
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015
457

LETTER

A Graph-Theory-Based Algorithm for Euler Number Computing

Lifeng HE†,††a), Member, Bin YAO†, Xiao ZHAO†, Yun YANG†∗, Yuyan CHAO†††, Nonmembers,
and Atsushi OHTA††, Member

SUMMARY This paper proposes a graph-theory-based Euler number
computing algorithm. According to the graph theory and the analysis of
a mask’s configuration, the Euler number of a binary image in our algo-
rithm is calculated by counting four patterns of the mask. Unlike most con-
ventional Euler number computing algorithms, we do not need to do any
processing of the background pixels. Experimental results demonstrated
that our algorithm is much more efficient than conventional Euler number
computing algorithms.
key words: Euler number, topological property, graph theory, computer
vision, pattern recognition, image analysis

1. Introduction

The Euler number of a binary image that is defined as the
difference between the number of connected components
and the number of holes in the image is a basic topologic
property of the binary image, which does not change when
the image is stretched or flexed like an elastic rubber. It
can describe the structure of objects without relation to their
geometric shapes [1]. The Euler number has been used in
many applications [2]–[5]. Therefore, Euler number com-
puting is one of essential processing tasks for extracting ob-
jects’ features from a binary image for pattern recognition,
image analysis, and computer (robot) vision [1], [6].

Many algorithms have been proposed for calculating
the Euler number of a binary image [7]–[10]. One of the
most famous algorithms is based on counting certain 2×2
pixel patterns called bit-quads proposed by Gray [11], and it
is used in the MATLAB image-processing tool box∗∗. For
convenience, we denote this algorithm as GRAY algorithm.
Recently, an improvement of the GRAY algorithm was pro-
posed in Ref. [12], which reduces the number of pixels to
be checked for processing a bit-quad from 4 to 2 by use
of already-known information obtained while processing the

Manuscript received July 30, 2014.
Manuscript revised October 2, 2014.
Manuscript publicized November 10, 2014.
†The authors are with Artificial Intelligence Institute, College

of Electrical and Information Engineering, Shaanxi University of
Science and Technology, Xi’an, Shaanxi 710021, China.
††The authors are with the Graduate School of Information Sci-

ence and Technology, Aichi Prefectural University, Nagakute-shi,
480–1198 Japan.
†††The author is with the Graduate School of Environment

Management, Nagoya Sangyo University, Owariasa-shi, 488–8711
Japan.

∗Corresponding author
a) E-mail: helifeng@ist.aichi-pu.ac.jp

DOI: 10.1587/transinf.2014EDL8155

previous pixel. For convenience, we denote this algorithm as
I-GRAY algorithm. According to the complex analysis and
the experimental results, the I-GRAY algorithm is the most
efficient Euler number computing algorithm up to now.

This paper proposes a graph-theory-based Euler num-
ber computing algorithm. It is well known that a binary im-
age can be transmitted to a graph, and by graph theory, the
Euler number of a graph can be calculated according to the
numbers of vertices, edges and spaces. We show that for
processing a foreground pixel, among the 16 patterns of the
mask, we only need to consider four patterns. Experimental
results on various types of images showed that our algorithm
is much more efficient than conventional Euler number com-
puting algorithms.

2. Proposed Algorithm

A square graph corresponding to a binary image for 8-
connectivity can be constructed as follows: (1) each fore-
ground pixel in the image is transformed to a vertex in
the graph; (2) adding an edge between p and q if pixel
p and pixel q are 8-connected neighbor unless it crosses
with another edge. For example, the binary image shown in
Fig. 1 (a) can be transformed to the graph in Fig. 1 (b), where
basic right-angle triangles, each of which consists of two
right-angle sides of the length 1, are called faces. Euler’s
theorem in graph theory can be described as follows [13].

Euler’s Theorem If G is a square graph, v, e, r
and c are the number of the vertices, the edges, the
squares and the connected components in G, respec-
tively. Then, v − e + r = c + 1.

In Euler’s theorem, squares include holes, basic faces
and an infinite square outside of the graph. Let h and s be
the number of holes and basic faces in G, respectively, then,
r = h + s + 1. Thus, by Euler’s theorem, the Euler number
E can be represented as:

E = c − h = v − e + s

Therefore, the Euler number of a binary image for 8-
connectivity can also be calculated by the numbers of the
vertices, spaces and edges in a graph corresponding to the
image. For example, there are one connected component
and two holes in Fig. 1 (a), therefore the Euler number of
∗∗http://www.mathworks.com/access/helpdesk/help/toolbox/

images/bweuler.html

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



458
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 1 A binary image (a) and a corresponding graph (b).

Fig. 2 Calculating the number of vertices, edges and spaces by adding a
foreground pixel.

Fig. 3 The 16 patterns of the mask.

the image is E = c − h = 1 − 2 = −1; on the other hand, the
numbers of c, h, v, e and s in the graph shown in Fig. 1 (b)
are 1, 2, 19, 29 and 9, respectively, the Euler number of the
graph is E = v − e + s = 19 − 29 + 9 = −1.

In practice, for calculating the Euler number of a binary
image, we can count the numbers of vertices, spaces and
edges without constructing a corresponding graph actually.
We imagine that a binary image is constructed by adding
pixels one by one in the raster scan. For each pixel b(x, y)
being added, we calculate the increments of the numbers of
vertices, edges, and faces generated by adding the pixel. If
b(x, y) is a background pixel, no new vertex, edge or face
will generated, thus, nothing needs to be done. Otherwise,

Table 1 The increments of numbers of v, e and s, and the Euler number
ΔE for a pattern of the mask.

i.e., if b(x, y) is a foreground pixel, the number of vertices
should increase by 1. Moreover, because edges and faces
can be newly generated only between b(x, y) and its four
8-neighbors in the constructed area (Fig. 2), i.e., b(x − 1, y),
b(x−1, y−1), b(x, y−1) and, b(x+1, y−1), the combination
of which is usually called the mask of b(x, y) [1], we can
calculate the number of the edges and faces newly generated
according to the configuration of the mask, which has the 16
patterns as shown in Fig. 3.

However, counting the numbers of vertices, edges, and
faces generated by adding a foreground pixel one by one
directly will be inefficient. In our algorithm, we consider
the increment over the Euler number for each pattern of the



LETTER
459

mask. The analysis results are shown in Table 1, where Δv,
Δe, Δs, and ΔE denote the increments for the numbers of
vertices, edges, spaces, and the Euler number, respectively,
and ΔE = Δv − Δe + Δs.

From the Table 1, we can find that for calculating the
Euler number, among the 16 patterns of the mask, only four
patterns, i.e., patterns 1, 10, 11, and 12, need to be consid-
ered.

Because we process pixels in the raster scan, when pro-
cessing a pixel, we will know whether the previous pixel
was a background pixel or an object pixel. Thus, as shown
in Fig. 4 (a), for processing an object pixel R, we only need
to check the three pixels A, B, and C in the mask.

From Table 1, for the case where R follows a back-
ground pixel, the patterns should be considered are P1 and
P11. On the other hand, for the case where R is an object
pixel, the patterns should be considered are P10 and P12.
For convenience, we denote the two cases as S 1 and S 2,
respectively.

In order to enhance the efficiency, for processing an

Fig. 4 Karnaught maps for S 1 and S 2.

Fig. 5 The pseudo codes of our algorithm.

object pixel R, we should check as less pixels in the mask as
possible. To do that, the Karnaught map [16] can be used.
The Karnaught map is a method to simplify boolean algebra
expressions. In our case, the value of background pixels is
considered as 0 and that of object pixels is considered as 1.
Thus, for example, the values of A, B, and C for P11 are 1,
0, and 1, respectively.

For the cases S 1 and S 2, the conditions for checking
pixels in the mask are shown in Fig. 4 (b) and (c), respec-
tively. By Fig. 4 (b), the condition for checking pixels in the
mask is ¬A∧¬B∧¬C∨A∧¬B∧C = ¬B(¬A∧¬C∨A∧C),
where ¬, ∧, and ∨ are for logic NOT, AND and OR, respec-
tively, therefore, we should first check pixel B. On the other
hand, by Fig. 4 (c), the conditions for checking pixels in the
mask is ¬B ∧C, thus, we do not need to check pixel A. The
pseudo codes of our algorithm are shown in Fig. 5.

3. Experimental Results

In this section, we compared our algorithm with the I-GRAY
algorithm, which is the fastest conventional Euler number
computing algorithm [12]. Both the two algorithms used
were implemented in the C language on a PC-based work-
station (Intel Core i5-3470 CPU, 3.20GHz, 4GB Memory,
Ubuntu Linux OS), and compiled by the GNU C compiler
(version 4.2.3) with the option −O3. All experimental re-
sults presented in this section were obtained by averaging of
the execution time for 5000 runs.

41 noise images with a size of 512×512 pixels, which
were generated by thresholding of the images containing
uniform random noise with 41 different threshold values
from 0 to 1000 in steps of 25, were used for testing the exe-
cution time versus the density of the foreground pixels in an
image. The results on the noise images are shown in Fig. 6.
We can find that our algorithm is much more efficient than
I-GRAY algorithm.

On the other hand, six specialized-pattern artifi-
cial images (spiral-like, saw-tooth-like, checker-board-like,
upward-stair-like, downward-stair-like, and honey comb-
like connected components), 50 natural images (includ-
ing landscape, aerial, fingerprint, portrait, still-life, snap-
shot, and text images, obtained from the Standard Image

Fig. 6 Execution times versus the density of an image.



460
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Table 2 Maximum, mean, and minimum execution times (ms) on vari-
ous types of images.

Database (SIDBA)† and the image database of the Uni-
versity of Southern California††), 7 texture images (down-
loaded from the Columbia-Utrecht Reflectance and Texture
Databas†††), and 25 medical images (obtained from database
of The University of Chicago) are used for testing maxi-
mum, mean, and minimum execution times (ms), where all
of these images were 512×512 pixels in size, and were trans-
formed into binary images by means of Otsu’s threshold se-
lection method [15].

The results of the comparisons are shown in Table 2.
From Table 2, we can find that our algorithm is much more
efficient than the I-GRAY algorithm. In fact, for any image
used in this test, our algorithm is more efficient than the I-
GRAY algorithm.

4. Discussion

As introduced in above, for processing a pixel, the I-GRAY
algorithm needs to check two pixels. By our algorithm, we
should first check whether the current pixel is a foreground
pixel or a background pixel. In the case where the current
pixel is a background pixel, nothing else needs to be done.
Otherwise, if the current pixel b(x, y) is a foreground pixel,
by the pseudo codes given in Sect. 3, we will check pixels
in the mask in the order b(x, y − 1) → b(x + 1, y − 1) →
b(x − 1, y − 1).

We first consider the cases where b(x, y) follows a
background pixel (one of the patterns 1, 3, 5, 7, 9, 11, 13,
and 15 in Table 1). If b(x, y − 1) is a foreground pixel (one
of the patterns 5, 7, 13 and 15), no other pixel would be
checked, otherwise, b(x + 1, y − 1) and b(x − 1, y − 1) will
be also checked. For the cases where b(x, y) follows another
foreground pixel (one of the patterns 2, 4, 6, 8, 10, 12, 14,
and 16), if b(x, y − 1) is a foreground pixel (one of the pat-

†http://sampl.ece.ohio-state.edu/data/stills/sidba/index.htm
††http://sipi.usc.edu/database/
†††http://www1.cs.columbia.edu/CAVE/software/curet/

terns 6, 8, 14 and 16), we do not need to check other pixels,
otherwise, we also need to check b(x+1, y−1). Thus, when
b(x, y) is a foreground pixel, the average number of times for
checking pixels in the mask is (4×1+4×3+4×1+4×2)/16 =
1.75. Therefore, the average number of times for checking
pixels for processing a pixel is (1 + (1 + 1.75))/2 = 1.875,
which is smaller than the I-GRAY algorithm and any of
other conventional algorithms.

It is worth to mention that, in our algorithm, only four
special patterns need to be counted, while in the I-GRAY al-
gorithm, 10 special patterns need to be counted. Moreover,
our algorithm does not need to do anything for background
pixels, but the I-GRAY algorithm does. These should be the
main reasons that our algorithm is more efficient than the
I-GRAY algorithm.

Moreover, it is worth to mention that, although we
introduced our algorithm by use of raster-scan access, the
same as in the GRAY algorithm and I-GRAY algorithm, in
our algorithm, different rows of the given image can be pro-
cessed simultaneously. Therefore, our algorithm can be also
parallelized easily.

5. Concluding Remarks

This paper proposed a graph-theory-based Euler number
computing algorithm. Through analyzing the patterns of the
mask based on graph theory, we only need to consider four
patterns of the mask. By our algorithm, the average num-
ber of pixels necessary to check for processing a pixel is
only 1.875. Experimental results on various kinds of im-
ages demonstrated that our algorithm is much more efficient
than conventional Euler number computing algorithms.

Acknowledgments

We thank the anonymous referee for their valuable com-
ments that improved this paper greatly. We are grateful to
the associate editor Prof. Hitoshi Habe for his kind coopera-
tion. This work was supported in part by the National Natu-
ral Science Foundation of China under Grant No.61471227
and the Grant-in-Aid for Scientific Research (C) of the Min-
istry of Education, Science, Sports and Culture of Japan un-
der Grant No.26330200.

References

[1] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Third ed.,
Pearson Prentice Hall, Upper Saddle River, 2008.

[2] A. Hashizume, R. Suzuki, H. Yokouchi, H. Horiuchi, and S.
Yamamoto, “An algorithm of automated RBC classification and its
evaluation,” Bio Medical Engineering, vol.28, no.1, pp.25–32, 1990.

[3] S.N. Srihari, “Document image understanding,” Proc. ACM/IEEE
Joint Fall Computer Conference, pp.87–95, Dallas, TX, Nov. 1986.

[4] P.L. Rosin and T. Ellis, “Image difference threshold strategies
and shadow detection,” Proc. British Machine Vision Conference,
pp.347–356, Sept. 1995.

[5] S.K. Nayar and R.M. Bolle, “Reflectance-based object recognition,”
Int. J. of Comput. Vis, vol.17, no.3, pp.219–240, 1996.

[6] B. Horn, Robot Vision, pp.73–77, McGraw-Hill, New York, 1986.



LETTER
461

[7] M.H. Chen and P.F. Yan, “A fast algorithm to calculate the Eu-
ler number for binary image,” Pattern Recognit. Lett, vol.8, no.5,
pp.295–297, 1988.

[8] L. Juan and H. Juan, “On the computation of the Euler number of a
binary object,” Pattern Recognit, vol.29, no.3, pp.471–476, 1996.

[9] S. Zenzo, L. Cinque, and S. Levialdi, “Run-based algorithms for
binary image analysis and processing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol.18, no.1, pp.83–89, 1996.

[10] L. He, Y. Chao, and K. Suzuki, “An algorithm for connected-
component labeling, hole labeling and Euler number computing,” J.
Computer Science and Technology, vol.28, no.3, pp.468–478, 2013.

[11] S.B. Gray, “Local properties of binary images in two dimensions,”
IEEE Trans. Comput., vol.C-20, pp.551–561, 1971.

[12] B. Yao, H. Wu, Y. Yang, Y. Chao, A. Ohta, H. Kawanaka, and L. He,

“An efficient strategy for bit-quad-based Euler number computing
algorithm,” IEICE Trans. Inf. & Syst., vol.E97-D, no.5, pp.1374–
1378, May 2014.

[13] B.M. Douglas, WIntroduction to Graph Theory — Second edition,
Prentice Hall, 2001.

[14] L. He, Y. Chao, and K. Suzuki, “An efficient first-scan method
for label-equivalence-based labeling algorithms,” Pattern Recognit.
Lett., vol.31, no.1, pp.28–35, 2010.

[15] N.A. Otsu, “Threshold selection method from gray-level his-
tograms,” IEEE Trans. Syst. Man Cybern., vol.SMC-9, pp.62–66,
1979.

[16] M. Karnaugh, “The map method for synthesis of combinational
logic circuits,” Trans. AIEE. pt I, vol.72, no.9, pp.593–599, 1953.


