x_{i}.
$c_{j_{1}}, c_{j_{2}}, c_{j_{3}}$) where $\square \in\{\uparrow, \diamond, \diamond\}$; and three dummy cards. This figure implies that x_{i} appears in $c_{j_{1}}$ positively and in $c_{j_{2}}$ and $c_{j_{3}}$ negatively. If this is the first (resp. second, third) appearance of a card of rank $2 n+3 j-2$, the suit is \uparrow (resp. \diamond, \diamond). (For example, $\uparrow 9, \diamond 9$, and $\diamond 9$ labeled with c_{1} appears in the green cards of Fig. 3, since c_{1} contains x_{1}, x_{2}, and x_{3}.)

Suppose $\boldsymbol{\Delta} 2 i-1$ is placed on the top of a foundation (see Fig. 2). If $\uparrow 2 i$ is moved to the foundation, then card $2 n+$ $3 j_{1}-2$ (labeled with $c_{j_{1}}$) will be exposed. This situation implies the assignment $x_{i}=1$. On the other hand, if $2 i^{\prime}$ is moved to the foundation, then card $2 n+3 j_{2}-2$ followed by $2 n+3 j_{3}-2$ (labeled with $c_{j_{2}}$ and $c_{j_{3}}$) will be exposed. This implies $x_{i}=0$.

Figure 3 consists of $4 \times n / 4$ yellow cards, n sets of 4×2 cards for n variables containing yellow, green, and white cards, and $4 \times n$ grey cards. Grey cards are dummy, which can be moved to foundations at the beginning of the game.

Let p be the number of size-two clauses. Suppose $\left|c_{1}\right|=$ $\left|c_{2}\right|=\cdots=\left|c_{m-p}\right|=3$ and $\left|c_{m-p+1}\right|=\cdots=\left|c_{m-1}\right|=\left|c_{m}\right|=$ 2. Then, the $(4 \times 2 n)$-card area of Fig. 3 contains no cards denoted by $\diamond 2 n+3 j-2$, where $m-p+1 \leq j \leq m$. In Fig. 7, the area of $2 \times 3(m-n) / 2$ green cards is filled with those $p \diamond$-cards. (Note that $p=3(m-n)$ because the number of literals is $3 n=3(m-p)+2 p$.)

Figure 4 is a clause gadget for c_{j}. (a) If $\uparrow 2 n+3 j-2$ (labeled with c_{j}) is moved to a foundation (see also $\uparrow 9$ with c_{1} when $n=4$ in Fig. 3), then $\uparrow 2 n+3 j-1$ and $\uparrow 2 n+3 j$ can be moved to the foundation (see also $\uparrow 10$ and $\uparrow 11$ in Fig. 6), and red card $45 j-4$ is exposed (see $\& 1$ in Fig. 6).
(b) If $\vee 2 n+3 j-2$ or $\diamond 2 n+3 j-2$ (labeled with c_{j}) is moved to the foundation (see also >9 or $\diamond 9$ in Fig. 3), then $\{\diamond 2 n+3 j-1, \diamond 2 n+3 j\}$ or $\{\diamond 2 n+3 j-1, \diamond 2 n+3 j\}$ can be moved to the foundation ($\{\vee 10, \diamond 11\}$ or $\{\diamond 10, \diamond 11\}$ in Fig. 6), respectively. In this case, blue card $\div 5 m+2 j$ or $\because 5 m+2 j^{\prime}$ is exposed ($\& 22$ or $\& 22^{\prime}$ in Fig. 6).
(a) If red card $25 j-4$ of Fig. 5 is moved to a foundation (see $\& 1$ in Fig. 6), then red cards $\leftarrow 5 j-3$, $45 j-2$, $25 j-1, * 5 j$ can be moved to the foundation ($2,43,4,45$ in Fig. 6). This situation implies that clause c_{j} is satisfied.
(b) If blue card $25 m+2 j$ or $25 m+2 j^{\prime}$ of Fig. 4 is exposed, then blue card $\uparrow 5 m+2 j-1$ can be moved on it

Fig. 3 Variable gadget when $n=m=4$ for $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, where $c_{1}=\left\{x_{1}, x_{2}, \overline{x_{3}}\right\}, c_{2}=\left\{\overline{x_{1}}, \overline{x_{2}}, x_{4}\right\}, c_{3}=\left\{\overline{x_{1}}, x_{3}, \overline{x_{4}}\right\}$, and $c_{4}=\left\{\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right\}$.

Fig. 4 Clause gadget for c_{j}.

Fig. 5 Card $\bullet 5 j$ is exposed if one of $\{\bullet 2 n+3 j-2, \triangleright 2 n+3 j-2, \diamond 2 n+3 j-2\}$ in Fig. 4 is exposed.

Fig. 6 Clause gadget for $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ when $n=m=4$.

Fig. 7 Cards in the bottom two layers are released after the top two layers are removed.
(see Fig. 5), and red card $\boldsymbol{\leftarrow} 5 j-4^{\prime}$ is exposed ($\propto 1^{\prime}$ in Fig. 6).
 be moved to the foundation. This also implies c_{j} is satisfied. Red card $25 j$ is called the target card for clause c_{j}.

Since $k=15 m-2 n+4$ ($=56$ when $n=m=4$), our two $4 k$-card decks contain $120 m-16 n+32$ cards in total. The
numbers of non-white cards in Figs. 3, 6, and 7 are 10n, 18m and $16 m-4 n+8$, respectively. The number of the unused cards is $(120 m-16 n+32)-(10 n+18 m+(16 m-4 n+8))=$ $86 m-22 n+24$. In Figs. 3, 6, and 7, there are $3 n+6 m+$ $(80 m-25 n+24)$ white cards, which are filled up with those $86 m-22 n+24$ unused cards. The $86 m-22 n+24$ cards
are arranged so that all the remaining cards can trivially be moved to the foundations after the target card $\because 5 m(=\Perp 20$ when $m=4$) is removed.

3. NP-Completeness of Generalized Forty Thieves

In this section, we will show that the instance C of 3 SAT is satisfiable if and only if all cards in the tableau piles can be moved to the foundations.

Assume that the instance C of 3SAT is satisfiable. When $\uparrow 2 i-1$ is placed on the top of a foundation for every $i \in\{1,2, \ldots, n\}($ see $\uparrow 1, \uparrow 3, \uparrow 5, \uparrow 7$ in Fig. 3), either $\uparrow 2 i$ or $\downarrow 2 i^{\prime}$ can be moved to the foundation.

Suppose x_{i} appears in $c_{j_{1}}$ positively and in $c_{j_{2}}$ and $c_{j_{3}}$ negatively. If $\boldsymbol{\sim} 2 i$ is moved to the foundation, then a card with label $c_{j_{1}}$ is exposed. If $\uparrow 2 i^{\prime}$ is moved, then a card $c_{j_{2}}$ (followed by a card $c_{j_{3}}$) is exposed. We call such a pair of cards $c_{j_{2}}$ and $c_{j_{3}}$ sequentially exposed cards. Since C is satisfiable, we can choose $\Delta 2 i$ or $\downarrow i^{\prime}$ so that at least one of the c_{j}-cards of rank $2 n+3 j-2$ is exposed or sequentially exposed, for every $j \in\{1,2, \ldots, m\}$. (In Fig. 3, cards $\uparrow 2$, $\wedge 4^{\prime}, \wedge 6, \wedge 8$ are moved to the foundation, and $\uparrow 9, \stackrel{\wedge}{ } \stackrel{\wedge}{ } \uparrow 18$, $\diamond 15, \diamond 12$ are exposed or sequentially exposed.)

Suppose $\cdot 2 n$ or $\cdot 2 n^{\prime}$ is placed on the top of the foundation (see $\uparrow 8$ or $\uparrow 8^{\prime}$ in Fig. 3), and grey cards $\{\diamond 1, \diamond 2, \ldots, \diamond 2 n\}$ and $\{\diamond 1, \diamond 2, \ldots, \diamond 2 n\}$ are piled up on foundations. In the following explanation, we use the 3SATinstance C given in the caption of Fig. 3 for simplicity.

Since c_{1} is satisfied by $x_{1}=1$, card $\uparrow 9$ in Fig. 3 is exposed and is moved to the foundation. Then, in Fig. 6,
 $\diamond 11$ can be moved to foundations. (In this case, $\uparrow 9^{\prime}$ is not removed in the procedure of this paragraph.)

Since c_{2} is satisfied by $x_{2}=0$ and $x_{4}=1$, cards $\vee 12$ and $\diamond 12$ in Fig. 3 are exposed and are moved to the foundations. Then, $\gtrdot 13, \diamond 14$ and $\diamond 13, \diamond 14$ can be moved to the foundations, and thus blue cards $\boldsymbol{2} 24$ and $\boldsymbol{2} 24^{\prime}$ are exposed. Now, $\& 23$ can be moved on $: 24$ or $: 24^{\prime}$, and therefore $\because 6^{\prime}$ is exposed and moved to the foundation. Next, cards $\uparrow 12^{\prime}$,
 (Cards $\vee 12^{\prime}$ and $\diamond 12^{\prime}$ are not removed in this paragraph.)

By continuing this observation, one can see that all the target cards $\uparrow 5,410, \ldots, 45 \mathrm{~m}$ can be moved to the foundation under the assumption that all the clauses $c_{1}, c_{2}, \ldots, c_{m}$ are satisfied.

Once the target card $\curvearrowleft 5 m$ for c_{m} is moved to the foundation, then all of the remaining cards in Figs. 3, 6, and 7 are moved to the foundations, since white cards were arranged so that all the remaining cards can trivially be moved to the foundations after the target card is removed. Hence, if the instance C of 3SAT is satisfiable, then all cards in the tableau piles can be moved to the foundations.

Assume the player can move all cards in the tableau piles to the foundations. Consider the target card $\& 20$ for c_{4}. This card can be moved to a foundation only if $\& 16$ or $\& 16^{\prime}$ is moved to the foundation. Consider a configuration when exactly one of $\left\{\& 16, \leftrightarrow 16^{\prime}\right\}$ is moved to the foundation, and
all of $\left\{\bullet 17, \cdots 17^{\prime}, \cdots 18, \cdots 18^{\prime}, \cdots, \cdots k, k^{\prime}\right\}$ are in tableau piles.
Suppose $\& 16$ is moved to the foundation (and $\& 16^{\prime}$ is in a tableau pile). Card $\& 16$ can be moved to the foundation only if $\boldsymbol{\wedge} 20$ and $\boldsymbol{\wedge} 19$ are already removed. Card $\boldsymbol{\wedge} 19$ can be removed only if $\uparrow 18$ in Fig. 3 is moved to the foundation, since (i) $\boldsymbol{\$} 19$ and $\boldsymbol{\$} \mathbf{2 0}$ belong to a single pile, (ii) $\boldsymbol{\sim} 0^{\prime}$ is under $\{\bullet 39, \leftrightarrow 40\}$ in Fig. 7 , and (iii) $\uparrow 18^{\prime}$ is under $\& 16^{\prime}$.

Suppose $\& 16^{\prime}$ is moved to the foundation (and $\& 16$ is in a tableau pile). Card $\& 16^{\prime}$ is moved to the foundation only if blue card $\bullet 27$ is moved on either $\bullet 28$ or $\because 28^{\prime}$,
 has been moved to foundations. From the same reason as the previous paragraph, card $\boldsymbol{\bullet} 28$ or $\boldsymbol{\bullet 2 8 ^ { \prime }}$ is exposed only if $\diamond 18$ or $\diamond 18$ in Fig. 3 is moved to the foundation, respectively.

One of $\left\{\propto 16, \leftrightarrow 16^{\prime}\right\}$ is moved to the foundation only if $\& 15$ (labeled with c_{3}) is moved to the foundation, since $\& 15^{\prime}$ is under $\{\& 51, \leftarrow 52\}$ in Fig. 7. By continuing this observation from c_{m} to c_{1}, one can see that cards $\uparrow 5 m, \ldots, \uparrow 10, \leftarrow 5$ can be moved to the foundation only if yellow cards removed from the set $\left\{\bullet 2, \bullet 2^{\prime}, \bullet 4, \bullet 4^{\prime}, \ldots, \bullet 2 n, \bullet 2 n^{\prime}\right\}$ in Fig. 3 indicate the truth assignment satisfying all clauses of C. (From Fig. 3, one can see that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$ satisfy all the clauses.)

At the beginning of the game, exactly one of $\left\{\propto 2 i, \leftrightarrow 2 i^{\prime}\right\}$ is moved to the foundation for every $i \in$ $\{1,2, \ldots, n\}$, since $\left\{\wedge 1^{\prime}, \star 3^{\prime}, \ldots, \wedge 2 n-1^{\prime}\right\}$ are under $\{\star 7 m+$ $1, * 7 m+2, \cdots\}$ (see $\{29,430,431,432\}$ in Fig. 7). Four cards $\uparrow 10^{\prime}, \diamond 1^{\prime}, \diamond 1^{\prime}, \leftrightarrow 2^{\prime}$ under $\{\bullet 33, \leftrightarrow 34, \leftrightarrow 35, \leftrightarrow 36\}$ in Fig. 7 interrupt four foundations during the procedures for variable and clause gadgets of Figs. 3 and 6. Hence, if the player can move all cards in the tableau piles to the foundations, then C is satisfiable.

References

[1] M.R. Cerioli, L. Faria, T.O. Ferreira, C.A.J. Martinhon, F. Protti, and B. Reed, "Partition into cliques for cubic graphs: Planar case, complexity and approximation," Discrete Appl. Math., vol.156, no.12, pp.2270-2278, 2008.
[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
[3] K. Haraguchi and H. Ono, "BlockSum is NP-complete," IEICE Trans. Inf. \& Syst., vol.E96-D, no.3, pp.481-488, March 2013.
[4] R.A. Hearn and E.D. Demaine, Games, Puzzles, and Computation, A K Peters Ltd., 2009.
[5] R. Houston, J. White, and M. Amos, "Zen puzzle garden is NPcomplete," Inf. Process. Lett., vol.112, pp.106-108, 2012.
[6] C. Iwamoto, "Yosenabe is NP-complete," J. Inf. Process., vol.22, no.1, pp.1-4, 2014.
[7] C. Iwamoto and Y. Matsui, "Generalized pyramid is NP-complete," IEICE Trans. Inf. \& Syst., vol.E96-D, no.11, pp.2462-2465, Nov. 2013.
[8] C. Iwamoto, Y. Mukai, Y. Sumida, and K. Morita, "Generalized Chat Noir is PSPACE-complete," IEICE Trans. Inf. \& Syst., vol.E96-D, no.3, pp.502-505, March 2013.
[9] C. Iwamoto, K. Sasaki, and K. Morita, "A polynomial-time reduction from the 3SAT problem to the generalized string puzzle problem," Algorithms, vol.5, no.2, pp.261-272, 2012.
[10] A. Uejima, F. Yanagitani, and S. Tsukamoto, "The complexity of Tantrix Match puzzles with four colors," J. Inf. Process., vol.21, no.3, pp.405-412, 2013.

[^0]: Manuscript received July 25, 2014.
 Manuscript revised October 30, 2014.
 Manuscript publicized November 11, 2014.
 ${ }^{\dagger}$ The authors are with the Graduate School of Engineering, Hiroshima University, Higashihiroshima-shi, 739-8527 Japan.
 a) E-mail: chuzo@hiroshima-u.ac.jp

 DOI: 10.1587/transinf.2014EDL8154

