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Robust Superpixel Tracking with Weighted Multiple-Instance
Learning
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SUMMARY This paper proposes a robust superpixel-based tracker via
multiple-instance learning, which exploits the importance of instances and
mid-level features captured by superpixels for object tracking. We first
present a superpixels-based appearance model, which is able to compute
the confidences of the object and background. Most importantly, we in-
troduce the sample importance into multiple-instance learning (MIL) pro-
cedure to improve the performance of tracking. The importance for each
instance in the positive bag is defined by accumulating the confidence of
all the pixels within the corresponding instance. Furthermore, our tracker
can help recover the object from the drifting scene using the appearance
model based on superpixels when the drift occurs. We retain the first (k−1)
frames’ information during the updating process to alleviate drift to some
extent. To evaluate the effectiveness of the proposed tracker, six video se-
quences of different challenging situations are tested. The comparison re-
sults demonstrate that the proposed tracker has more robust and accurate
performance than six ones representing the state-of-the-art.
key words: visual tracking, multiple instance learning, appearance model,
superpixel

1. Introduction

As important issues in computer vision, object tracking has
a wide range of applications in many areas, such as action
recognition, object classification and human-computer in-
teraction. The past year has witnessed advances in object
tracking, and various attempts have been made to address
some challenging problems.

Current Tracking techniques can be classified into ei-
ther generative or discriminative approaches. Generative
approaches formulate the tracking as searching for regions
most similar to the learned appearance model. Adam
et al. [1] divided the object state into multiple patches to
handle the partial occlusions of the object. But it ignored the
problem of template updating. Visual tracking decomposi-
tion (VTD) [2] could cover a wide range of object changes,
which decomposed the observation and motion models into
multiple basic corresponding models. David et al. [3] pro-
posed an efficient method which learned a linear subspace
online to model the variations of object appearance. In [4],
an efficient tracker with the SIFT feature correspondence
and multiple fragments was used to track the object. Re-
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cently, sparse representation has attracted considerable in-
terest in object tracking [5], [6]. The reason is that the track-
ers based on sparse representation are robust to occlusion.
However, they are less effective for the tracking in back-
ground clutter.

Discriminative methods treat object tracking as a bi-
nary classification problem. Wang et al. [7] presented a dis-
criminative appearance model based on superpixels to dis-
tinguish the object and background. An appropriate combi-
nation of generative and discriminative models [8] can bet-
ter help alleviate the drifting problems. In [9], an ensem-
ble tracking method that combined a set of trained weak
classifiers into a strong one to separate the object from the
background was presented. A later effort [10] utilized an on-
line boosting scheme to update the discriminative features.
However, they only used one positive sample to update the
classifier. The entire tracking performance will degrade if
the positive sample is imprecise. To overcome this issue,
Babenko et al. [11] proposed an online multiple-instance
learning (MIL) technique. The method can achieve a bet-
ter performance to some extent in that it assures that the
tracking result is the most correct positive sample. How-
ever, the assumption does not always hold when large mo-
tion changes occur.

In this paper, our approach takes the sample impor-
tance into account for the MIL learning procedure. We ex-
ploit the mid-level cue (superpixel) to model the appearance
representation. During the tracking, the importance of in-
stances (samples) is evaluated by the learned appearance
model. Then these weighted instances are used to update the
classifier. In addition, learned appearance model can also
help correct the object’s drifting. The experimental results
demonstrate that the proposed approach performs favorably
against other state-of-the-art trackers.

This paper is structured as follows. In Sect. 2, we in-
troduce our tracking scheme, the principle of our tracking
algorithm and its advantages over popular algorithms in de-
tails. Experimental results are presented in Sect. 3. Section 4
gives our conclusion.

2. The Proposed Tracking Method

2.1 System Overview

The main flow of our tracker is shown in Fig. 1. When a
new frame is coming, particles around the object position
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Fig. 1 The workflow of the proposed tracking algorithm.

of last frame are randomly sampled. Then we score the
confidence of each particle with trained classifier (Sect. 2.3),
and the particle with the maximum confidence is regarded
as tracking result. Once the object drifts, superpixels-
based the learned appearance model (Sect. 2.2) can help re-
cover the object’s position (Sect. 2.4). Different from the
MIL [11], we consider the importance for each instance in
MIL scheme and the weight of instance is obtained by the
sum of pixels responses within the corresponding instance.
In addition, it is necessary to update the appearance model
in a fixed length frame interval (Sect. 2.5).

2.2 Superpixel Based Appearance Model

In this paper, we utilize the mid-level cue with structural
information captured in superpixels. To model the object
appearance, we first segment the surrounding region of the
object into N superpixels in the first ten frames of a video.
In fact, the size of the target region does not have a direct
impact on the number of superpixels. But computational
time will grow accordingly as the surrounding region of tar-
get increases. Therefore, we apply superpixel segmentation
to the surrounding region of the target (rather than the entire
image) for efficient and effective object tracking. Each su-
perpixel si (i = 1, . . . ,N) is represented by a feature vector
fi which is a Haar-like feature. The locations of some small
rectangles are randomly generated in each superpixel, and
these rectangles consist of a set of feature templates which
are used to widely cover a specific appearance of the object.
The number of rectangles in each superpixel ranges from 2
to 4. The heights and the weights are randomly generated.
The pixels in the same rectangle have the same weight that
is randomly generated from the range (0, 1]. Each Haar-like
feature is computed by the sum of weighted pixels. Then,
we exploit the mean shift clustering method [12] that can au-
tomatically cluster r classes based on the size of feature vec-
tors of superpixels. Superpixel members of the ith cluster
cover the image regions to indicate how probable its super-
pixel members belong to the object or background. There-
fore, we define a confidence measure for the ith cluster as
follows.

Con0
i =

S + − S −

S + + S −
, i = 1, . . . , r (1)

where S + denotes the size of cluster area overlapping the
object area, and S − denotes the size of the cluster area out-
side the object area. Therefore, a prior knowledge Con0

i of
the object from the first ten frames is regarded as the initial
appearance model.

In test frame, a surrounding region of the object state is
segmented into M superpixels. The confidence measure for
the kth superpixel is evaluated by

Conk = exp(η × ‖ fk− fc,i‖2) × Con0
i , k = 1, . . . ,M (2)

where fk and Conk denote the feature vector of the kth super-
pixel and the corresponding confidence value, respectively;
fc,i indicates the feature center of the ith cluster that fk be-
longs to; η is a normalization term (2 in this paper). We
will utilize the superpixel confidence to determine the im-
portance of positive samples.

2.3 Online Weighted MIL

Each pixel on the surrounding region of the object is as-
signed a response based on the superpixel confidence, and
pixels outside the surrounding region with −1.

Our scheme integrates the sample importance into the
learning process using weighted sum of instance probability.
The weight of each instance can be obtained by accumulat-
ing the responses of all the pixels within the corresponding
instance.

wl =
∑

(i, j)∈Sl

vl(i, j) (3)

where vl(i, j) denotes the response value at location (i, j)
within the lth instance Sl. Then, we need to retrain the clas-
sifier with these weighted samples in each frame.

We assure that there are n positive samples and m
negative samples at current frame. Positive bag is drawn
around the tracking result (I1) of last frame, which satisfies
‖Ipos − I1‖ < α (α = 5). Negative samples in an annular
region specified by α < ‖Ineg − I1‖ < β, where α and β = 2α
denote inner and outer radii, respectively.

The positive bag probability is defined as follows.

p(y = 1 |X+) =
n−1∑
j=0

wj p(y = 1 | x j) (4)

where wj indexes the weight corresponding to the jth sam-
ple in the positive bag X+; the samples with the higher
confidences (weights) at current frame contribute more to
the bag probability than those with the lower confidences.
p(y = 1|x j) denotes the posterior probability of sample x j to
be positive; y is a binary label. Sample x j can be represented
by a feature vector f(x j). So the posterior probability of x j

to be positive is computed by

p(y = 1 | x j) = σ

(
ln

(
p(f(x j) | y = 1)p(y = 1)

p(f(x j) | y = 0)p(y = 0)

))
(5)

where σ is a sigmoid function.
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All of the instances in the negative bag are from the
background region. Therefore, the negative instances con-
tribute equally to the negative bag.

p(y = 0 |X−) =
n+m−1∑

j=n

(1 − p(y = 1 | x j)) (6)

Similar to MIL [11], a strong classifier HK() is defined as

HK(x j) = ln

(
p(f(x j) | y = 1)p(y = 1)

p(f(x j) | y = 0)p(y = 0)

)
(7)

We assure that uniform prior p(y = 0) = p(y = 1) and the
features in f(x j) = [ f1(x j), . . . , fK(x j)]T are independently
distributed. So Eq. (7) is further written as

HK(x j) =
K∑

k=1

ln

(
p( fk(x j) | y = 1)

p( fk(x j) | y = 0)

)
=

K∑
k=1

hk(x j) (8)

where hk() is the kth weak classifier that is composed of a
Haar-like feature. The conditional distributions are mod-
eled as a Gaussian function, p( fk(x)|y = 1) ∼ N(u1, σ1) and
p( fk(x)|y = 0) ∼ N(u0, σ0). The parameters (u1, σ1) are
updated by the following Eq. (9) and Eq. (10).

u1 = γu1 + (1 − γ)ū (9)

σ1 = γσ1 + (1 − γ)
√

1
n

∑
j|yi=1

( fk(xi j) − u1)2 (10)

where n is the number of positive samples and γ is a learning
rate parameter (γ = 0.8). We can update u0 and σ0 with the
similar rules.

Finally, we can greedily select the most discriminative
weak classifier by maximizing the bag log-likelihood func-
tion L(H) in a weak classifier pool φ = {h1, . . . , hM}.

L(H) =
1∑

s=0

⎛⎜⎜⎜⎜⎜⎜⎝ys log

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
j=0

wj p(y = 1 | x j)

⎞⎟⎟⎟⎟⎟⎟⎠
+(1 − ys) log

⎛⎜⎜⎜⎜⎜⎜⎝
n+m−1∑

j=n

(1 − p(y = 1 | x j))

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (11)

The selected K weak classifiers construct a strong classifier
HK(x) to discriminate the object location.

2.4 Object’s Recovery from the Drifts

Learned appearance model and the confidence map of su-
perpixel are used to recover the object from the drifts. If
the classification score of the object state in Eq. (8) is much
larger than the predefined threshold (0.6 in our article) at
current frame, it is means that the object location estima-
tion is of high possibility to be object area. On the contrary,
a drift is deemed to occur if the classification score for the
current state is much lower than the empirical threshold and
the distance between the current object location and the re-
sult of the last frame is too large (35 pixels in our paper).
Once the object is far away from the location of last frame,

Fig. 2 Recovering from the drifts. (a) the drifted object and its surround-
ing region are segmented into superpixels. (b) clustering superpixels and
computing the confidences of superpixel. (c) the estimation of the object
area is corrected by clustering results (b).

Fig. 3 The relationship of tracking errors and update interval.

Table 1 Average per-frame run time with the different update interval.

the surrounding region of the object from the last frame is
further expanded to segmenting more superpixels. Then we
compute the confidence map for each superpixel based on
the learned appearance model. The computed confidence
map provides strong evidence where the object will appear;
thereby correcting potential drifts from the inaccurate result
at current frame. Figure 2 presents how our scheme recovers
from the drifts with the superpixels information.

2.5 Appearance Model Update

The length of the retained sequence is set to L (L = 12).
We update the object appearance with the retained sequence
every U frames. In this paper, U is set to 10 to reach a
compromise between the tracking errors and computational
cost from Fig. 3 and Table 1. We put the result of every
frame into the end of the retained sequence and delete the
kth information in L (k < L, k = 4). All the superpixels are
re-clustered after every U frames, which is the same as the
training process in Sect. 2.2.

In the updating process, we need to retain the first k−1
frames information of L to avoid the drifting problem.

However, during the drift period, the process of appear-
ance model updating is paused, because the inaccurate re-
sults may be introduced into the previous appearance model
and lead to tracking failure.

For a long-term drift, object appearance cannot be well



LETTER
983

matched with previous appearance model. In this case,
search region of the object is expanded to segmenting more
superpixels for recovering the lost object. Then we compute
the confidence map for each superpixels using previous ap-
pearance model. The superpixels with high confidence map
values are more likely to belong to the object, thereby re-
covering object location at current frame. Finally, we put
the correct result from current frame into the end of retained
sequences and delete the (k + 1)th information. These su-
perpixels are re-clustered and the confidences of all clusters
are recalculated. Therefore, the appearance model change is
updated.

3. Experiments

We carry out our approach on MATLAB platform with Intel
Core 2 Duo 2.93GHz CPU and 2.96GB RAM. We run our
tracker on all challenging videos and the average run time
for each frame is 0.28s. Most of the computation is spent
on superpixel generation. The SLIC (Simple Linear Itera-
tive Clustering) algorithm [13] is used to segment the im-
age into superpixels. On average, drift detection and correc-
tion take 0.01s and 0.1s, respectively. Our method is com-
pared against six other popular trackers including IVT [3],
VTD [2], FragTrack [1], L1 [6], MIL [11] and SPT [7]. All
source codes are provided by the authors’ websites for fair
comparison.

There are three reasons why distance threshold in
Sect. 2.4 is fixed empirically. First, the object change be-
tween the consecutive frames is usually gradual due to the
mechanical movement. The change of object isn’t too large.
So object size isn’t a main factor to decide the threshold.
Second, it is difficult to find a good criterion to adaptively
decide the threshold based on the size of the object. Too
small or too large value has a bad impact on tracking perfor-
mance. Third, during the tracking, the change of object size
may be inaccurate due to occlusion and illumination change.
If we use the inaccurate results to decide the threshold, the
tracking performance will be unstable.

Faceocc2 sequence shows that the object experiences
the partial occlusion and in-plane rotation. In Fig. 4 (a),
MIL can not recover the lost object due to the inaccurate
appearance model. Our approach achieves the promising
results. The main difficulty of the DavidIndoor video is the
illumination and poses variations in Fig. 4 (b). In Fig. 4 (c),
woman sequence involves the partial occlusions and simi-
lar appearance background clutter. The improvement of our
tracker can better track objects, where other trackers are less
reliable.

Figure 5 (a)-(c) show some representative results un-
der the circumstance of the illumination and abrupt motion
changes. Singer1 clip contains illumination and scale vari-
ations as well as camera motion, which lead to most of the
conventional trackers drift. Shaking sequence presents the
light and the pose of the object is drastically varied due to
the head shaking. VTD and MIL can track the object quite
well except for some errors in some frames; while other

Fig. 4 Object undergoes in plane rotation and partial occlusions.

Fig. 5 Sampled tracking results in three sequences.

Table 2 Center location errors. The red bold fonts indicate the best per-
formance; the blue bold fonts indicate the second best.

Table 3 Tracking success rates. The red bold fonts indicate the best
performance; the blue bold fonts indicate the second best.

popular trackers perform below par. In Deer sequence, the
tracked object undergoes drastically appearance variations.
Our tracker is superior to the traditional trackers which are
less reliable.

Table 2 shows the center location error which is defined
as the average of Euclidean distance between the tracking
result and the ground truth. Our tracker achieves the better
or similar performance with other trackers.

Another criterion is the success rate of tracker which
is defined by the PASCAL VOC [14] score = area(RT∩RG)

area(RT∪RG) .
Given the tracking results RT and the corresponding ground
truth RG, an object is successfully tracked when the score is
above 0.5. In Table 3, we can see that our approach performs
favorably against other trackers.

For feature selection, we only need to select K = 20
features with M = 150, which is much less computational
burden than MIL which selects K = 50 from the M = 250.

Figure 6 and Table 4 demonstrate the efficiency of
random selection. Similar methods using random selec-
tion scheme are VTD and MIL. Shaking sequence is more
representative than other sequences due to its complex cir-
cumstance. In the sequence, we exploit other features to
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Fig. 6 A comparison of tracking performance between random selection
feature and three deterministic features in Shaking sequence.

Table 4 Extraction time for different features.

replace random selection. First, we employ HSI color
histograms [7] to represent the object. But color histograms
are very sensitive to illumination changes. It is easy to fail
when the object undergoes the drastically illumination and
pose changes. Second, when the object is represented us-
ing SIFT feature points, it has a high computational cost for
feature extraction. The proposed algorithm will fail if the
target object cannot detect the feature points due to motion
blur and lacking the local feature points. Third, gray fea-
ture is susceptible to noise leads to the tracking performance
degraded.

4. Conclusion

In this paper, a robust superpixels-based tracking approach

via weighted multiple-instance learning is proposed. We
employ the more promising superpixels to model the ob-
ject’s appearance model. On one hand, the appearance
model based on superpixels can determine the weight of
each instance in positive bag. On the other hand, it can help
recover from drifts. The comparison results indicate that our
tracking approach is more robust.
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