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Expose Spliced Photographic Basing on Boundary and Noise
Features

Jun HOU†a), Member and Yan CHENG††, Nonmember

SUMMARY The paper proposes an algorithm to expose spliced pho-
tographs. Firstly, a graph-based segmentation, which defines a predictor
to measure boundary evidence between two neighbor regions, is used to
make greedy decision. Then the algorithm gets prediction error image us-
ing non-negative linear least-square prediction. For each pair of segmented
neighbor regions, the proposed algorithm gathers their statistic features and
calculates features of gray level co-occurrence matrix. K-means cluster-
ing is applied to create a dictionary, and the vector quantization histogram
is taken as the result vector with fixed length. For a tampered image, its
noise satisfies Gaussian distribution with zero mean. The proposed method
checks the similarity between noise distribution and a zero-mean Gaussian
distribution, and follows with the local flatness and texture measurement.
Finally, all features are fed to a support vector machine classifier. The al-
gorithm has low computational cost. Experiments show its effectiveness in
exposing forgery.
key words: image splicing, K-means clustering, distribution similarity,
flatness measure, texture feature

1. Introduction

With the advent of low-cost digital camera and editing soft-
ware, more and more synthetic images become available.
This brings a new challenge in many applications, such as
criminal investigation, journalistic reporting, and etc. Splic-
ing is one of the most common tampering tricks. If per-
formed carefully, the border between two merged parts is
imperceptible. One of the ways to discriminate between
original and forged images is based on camera features,
such as camera filter array(CFA), camera response func-
tion(CRF) and sensor noise. Approach in [1] derives the
tampering probability of each 2x2 image block on a new
statistical model, without requiring a priori the position of
the forged region. An earlier work [2] estimates neigh-
bor pixel value and extracts features of prediction error to
disclose forgery. Hsu and Chang [3] estimate CRF from
each region using geometric invariants from locally planar
irradiance points. CRF-based cross fitting and local im-
age features are computed and fed to support vector ma-
chine(SVM). Fridrich [4] estimates the parameters of the
noise model from the original camera, and then calculates
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the correlations between the estimated camera noise and the
extracted image noise to authenticate an image. Other ef-
fective features to expose forgery include inconsistencies in
the illumination [5], light direction, anomalous height ratio
of two objects in an image [6], etc.

In this work, we propose a passive detection algorithm
to expose splicing forgery. The rest of this paper is orga-
nized as follows. Section 2–4 present details of the proposed
algorithm. In Sect. 2, proposed boundary features basing on
prediction error and image texture are explained. Starting
from output image model from a sensor, the proposed noise
features are described in Sect. 3. All these features are fed to
SVM in Sect. 4. The performance of the algorithm is evalu-
ated in Sect. 5. Finally, we conclude the paper in Sect. 6.

2. Boundary Feature Extraction

2.1 Image Segmentation

Splicing changes the statistical features along boundary. Ex-
ploring features along boundaries to find traces of forgery is
an effective way. Splicing introduces similar or total differ-
ent images into the origin one. Therefore, image segmen-
tation can fast locate the spliced part approximately. Seg-
mentation should capture perceptually important grouping
or regions, reflect those global aspects and capture percep-
tually important non-local features. Here the graph-based
method [7] is applied. The reader is referred to [7] for more
details in relation to image segmentation.

2.2 Statistical Features on Prediction Error

A pixel’s value can be predicted according to those of its
neighbors. When a photographic is touched, prediction er-
ror along boundary also shows different characteristics from
that of untouched one, because of camera interpolation op-
eration with the use of CFA. Due to the complexity of real
scenes, it’s unlikely that edges along spliced parts would
align directly with the replaced ones, which would cause
abnormality when predicting CFA interpolation. Moreover,
spliced edges are usually post-processed, such as smoothing
sharp edges or contrarily sharpening, to make spliced parts
visual comfort. These operations also change the character-
istics of prediction result. In general, prediction error might
be caused by both edges and noise. Here an accurate method
with limitation condition, non-negative least-square(NGLS)
adaptation is used to predict neighbor pixels. NGLS-based
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approach locally optimizes the prediction coefficients inside
a causal window to minimize the mean squared error(MSE)
under limitation. Compared to least square adaptation used
in [2], NGLS has more accurate approximation to the CFA.

Let pi denote the value of ith pixel in the image I. We
predict ith pixel’s value in a given causal window, using lin-
ear model p̂i =

∑8
k=1 wkni,k on its eight-connected neighbors

{ni,1, ni,2, . . . .ni,8}, which can also be denoted by vector �ni.
For the kth (k =1,2,. . . ,8) neighbor of ith pixel, its value is
denoted by ni,k, and wk is a non-negative weighting factor
associated with ni,k. Given a casual window size of Wp×Wp

with M pixels(M=Wp ×Wp), we present those M pixels as a
M×1 column vector �p = [p1, p2, . . . ., pM]T . All neighbors,
used for predicting each pixel in �p , form the M×8 matrix �n.

The weighting coefficients can be achieved by solving

a non-negative least-square problem, i.e., minw
∥∥∥�n�w − �p∥∥∥2,

subject to that every element in �w is no less than zero. �w
is the 8×1 weight coefficient vector {w1, w2, . . . .w8}T . Here
projected gradient method [8] is applied to find �w. And the
prediction value for the ith pixel is denoted as: p̂i = �ni�w. Let
Δpi = |p̂i − pi| denote the absolute prediction error for ith
pixel. For two neighbor regions, we further divide them into
three parts, two inner parts and one boundary part between
them. Boundary part refers to boundary along segmentation
edge, with the width Wb. Two inner parts are two segmented
neighbor regions excluding the boundary part. Calculate
statistical features of Δpi in three parts separately. Denote
the mean of Δpi in each part as m1, m2 and mb separately.
The variance of Δpi in each part is represented as v1, v2 and
vb respectively. Subscripts b indicates that it is the feature of
boundary part. Calculate max(m1,m2,mb), min(m1,m2,mb),

m1+m2

2
√

m1m2
, mb

m1+m2
, max(v1, v2, vb), min(v1, v2, vb), v1+v22

√
v1v2

, vb
v1+v2

.
Get the prediction error image Ip, in which ith pixel

has value Δpi. Then calculate its corresponding histogram
in three parts respectively. The normalized histogram is a
representation of density for prediction error. h(Δpi) de-
notes the density of prediction error Δpi. For two neigh-
bour regions, calculate the mean and variance of histogram
in each part, and denote them as mh1, mh2, mhb, vh1, vh2, and
vhb respectively. The entropies of Δpi, denoted by En1, En2,
and Enb in three part respectively, are also extracted features.
Here is:

En = −
∑
Δpi

h(Δpi) log h(Δpi) (1)

Prediction error often occurs along boundary. To quan-
tify the energy distribution of prediction error image, de-
fine the similarity measurement between prediction error
and edge image as following:

S im =

∥∥∥∥I j
pe × I j

bm

∥∥∥∥
N j

b

√∥∥∥∥I j
pe

∥∥∥∥
2

(2)

I j
pe is a part of Ip. It’s the result of Ip masked by jth pair of

neighbour regions. I j
bm is the binary boundary map for jth

pair of neighbour regions, in which a pixel equals to 1 if it

belongs to the boundary part and has value 0 otherwise . N j
b

is the number of pixels that is 1 in I j
bm.

2.3 Grey Level Co-occurrence Matrix(GLCM)

Splicing, disordering CFA interpolation rule, affects pre-
ceding features. However, image texture characteristic also
have impact on preceding features. Here we take texture
features into consideration when checking prediction abnor-
mality. In each pair of neighbor regions, GLCMs for three
parts are calculated. Form GLCM using offsets sweeping
through 0, 45, 90, and 135 degrees respectively. To deduce
the size of GLCM, quantize levels to 16. For each part, get 4
GLCMs size of 16×16. Check contrast and entropy of each
GLCM. i and j are coordinate of GLCM, ci j is the value in
GLCM with coordinate (i, j) . The contrast is defined as:
∑15

n=0
n2[
∑

i

∑
j
(i − j)2ci j],where |i − j| = n (3)

The entropy of a GLCM is defined as:

−
∑

i

∑
j
ci j log ci j (4)

2.4 Vocabulary Construction

For every pair of segmented neighbor regions, there are 42
features extracted. The total number of features for a predic-
tion error image varies depending on segmentation result.
To get features with constant length, here feature dictionary
is used. Subdivide the training data into feature vectors from
untouched and spliced pairs. Each group is clustered into n
clusters by k-means algorithm [9]. Thus there are 2n words
in a feature dictionary. For each pair of segmented regions,
their feature vector is represented by a nearest word in the
dictionary, with Euclidean distance as a measurement. A
histogram of word counts with 2n bins represents the dis-
tribution of feature vectors in an image. Normalize the his-
togram and take it as a vector with 2n elements. By this way,
a vector with fixed length is achieved.

3. Statistical Feature Extraction in Noise

Both splicing operation and smoothing/sharpening opera-
tion along edges would cause preceding features abnormal.
We should further figure out whether splicing operation is a
major cause. Fridrich [4] models the output image I from a
sensor as:

I = gγ.[(1 + K)Y + Λ]γ + θq (5)

where g is the color channel gain, which adjusts the pixel’s
intensity level according to the sensitivity of the pixel to ob-
tain white balance. γ is the gamma correction factor. And K
is a unique stochastic fingerprint of imaging sensors. Y de-
notes the incident light intensity. Λ is combination of noise,
such as dark current, shot noise and readout noise. θq rep-
resents quantization noise. For Eq. (5), basing on Taylor ex-
pansion and keeping the first two terms, there is:
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I = (gY)γ + (gY)γK + θ (6)

θ is a complex of independent random noise components.
(gY)γ denotes the noise-free sensor output. Suppress the
noise-free image by subtracting it from both sides and get:

I f = I − (gY)γ
′
= I′ + n f (7)

(gY)γ′ is the estimation of (gY)γ. I′ is something about K,
connected with camera-response. nf , the combination noise
term, is gaussian noise with zero mean. If an image is al-
tered, I′ from other camera is a weak signal and n f domi-
nates the contribution of I f . Therefore, we consider I′ in-
cluded in the noise term when conducting research on I f

distribution. Oppositely, if an image is unaltered, the dis-
tribution of I f depends on I′ and n f as Eq. (7) shows. The
research in [4] gives us a revelation: I f in an altered images
fits Gaussian distribution with zero mean better, compared
to that in an authentic image. Here (gY)γ′ is considered as
denoised I using scale mixtures of Gaussians in the wavelet
domain [10]. Bbm is the mask of boundary image, i.e., Bbm

is OR result of all I j
bm. Let Bb denote the set of all pixels

belonging to boundary parts. Analyse the statistical distri-
bution corresponding to pixel pi(pi ∈ Bb) in I f . Then check
the distribution with a zero-mean Gaussian one, and exam
the similarity between them. Let p̂ f (k) be the probability
mass function of I f fit, modeled as follows for simplicity:
p̂ f (k) = d exp(λ|k|v ), where d is a normalization constant.
λ < 0, and ν is an exponent parameter. Undoubtedly, lin-
ear least-squares(LLS) can be used to solve for d,ν and λ.
But LLS is too sensitive for small perturbation. Here we use
nonlinear least-squares method to obtain the best fit distri-
bution. Hessian modification is applied here to calculate the
newton direction. Also incorporate equality constraints on
d, ν and λ using log-barrier function:

mind,λ,ν

∑
k

(p f (k) − d exp(λ|k|ν))2

−μ(log(d) + log(−λ) + log(ν)) (8)

where μ is a regulation parameter. pf (k) denotes actual I f

distribution in boundary parts. Define:

Cor =

∥∥∥p̂ f (k) ∗ p f (k)
∥∥∥

√∥∥∥p̂ f (k)
∥∥∥ ∗ ∥∥∥p f (k)

∥∥∥
(9)

Cor, the similarity measure between p f (k) and its Gaussian
estimation p̂ f (k), is the first extracted feature in this section.

The variance of n f , denoted as σ2
n varies depending on

image texture. For relatively flat region, each region could
be considered having same σ2

n, i.e., n f satisfies white Gaus-
sian noise, and σ2

n usually has low value. For highly tex-
tured regions, σ2

n is different, i.e., n f is colored Gaussian
noise, and σ2

n is higher [4] . Whether n f is colored has in-
fluence on similarity result above. Restore high-frequency
image from wavelet transform of HL, LH and HH subband
in I f , and then mask it with binary boundary map Bbm to get
high-frequency boundary image Hf . Define

fT =
1

S b

∑
pi∈Bb

Var z(Hf (i)) (10)

where S b is the total number of pixels whose value in Bbm is
1. fT measures local texture in boundary parts. Var z(Hf (i))
is the variance of Hf in z × z neighbor of the pixel pi. Here
set z to 3, 5 and 7 respectively. fT is the second feature
extracted in this section.

Restore low-frequency image from wavelet transform
LL subband of I f and then mask with Bbm to get Lf . We
also define an assessment of local flatness:

fF =
1

S b

∑
pi∈Bb

Var z(Lf (i)) (11)

Var z(Lf (i)) is the variance of Lf in z×z neighbor of the pixel
pi. Set z to 3, 5 and 7 respectively. fF is the third feature
extracted in this section.

Fridrich’s algorithm in the work [4], which divides an
image into blocks and estimates the noise parameter in
blocks to verify their consistency, has a requirement that
spliced parts are from cameras of different brands. If spliced
parts are from cameras of same brand, the method fails. The
proposed method in this paper is free from this precondi-
tion because it only checks noise features along boundary
parts. As noted in Sect. 2, the CFA alignment is unlikely for
spliced parts.

4. Classifier

For each image, the proposed algorithm gets features with
fixed length. Feed all features above to a SVM with radial
basis function(RBF) kernel to classify authentic images and
tampered ones. We use grid searching to select parameters
for the classifier.

5. Simulations

We construct image dataset to verify the proposed algo-
rithm. We use camera dataset with images from Canon,
Olympus, Nikon and kodak. These images are in JPEG for-
mat. Besides, other images are from iphone and Samsung
mobile phone. All images are captured completely random
with different scenarios and lighting conditions. All tam-
pered images are touched by photoshop. Copy region from
one image and paste to another to construct a spliced im-
age. Spliced region can be arbitrary. The forgery set is
further divided into two subsets: (I)forgery images whose
spliced parts have no further operation following splicing;
(II)images whose spliced parts undergo post-processing.
The training samples are randomly selected from the im-
age dataset. We randomly choose 800 authentic images and
1200 tampered ones for training, and test on all remain-
ing images. 600 forgery images in subset I and 600 ones
from subset II, consist of forgery training images. Set the
parameter Wb in Sect. 2.2 to 17. In Sect. 2.4, n equals to
15. The fraction of correctly classified tampered images Pd,
and the percentage of authentic images wrongly classified
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Fig. 1 ROC of two forgery subsets with proposed features

Fig. 2 ROC of first forgery subsets

as tampered P f are computed to obtain the receiver oper-
ating characteristics (ROC). We study ROC on two forgery
subsets separately. Figure 1 shows ROC of the proposed al-
gorithm. Our forensic detector provides accurate detections
for those spliced images. The method is more efficient in de-
tecting those spliced images whose edges are post-processed
to conceal visual perceptibility.

To explore the efficiency of extracted features, we add
proposed features to features in [3], and then verify the com-
bined features with forgery subset I. Result in Fig.2 indicates
that proposed features increase detection performance. For
splicing subset I, features in [3] together with features in
Sect. 2 can increase Pd slightly. Features in [3] and all pro-
posed features can improve ROC dramatically. Figure 2 also
indicates the effectiveness of noise features in Sect. 3.

6. Conclusions

The paper addresses how to expose photographic splicing

forgery. Firstly, we segment a photo to capture only those
perceptually important aspects of complex imagery. Then
pixels in the image are predicted using NGLS method, ac-
cording to their neighbors. Prediction error often occurs
along boundary or rich texture region. With consideration
of CFA interpolation, an unaltered image indicates differ-
ent prediction error statistical features from a spliced one.
The difference becomes more obviously if the forgery one is
post-processed along boundary. K-means clustering is used
to construct dictionary for vector quantization(VQ), and VQ
is applied for all features above in each pair of two neigh-
bor region. The histogram of word counts is a vector with
fixed length, which would be fed to SVM together with other
features. As a contrast to prior work [2], in the proposed
algorithm SVM classifier runs only once and therefore the
method has lower computation labor. For a spliced image,
noise distribution is a Gaussian one with zero mean. The
proposed algorithm fits noise image with Gaussian distri-
bution and then measures their similarity, together with flat-
ness and texture measurement. All features above are finally
fed to a SVM classifier with RBF kernel. Experiments in-
dicate that the proposed method is effective in disclosing
spliced photographic. Proposed features can also be used
together with other features in previous literatures, to fur-
ther improve the fraction of correctly classified tampered
images.
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