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No-Reference Blur Strength Estimation Based on Spectral Analysis
of Blurred Images∗

Hanhoon PARK†a), Member

SUMMARY In this letter, we propose a new no-reference blur estima-
tion method in the frequency domain. It is based on computing the cumu-
lative distribution function (CDF) of the Fourier transform spectrum of the
blurred image and analyzing the relationship between its shape and the blur
strength. From the analysis, we propose and evaluate six curve-shaped ana-
lytic metrics for estimating blur strength. Also, we employ an SVM-based
learning scheme to improve the accuracy and robustness of the proposed
metrics. In our experiments on Gaussian blurred images, one of the six
metrics outperformed the others and the standard deviation values between
0 and 6 could be estimated with an estimation error of 0.31 on average.
key words: no-reference, blur estimation, Fourier transform, cumulative
distribution function, SVM

1. Introduction

Image blur is a common problem in optical engineering and
may be due to the point spread function or motion of the
camera sensors. Thus, blur measurement has been a key
technique in a number of applications such as image quality
assessment [1]–[3], image restoration/enhancement [4], im-
age segmentation [5], and camera intrinsic/extrinsic param-
eter estimation [6]. In the literature, a number of effective
methods or metrics have been reported. They can be cate-
gorized into full-reference (FR) ones and no-reference (NR)
ones. FR blur metrics generally require a reference (an orig-
inal or perfect image) and work by comparing it against
blurred images. NR blur metrics require no reference and
generally work by analyzing the contents of blurred images
with some heuristics or prior knowledge such as statistics
of edge sharpness. Therefore, FR blur metrics are simple
and easy to implement, and their accuracy is higher than
that of NR blur metrics. However, in most real-world ap-
plications, the reference is unavailable. NR blur metrics
are therefore ideally suited for real-world applications, and
we are interested in NR blur metrics. NR blur metrics are
usually divided into two groups: one is built in the spatial
domain (NR-S) [1] and the other in the frequency domain
(NR-F) [2]. In this letter, we try to develop a new NR-F blur
metric for to the following reasons:

• NR-F blur metrics work more efficiently with large im-
ages.
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• The blur model and process are more easily understood
and implemented in the frequency domain.
• More interpretable blur-concerned information is ob-

servable in the frequency domain, which is unseen in
the spatial domain. This provides insights on a new
blur metric.

In Sect. 3, we will evaluate the efficiency of NR-F metrics
against NR-S metrics.

Our metric is inspired by previous work [2] based on
analyzing the cumulative distribution function (CDF) of the
Fourier transform (FT) spectrum of an image. But in our
metric, the CDF is computed in a slightly different way.
Furthermore, unlike the previous work focused on detect-
ing blurred images [2], our metric focuses on measuring the
amount (or strength) of blur.

In fact, our metric is based on the well-known charac-
teristics that the blur image has much energy in the lower
frequency range and smaller energy in the higher frequency
range. However, there is no sure metric to quantify such
characteristics. Therefore, this letter aims to propose such a
metric and the novelty of our metric lies in its effectiveness
in measuring the energy with the purpose of accurately es-
timating the blur strength. Also, to our knowledge, such a
metric that attempts to analyze the whole FT-CDF itself is
not found in the existing NR-F metrics [7].

2. A New NR-F Blur Metric

2.1 Blur Model

In general, image blur can be modeled by 2D convolution
between the input image f and a blur kernel h as follows.

g(x) = h(x) ∗ f(x) + n(x), (1)

where n represents the additive noise. This model is also
used in this letter but it is assumed that there is no additive
noise.

2.2 CDF

In this letter, the method of computing the CDF is slightly
different from that described in the previous paper [2].
Given a blurred image g, its spectrum image S is obtained
by FT as

S = log

(
1 +

√
Re (F (g))2 + Im (F (g))2

)
. (2)
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Fig. 1 Concentric rings on a spectrum image.

Fig. 2 Spectrum and CDF of a Gaussian blurred image.

Here, Re()2 and Im()2 are element-wise operations. The ori-
gin of the spectrum is moved to the center of the spectrum
image. Next, supposing that there are n rings overlaid on the
spectrum image as shown in Fig. 1, the spectrum values are
averaged in each ring as

si =
1
Ni

Ni∑
j=1

S(x j), x j ∈ ri, 1 ≤ i ≤ n. (3)

Here, Ni is the number of pixels x j overlapped with ri. This
computation is different from [2] where the spectrum val-
ues were just summed. Since the number of pixels in each
ring is different from each other, the averaging computation
can obtain more accurate spectrum values in each sub-band.
Then, letting ci be the cumulative sum of si,

ci =

n−(i−1)∑
j=1

sn−( j−1), 1 ≤ i ≤ n. (4)

Finally, ci is normalized to a range between 0 and 1 as

norm ci =
ci

c1
, 1 ≤ i ≤ n. (5)

The resulting norm ci is the CDF value used in this letter.
An example is shown in Fig. 2.

2.3 Measurement of Blur Strengths

As shown in Fig. 2, the CDF envelope curves of blurred
images have concave shapes. This is because blurring has
an effect of decreasing high frequency components whereas
increasing low frequency components. The amount of in-
crease or decrease depends on the blur strength (In this let-
ter, blur strength indicates the standard deviation for Gaus-
sian blur or the averaging filter size for motion blur). There-
fore, there is an interesting tendency in the shapes of CDF
envelope curves according to blur strengths, which is the
main motivation of this study. Specifically, as depicted in

Fig. 3 CDF shape with a different amount of blur. a: weak blur, b: strong
blur.

Fig. 3, as the blur strength increases, the envelope curve
shape tends to change from a to b. From this observation, we
can come up with some curve-shape analytic metrics useful
for estimating the blur strength applied. However, it is dif-
ficult to predict what metric is the best. In this letter, we
examine the following simple metrics†:

• M1: Finding the point (a0.5 for the curve a in Fig. 4 (a))
where the CDF value becomes lower than 0.5,
• M2s: Dividing into two regions with a same width and

calculating the difference (ard in Fig. 4 (b)) of two re-
gion areas, which is similar to the metric proposed in
[2],
• M2a: Calculating the area below the envelope curve,

i.e., calculating the sum of two areas (ara in Fig. 4 (b)),
which is the same as the spectral metric of [9],
• M3: Fitting a straight line to the envelope curve

points (i, norm ci) and calculating the line slope (as

in Fig. 4 (c)),
• M4: Halving the envelope curve, fitting straight lines

to the half curve points, and calculating the difference
(ald in Fig. 4 (d)) of two line slopes,
• M5: Finding the farthest point (amax in Fig. 4 (e)) from

a straight line c and computing 1/amax.

2.4 Learning the Measurements

From the preliminary experiments, we could know that:

• The measurement results depend on the CDF image
size.
• The measurement results are not in a linear relationship

with the blur strengths but a nonlinear relationship as
shown in Fig. 5.
• The measurement results depend on the contents of

original images as described in the previous paper [2].

Although the errors caused by the difference in the CDF im-
age size can be compensated by rescaling the results with
the size or by pre-normalizing CDF images to a fixed size,
the others not. Therefore, to accurately measure the blur
strengths, we use a supervised learning scheme. That is,
after obtaining the measurement results from a number of
images having different blur strengths and contents, the re-
lationship between the blur strengths applied and their mea-
surements is learned by using a support vector machine

†They are partially related to the Kolmogorov-Smirnov test [8].
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Fig. 4 CDF shape analysis for blur strength measurement. In (c) and (d), the straight dot lines are the
fitted lines. In (e), c is a straight line connecting two corners (left top and right bottom) of CDF image.

Fig. 5 The relationship between blur strengths applied and their
measurements.

Fig. 6 CDF comparison of two different images.

(SVM) [10]. Then, the learned machine is used to map the
measurements to the blur strengths.

Note that the dependency on the image contents is not a
tricky problem. As shown in Fig. 6, the CDF images of two
images having quite different contents are very similar and
both have the same tendency as depicted in Fig. 3. There-
fore, the dependency can be resolved by a learning scheme.

3. Experimental Results and Discussion

To evaluate the proposed metrics, the images of the LIVE
database [11] were used (see Fig. 7). The database includes
various clear scene images and their Gaussian blurred ver-
sions. At first, the uncorrupted images were corrupted by
defocusing blur, i.e., the Gaussian blur with strengths (=
standard deviations) of σ = 0.3 ∗ {0.5 ∗ f − 1} + 0.8,
( f = 3, 5, 7, · · · , 35), using the cvSmooth function [12]. Af-
ter computing the CDF images from the corrupted images
using the method explained in Sect. 2.1, the blur strength-
related measurements were obtained by using the six met-
rics in Sect. 2.2. Then, the mapping from the measurements
to the blur strengths applied was learned using a multi-class
SVM with a RBF kernel [10]. Finally, for the images cor-
rupted by the Gaussian blur with known σGs in the LIVE
database, we followed the same processes and estimated the
σEs using the SVM and compared them with the σGs. In
this letter, we omitted the results for motion blur because
the metrics worked the same way for images with motion

Fig. 7 A part of images used in experiments.

blur. However, we can partially predict the results for mo-
tion blurred images in Fig. 8 where we can know that the ob-
servation depicted in Fig. 3 is workable for motion blurred
images as well.

Note that σ has 17 different values in our experiments
(0.95, 1.25, · · ·, 5.75). Therefore, the SVM classified the
measurements from six metrics into 17 classes (CL1, CL2,
· · ·, CL17). It indicates that the blur strengths are estimated
roughly. For example, if σG is 2.166638, it is mapped to the
class (σE = 2.15). In addition, the blur strength difference
between the classes is 0.3. It indicates that if the difference
in blur strengths is smaller than 0.3, it may not be recognized
correctly. For example, if σGs are 1.708303 and 1.851533,
both are mapped to the same class (σE = 1.85). The images
having σG larger than 6.0 were excluded. In this letter, if the
classification is correct, it is considered that the blur strength
estimation is successfully done.

Table 1 shows the estimation error of six metrics, i.e.,
|σG−σE |. Figure 9 shows the estimation results of each met-
ric for some images. It seemed that only M2s and M3 play
a role as a blur metric. That is, as σG increases, σE mono-
tonically increases. Also in terms of estimation error, the
metrics M2s and M3 were better than the others. M3 was
the best. The estimation results of M3 were very similar to
the true blur strengths except for the cases that σG is larger
than 6.0 as in the results of “Paintedhouse” images. The es-
timation error of M3 was 0.31 on average. It indicates that
the SVM has a misclassification distance of 1 on average.
Here, the misclassification distance is the index difference
between the estimated class (CLi) and the true class (CLj),
i.e., |i − j|. Therefore, if the increment of f values becomes
smaller than 2, the error could be further reduced.

Although the computation time of M3 is longer than
the others, it is still very short (see Table 2). Since the
other processes including spectrum and CDF computation
took about 40ms, all the metrics worked within 41 ms in
an ordinary laptop computer with 1.9GHz A8-4500M APU
and 4GB RAM.

Finally, to show the efficiency our NR-F metric against
NR-S metrics, a NR-S metric which was proposed by Park
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Fig. 8 CDF shape with a different amount of Gaussian and motion blur. Top row: input blurred
images, middle row: spectrum images, and bottom row: CDF images. The motion blur was added using
a 1-D horizontal averaging filter 1

K [1 1 . . . 1], where K is the kernel size. We can observe the same
shape-changing aspect of CDF curve for both Gaussian and motion blur.

Fig. 9 Examples of estimation results by each metric. The thick dash line is the ground truth. In
the x-axis, the values inside parentheses are the blur strengths given in the LIVE database and those
outside parentheses are the mapped values. To quantify the image degradation, the root mean square
error (RMSE) was given below each blurred image. The first image is the blur-free image.

Table 1 Blur strength estimation error.

Metric M1 M2s M2a M3 M4 M5
Mean error 1.125 0.46 0.89 0.31 0.82 1.31

Table 2 Computation time of each metric for 768 × 512 images.

Metric M1 M2s M2a M3 M4 M5
Time [μs] 18 16 16 72 70 17

et al. [13] and an improved version of the well-known NR-S
metrics [14], [15], was applied to the same dataset and SVM
framework. The results of Park’s metric was compared to
our best metric (M3). In results, the estimation error of
Park’s metric was 0.49 on average and higher than ours.
Also, as shown in Fig. 10, the results of our metric were
much more consistent with the ground truth than those of
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Fig. 10 Comparison of estimation results by our metric (M3) and Park’s one.

the Park’s one. Most of all, our metric was about 141 times
faster than Park’s one that took 10.15ms for 768 × 512 im-
ages.

4. Conclusion

In this letter, we proposed a no-reference blur estimation
method in the frequency domain. After computing the
CDF of the spectrum of blurred images and analyzing the
relationship between its shape and the blur strength, we
proposed six curve-shape analytic metrics for estimating
blur strengths. Also, we employed an SVM-based learning
scheme to improve the accuracy and robustness of the pro-
posed metrics. Through experiments with Gaussian blurred
images and comparison with a previous NR-S metric, we
evaluated the performance of the proposed metrics. The re-
sults identified the superior metric.

In this letter, all the metrics were devised in a heuris-
tic manner. In the future, we would like to devise a more
theoretical metric and compare it with the heuristic ones.
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