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Contextual Max Pooling for Human Action Recognition

Zhong ZHANG†, Member, Shuang LIU†a), and Xing MEI††,†††, Nonmembers

SUMMARY The bag-of-words model (BOW) has been extensively
adopted by recent human action recognition methods. The pooling oper-
ation, which aggregates local descriptor encodings into a single represen-
tation, is a key determiner of the performance of the BOW-based methods.
However, the spatio-temporal relationship among interest points has rarely
been considered in the pooling step, which results in the imprecise rep-
resentation of human actions. In this paper, we propose a novel pooling
strategy named contextual max pooling (CMP) to overcome this limitation.
We add a constraint term into the objective function under the framework
of max pooling, which forces the weights of interest points to be consis-
tent with their probabilities. In this way, CMP explicitly considers the
spatio-temporal contextual relationships among interest points and inher-
its the positive properties of max pooling. Our method is verified on three
challenging datasets (KTH, UCF Sports and UCF Films datasets), and the
results demonstrate that our method achieves better results than the state-
of-the-art methods in human action recognition.
key words: contextual max pooling, human action recognition, spatio-
temporal relationship

1. Introduction

Recognizing human action has raised a great interest in
computer vision and pattern recognition fields due to the re-
quirements of real-world applications, such as video surveil-
lance, human-computer interaction and video indexing. Re-
cently, a lot of strategies have been proposed by researchers,
such as 2-D shape matching [1], optical flow patterns [2],
trajectory-based representation [3], spatio-temporal interest
points [16] and attribute representation [4]. In particular,
methods based on the spatio-temporal interest points with
BOW model [5], [16] have shown promising performance.
Since these approaches do not rely on preprocessing tech-
niques, e.g. background modeling or body-part tracking,
they are relatively robust to noise, background changes and
illumination variation. The BOW-based methods follow a
common work flow: they first extract local descriptors, and
then encode these descriptors over some learned codebook
or dictionary (coding step). Finally, the encodings are ag-
gregated into a vector to represent the action video (pooling
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step). In this paper, we focus on the pooling step.
The common pooling methods used in human action

recognition and image classification are sum pooling (or av-
erage pooling) and max pooling. Sum pooling lacks dis-
crimination because it is strongly influenced by frequent de-
scriptors whether they are beneficial to classification or not.
The max pooling is only suitable for the coding strategies
that rely on count statistics. Recently, some extensions to
the sum pooling and max pooling have been proposed, one
purpose of which is to produce better representations with-
out losing too much information. To reduce the information
loss, only close local descriptors should be pooled together
in the geometric and descriptor domain [6]. Lin et al. [7]
considered the latent image structure to learn the important
pooling spatial regions for scene classification. Murray et
al. [8] proposed a generalized version of max pooling which
is applicable to variant coding strategies. However, none
of the above pooling operations explicitly provide spatio-
temporal relationships among interest points, which reflects
both spatial relative layout of human body parts and tempo-
ral evolution of human poses.

In this paper, we propose a novel pooling strategy
called contextual max pooling (CMP), which not only
preserves the spatio-temporal relationships among interest
points, but also inherits the positive properties of max pool-
ing. A constraint, which assumes the weights of interest
points to be consistent with their probabilities, is added into
the objective function under the framework of max pooling.
The probability of the local appearance descriptor in its lo-
cation for an interest point is estimated by kernel density
estimation (KDE) in the contextual domain.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the traditional max pooling and its ex-
tension. Section 3 presents our approach in detail. Sec-
tion 4 shows the experimental results, demonstrating that
our method outperforms the state-of-the-art methods on the
KTH, UCF Sports and UCF Films datasets. Finally, in
Sect. 5, we conclude the paper.

2. Traditional Max Pooling

Let X = {x1, x2, . . . , xN} denote N local appearance descrip-
tors of spatio-temporal interest points extracted from an ac-
tion video, where xi ∈ RD×1 is the local appearance fea-
ture for the i-th spatio-temporal interest point. Let V =
{v1, v2, . . . , vN} be a set of encodings of X, where vi ∈ RM×1

indicates the encoding of xi. After pooling operation, the en-
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coding set V is aggregated into a single vector h to represent
an action video. One property of the traditional max pooling
is that the inner product between the max pooling represen-
tation hmax and an interest point encoding vi is a constant
value [8], i.e. vTi hmax = 1, when max pooling operation is
embedded in the BOW model (hard voting). Here, vi is a bi-
nary vector with a single non-zero entry, and hmax is a binary
vector to represent an action video where a 1 is indicative of
the presence of the codeword. Murray and Perronnin [8] ex-
tended max pooling to a generalized form which is directly
applicable to various coding strategies

VT h = 1N (1)

where 1N ∈ RN×1 is a vector of all ones. For computational
convenient, we turn Eq. (1) to a least square problem. Addi-
tionally, it is beneficial to add a regularization term to obtain
a stable solution. Hence, Eq. (1) is reformulated as

h∗ = argmin
h
‖ VT h − 1N ‖2 +α ‖ h ‖2 (2)

where α is a balancing parameter. Introducing h = Vw into
Eq. (2) according to the representer theorem [9], it can be
rewritten as

w∗ = argmin
w
‖ VT Vw − 1N ‖2 +α ‖ Vw ‖2 (3)

where w ∈ RN×1 is the weight vector, and w = [w1,
w2, . . . , wN]T in which wi is the weight of i-th spatio-
temporal interest point.

3. Approach

In this section, we first present the proposed contextual max
pooling. Then, we introduce how to compute the probability
of a spatio-temporal interest point.

3.1 Contextual Max Pooling

The traditional max pooling and its extension, however,
neglect spatial and temporal relationships among interest
points, which reflects both spatial relative layout of human
body parts and temporal evolution of human poses. In this
work, we explicitly consider spatio-temporal contextual in-
formation in the pooling step under the framework of max
pooling, which is called contextual max pooling.

We use the joint probability density p(xi, si) to cap-
ture the spatial and temporal relationship among the inter-
est points for each action video. Here xi ∈ RD×1 is the i-th
local appearance feature and si is the i-th interest point lo-
cation, i.e. si = (ai, bi, ti) where ai, bi and ti are horizontal,
vertical, and temporal coordinates respectively. p(xi, si) in-
dicates the probability of xi occurring at location si and the
computational details will be shown in the next subsection.
If the p(xi, si) is larger, then this interest point has a greater
influence on the final representation. In other words, we pre-
fer that the wight of interest point wi is consistent with the
p(xi, si). With the above consideration, the constraint on the

weights can be expressed as

‖ w − q ‖2=
N∑

i=1

(wi − qi)
2 (4)

where q = [q1, q2, . . . , qN]T is the N-dimensional vector and
qi = p(xi, si). Equation (4) is actually served as a penalty
term (as shown below), which results in a high penalty if the
weights of interest points are different from the probabilities
at their location. In other words, it forces the wights to be
consistent with their probabilities.

We add the constraint in Eq. (4) into Eq. (3) to obtain
our CMP. The optimization problem can be expressed as

w∗ = argmin
w
‖ VT Vw−1N ‖2 +α ‖ Vw ‖2 +β ‖ w−q ‖2

(5)

where β ≥ 0 is a regularization parameter that controls the
constraint on the weights of interest points. By adding the
constraint on the weights, Eq. (5) not only inherits the posi-
tive properties of max pooling, but also explicitly considers
the spatio-temporal relationship among interest points. It
should be noticed that when β = 0, our model will degener-
ate into the generalized max pooling [8]. Furthermore, when
β = 0 and the pooling operation is embedded in the BOW
model (hard voting), our model will degenerate into the tra-
ditional max pooling [10]. Our CMP model has a closed-
form solution

w = (K + αE + βK−1)−1(βK−1q + 1N) (6)

where K = VT V is the N × N similarity kernel matrix and
E is the identity matrix of size N × N with ones on the main
diagonal and zeros elsewhere. From Eq. (6), we can see that
the weights of interest points for each action video are deter-
mined by their appearance and spatio-temporal contextual
relationship which are considered by K and q respectively.

3.2 Computing the Probability p(xi, si)

Given a spatio-temporal point (xi, si), its surrounding spatio-
temporal area is called contextual domain [11] which is a
cube with a predefined side length shown as the cube in
Fig. 1. Let B = [b1, b2, . . . , bM] denote the codebook with
M clustering centers. The context for the codeword bi is
defined as

Ui = {(x′, s′)|x′ ∈ bi, s
′ ∈ Ω(si)} (7)

where Ω(si) is the contextual domain of interest point
(xi, si). Equation (7) indicates that a spatio-temporal point
(x′, s′), whose local appearance feature is x′ and location is
s′, belongs to Ui when x′ is the nearest to the codeword bi

and s′ is in the contextual domain.
We calculate p(xi, si) in its contextual domain:

p(xi, si) � p(bi, si) = p(si|bi) · p(bi) (8)

where xi is the nearest to the codeword bi. The prior prob-
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Fig. 1 The black cube is the contextual domain of the black cross interest
point.

ability density p(bi) can be estimated in the contextual do-
main Ui, i.e., the percentage of codeword bi in the contex-
tual domain, and the p(si|bi) can be computed by the kernel
density estimation:

p(si|bi,Ui) ∝
∑
sk∈Ui

Ψ(si, sk) (9)

where Ψ(si, sk) is a 3D Gaussian kernel:

Ψ(si, sk)=
1

(2π)3/2|Σ|1/2 exp

{
−1

2
(si − sk)TΣ−1(si − sk)

}

(10)

where sk is the point location in Ui and Σ is the covariance
matrix. We assume that horizontal, vertical and temporal
coordinates are independent. Thus

Σ = diag(σ2
u, σ

2
w, σ

2
t ) (11)

where σu, σw, and σt are spatial and temporal scale param-
eters.

4. Experimental Results

We verify our CMP method on several benchmark datasets:
KTH dataset [12], UCF Sports dataset [13], and UCF Films
dataset [13]. We compare our algorithm with relevant base-
lines and other excellent algorithms on human action recog-
nition. There are three algorithms as our relevant baselines:
sum pooling (SP), max pooling (MP) and generalized max
pooling (GMP) [8]. In our experiments, we adopt the Harris
3-D corner [14] to detect interest points from action videos.
For each interest point, the histogram of oriented gradients
(HOG) and histogram of optical flow (HOF) are used as lo-
cal appearance descriptors. Then, we encode the local ap-
pearance descriptors by utilizing LLC [15]. Finally, we use
pooling operation to aggregate the encodings and represent
an actio video as a feature vector. We set the side length
of contextual domain to 35 and the number of codebook to
4000 using k-means clustering algorithm.

The KTH dataset is a widely used action dataset which
contains six human action categories. They are performed

Table 1 The action recognition accuracy values (%) under different α
and β in the KTH dataset.

����β
α

10 20 30 40

20 94.6 94.8 94.2 93.6
30 96.2 97.6 96.8 95.3
40 95.1 94.4 93.6 91.9
50 94.5 94.7 93.2 92.1

Table 2 The comparison of our method with the state-of-the-art methods
and the baseline methods on the KTH and UCF Sports datasets.

KTH (%) UCF (%)
Kovashka et al. [16] 94.5 87.3

Le et al. [17] 93.9 86.5
Wang et al. [18] 94.2 88.2
Jiang et al. [19] 95.8 88.0
Wang et al. [20] 93.3 -
Wu et al. [21] 97.0 90.7

SP 91.2 85.3
MP 92.4 87.3

GMP 93.8 88.0
CMP 97.6 92.0

Fig. 2 Confusion table of our method on the KTH database.

by 25 subjects under four different scenarios, resulting in a
total of 599 video clips. We adopt the leave-one-out cross
validation strategy, specifically 24 videos of actors as train-
ing and the rest one as test videos. The choices of α and β
in Eq. (5) have an impact on the final performance. Table 1
shows the average accuracy values under different α and β,
from which we can see that when α = 20 and β = 30 re-
sults are the best. The paper mainly reports the results on
the KTH dataset, and our experiments have shown that the
conclusions can be generalized to the UCF Sports dataset
and the UCF Films dataset as well.

The average accuracy values on the KTH dataset are
shown in Table 2, and the confusion table of recognition
results on the KTH dataset is shown in Fig. 2. With the
optimal parameters, our CMP method achieves the best ac-
curacy value of 97.6% on the KTH dataset. Furthermore,
the following four points can be drawn through analyzing
the experimental results. First, comparing CMP approach
with GMP approach, we can see that the former is 3.8%
higher than the latter one on the accuracy. It shows that
the spatio-temporal relationship explicitly considered by our
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Fig. 3 Confusion table of our method on the UCF Sports database.

Table 3 The comparison of our method with the state-of-the-art methods
and the baseline methods on the UCF Films datasets.

Kiss (%) Slap (%) Average (%)
Rodriguez et al. [13] 66.4 67.2 66.8

Yeffet et al. [22] 77.3 84.2 80.7
Wu et al. [21] 97.6 94.4 96.0

CMP 97.8 94.6 96.2

CMP approach can improve the performance. Second, the
CMP, GMP and MP methods outperform the SP method. It
demonstrates that max pooling and its extensions can cap-
ture the discriminative information when aggregating the
encodings. Third, our CMP gains 6.4% accuracy rate over
SP. It is because our CMP not only inherits the positive prop-
erties of max pooling but also preserves spatio-temporal re-
lationships among the interest points. Finally, from the con-
fusion table, we can see that leg-related actions (Running
and Jogging) are prone to be misclassified. We think the
possible reason may be that they always exhibit similar con-
text and appearance.

The UCF Sports dataset contains 150 sports videos of
ten action categories. This dataset represents a natural pool-
ing of actions featured in a wide range of scenes and view-
points, so the videos exhibit great intra-class variation. We
take the leave-one-out cross validation, namely cycling each
sample as a test video one at a time. The performances
of different methods are shown in Table 2 and the confu-
sion table of recognition results on the UCF Sports dataset
is shown in Fig. 3. We can see that our CMP method out-
performs the other three baselines and other state-of-the-art
methods, reaching 91.9% on the UCF Sports dataset. We
draw the similar conclusions with that on the KTH datasets,
which proves the effectiveness of our CMP on the realistic
and complicated action dataset.

The UCF Films dataset provides a representative pool
of natural samples of action classes, including kissing and
slapping. There are 92 videos of kissing and 112 videos of
slapping. These actions are performed in classic old movies.
We adopt leave-one-out cross validation and the results are
shown in Table 3. Once again, we prove the effectiveness of
our algorithm on this dataset.

5. Conclusions

In this paper, we propose a novel pooling strategy called
CMP to overcome the limitation of traditional max pooling.
The CMP explicitly considers the spatio-temporal contex-
tual relationships among interest points, which can provide
more accurate pooling than the traditional max pooling. The
proposed method has been validated on three challenging
datasets, and the experimental results clearly demonstrate
the superiority of our method over previous methods in hu-
man action recognition.
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