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Inequality-Constrained RPCA for Shadow Removal and
Foreground Detection
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SUMMARY State-of-the-art background subtraction and foreground
detection methods still face a variety of challenges, including illumination
changes, camouflage, dynamic backgrounds, shadows, intermittent object
motion. Detection of foreground elements via the robust principal compo-
nent analysis (RPCA) method and its extensions based on low-rank and
sparse structures have been conducted to achieve good performance in
many scenes of the datasets, such as Changedetection.net (CDnet); how-
ever, the conventional RPCA method does not handle shadows well. To
address this issue, we propose an approach that considers observed video
data as the sum of three parts, namely a row-rank background, sparse mov-
ing objects and moving shadows. Next, we cast inequality constraints on
the basic RPCA model and use an alternating direction method of multipli-
ers framework combined with Rockafeller multipliers to derive a closed-
form solution of the shadow matrix sub-problem. Our experiments have
demonstrated that our method works effectively on challenging datasets
that contain shadows.
key words: robust PCA, foreground detection, shadow removal, inequality
constraint, ADMM

1. Introduction

Detecting moving objects and removing shadows continue
to play fundamental roles in the analysis and understand-
ing of video sequences. As a first step, most appli-
cations, including content-based video retrieval (CBVR),
video surveillance and security technology, object tracking,
motion capture, video compression, and scene understand-
ing for robots, need to detect a moving object and subtract
the background elements.

The robust principal component analysis (RPCA)
method [6] has been applied in the above fields because of
its robustness and ease of interpretability. A recent eval-
uation [3] demonstrated that some advanced low-rank sub-
space models based on RPCA have already made progress in
different environments and scenes. Remarkably, the block-
sparse RPCA [1] method, which emphasizes on the choice
of the regularization parameter and successfully addresses
the object scale problem, has outperformed many state-of-
the-art approaches when applied to the CDnet [9] dataset;
however, this approach did not successfully process the
shadow scene.

Besides the issue of object scale, we suggest that
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shadow detection and removal will increasingly be a prob-
lem inherent in RPCA background subtraction. From a
systematic evaluation of shadow detection [5], we conclude
that extracting objects in a bounding box without shadow
removal will result in 50% error pixels or worse in some
scenes. Also, the error will propagate to subsequent phases,
such as object recognition, tracking, and object retrieval, es-
pecially when applied to huge video stream databases. A
recent idea for addressing the shadow problem is to use dif-
ferent sensors and near-infrared information [8], but most
video streams are still in the visible spectrum.

To improve shadow detection performance while using
RPCA method, we propose an intuitive method for decom-
posing the video matrix into three parts. Through casting an
inequality constraint on the shadow matrix, we effectively
separate the moving object matrix and shadow matrix in
one step via the alternating direction method of multipliers
(ADMM) framework.

2. Inequality Constraint RPCA for Shadow Detection

Due to similar patterns of moving objects and correspond-
ing shadows, the RPCA methods introduced above face sig-
nificant difficulty in extracting moving shadows without any
constraints. Some constrained methods [4] have been shown
to facilitate extraction and tracking of the object in an im-
age sequence. In this section, we introduce a three-part
inequality-constrained RPCA (ICRPCA) model and its al-
gorithm.

2.1 Three-Part ICRPCA Modeling

Before decomposition, every image in a video stream with
resolution w × h will first be reshaped into vector d ∈ Rm,
where m = w×h. To process n frames in the video, we stack
n vectorized image frames into observed matrix D ∈ Rm×n.
Here, D can be decomposed into low-rank matrix A repre-
senting the background and two sparse outlier matrices E
and S that represent moving objects and shadows, respec-
tively. Detecting moving objects and shadows is encapsu-
lated by the following problem:

min
A,E,S

rank(A) + λ1‖E‖0 + λ2‖S ‖0
s.t. D = A + E + S , S � C.

(1)

Here, ‖·‖0 represents the number of non-zero entries in a ma-
trix. Given this problem, we need to assume that the rank of
A is low. This is a weak assumption, i.e., most of the back-
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ground matrix A’s columns are linearly correlated; however,
the assumption is often valid since the background is often
almost static. In (1), inequality constraint S � C means that
the pixel intensity of shadow matrix S might be less than
the proper threshold C. Since we will not know the extract
position of moving outliers, the inequality constraint is valid
for all pixels in the frames.

Further, the convex relaxation of (1) is as follows:

min
A,E,S

‖A‖∗ + λ1‖E‖1 + λ2‖S ‖1
s.t. D = A + E + S , S � C.

(2)

Here, ‖ · ‖∗ is the nuclear norm of a matrix, i.e., the sum of
the singular values and ‖ · ‖1 denotes L1 norm of the given
matrix. Further, λ1 and λ2 are regularization parameters.

The augmented Lagrangian function of (2) is defined
as follows:

L(A, E, S ,Y,R, μ) = ‖A‖∗ + λ1‖E‖1 + λ2‖S ‖1
+ 〈Y,D − A − E − S 〉 + μ

2
‖D − A − E − S ‖2F

+
1

2μ
(‖P+(R + μ(S −C))‖2F − ‖R‖2F)

(3)

Here, the non-positive function P+(·) is as follows:

P+(u) =

{
u u � 0,
0 u < 0.

(4)

Based on the augmented Lagrangian method (ALM), Y in
(3) is the multiplier matrix and μ is the penalty factor. The
〈, 〉 operator calculates the inner product of two matrices;
and ‖ · ‖F denotes Frobenius norm of a matrix. Therefore,
the two terms in the second line of (3) convert the equal-
ity constraint into the Lagrangian function. Similarly, the
term in the third line of (3) adds the inequality constraint
via Rockafeller multiplier methods [10]. By introducing a
slack variable and solving the minimization problem for the
slack variable, the inequality constraint problem is naturally
equivalent to the equality constraint problem. Thus, matrix
R in (3) is the multiplier matrix of the inequality constraint
term (its specific proofs and details are explained in [10]).

2.2 Algorithm Framework and Solution of Shadow Matrix

In this subsection, we solve the problem formulated in
Eq. (3), i.e., the three-part ICRPCA. With the help of the
ADMM framework and the Inexact ALM (IALM) described
in [7], we develop our three-part ICRPCA via IALM as Al-
gorithm 1.

The convergence of three-part ADMM is explained in
[2], in which He et al. suggested that there is little difference
between ADMMs with or without the use of Gaussian back
substitution, and in practice, the process always achieves an
O(1/k) convergence rate. Therefore, under the convergence
guarantee, the next major step is to derive the closed-form
solution of the sub-problem for shadow matrix S . Accord-
ing to (3), we can use Z = D − A − E + Y/μ; then, the local
first-order condition for variable S is as follows:

Algorithm 1 Three-part ICRPCA via IALM
Input:

Matrix D ∈ Rm×n, λ1, λ2;
Output:

Estimates of E, S , A;
1: Initialization: Y0 = D/J(D), E0 = 0, S 0 = 0, μ > 0, ρ > 1, k = 0;
2: while not converged do
3: //Line 4 solves Ek+1 = arg minE L(Ak , E, S k,Yk ,Rk , μk) as (3)
4: Ek+1 = Sλ1/μk (D − Ak − S k + Yk/μk);
5: //Lines 6–7 solves Ak+1 = arg minAL(A, Ek+1, S k+1,Yk ,Rk , μk)
6: (U,Σ,V) = svd(D − Ek − S k);
7: Ak+1 = US1/μk (Σ)VT ;
8: //Line 9 solves S k+1 = arg minS L(Ak+1, Ek+1, S ,Yk ,Rk, μk)
9: S k+1 = S∗(D − Ak+1 − Ek+1 + Yk/μk);

10: Yk+1 = Yk + μk(D − Ak+1 − Ek+1 − S k+1);
11: Rk+1 = max(0,Rk + μk(S k+1 −C));
12: μk+1 = min(ρμk , 107μ0);
13: k ← k + 1.
14: end while
15: return Ek , S k , Ak;

Fig. 1 Asymmetric shrinkage for solution of shadow matrix with
(a) c − r/μ � 0 and (b) c − r/μ < 0.

0 ∈ ∂L
∂S
= λ2∂‖S ‖1 + μ(S − Z) + [R + μ(S −C)]∂P

(5)

Here, C is a constant threshold matrix calculated by ob-
served matrix D; in practice, C is usually related to the aver-
age intensity of D. Therefore, different thresholds should be
discussed in full range of C and its corresponding parame-
ters. For simplicity, we use lower case (s, z, r, c) to represent
the entry of the corresponding matrix variables. In (5), the
two sub-gradients (∂‖S ‖1, ∂P) should be discussed. Fortu-
nately, when s = c− r/μ, the term [r+ μ(s− c)]∂P is always
equal to 0. We further derive the solution in the two forms
shown in Fig. 1, with c − r/μ shown for different numerical
ranges.

Specifically, when c − r/μ � 0, the matrix entry of
S∗(Z) is defined as follows:
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S∗(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (z + c − r

μ
− λ2
μ

), z � c − r
μ
+ λ2
μ

;

z − λ2
μ
, λ2

μ
� z < 0;

0, − λ2
μ
� z < λ2

μ
;

z − λ2
μ
, z � − λ2

μ
.

(6)

And when c − r/μ < 0, S∗(z) is as follows:

S∗(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (z + c − r

μ
− λ2
μ

), z � −c + r
μ
+ λ2
μ

;

0, −c + r
μ
− λ2
μ
� z < −c + r

μ
+ λ2
μ

;
1
2 (z + c − r

μ
+ λ2
μ

),

c − r
μ
− λ2
μ
� z < −c + r

μ
− λ2
μ

;

z + λ2
μ
, z < c − r

μ
− λ2
μ
.

(7)

We call the piecewise functions of (6) and (7) asymmetric
shrinkage functions, which are easy to implement via min
or max operators. As shown in Fig. 1, when S stay in the
feasible domain of inequality constraint (S � C − R/μ), the
problem is the same as the original shrinkage. But when S
jumps out of the feasible domain, there are a penalty cast on
input Z. So the slope of the shrinkage function became to
0.5 (not the 1.0) and force the input Z to reduce faster into
the feasible domain than the symmetric shrinkage. In other
words, the asymmetric shrinkage has ability of controlling
the numeric scale or constraint which the original method
doesn’t have.

In the experiment, we used Algorithm 1 with well-
tuned parameters defined as follows: n = 100; Ci, j =

0.3mean(D); μ0 = 1.25/‖D‖2, ρ = 1.5, and J(D) =
max(‖D‖2, √m‖D‖∞), where ‖ · ‖2 and ‖ · ‖∞ are the spec-
tral norm and l∞ matrix norm, respectively; λ1 and λ2 are
set to 0.5/

√
m and 0.4/

√
m, respectively; and the conver-

gence condition on Line 2 of Algorithm 1 is ‖D − Ak − Ek −
S k‖2F + ‖max(S k −C,−Rk/μk)‖2F < 10−6. To post-process the
results, we used the 3σ method recommended in [1].

2.3 Results

Representative results are shown in Fig. 2, demonstrating
that our ICRPCA method can effectively separate the mov-
ing shadow regions. In the first row of the Fig. 2, raw image
sequences extracted from the CDnet [9] and shadow evalua-
tion [5] are shown. The second row shows the correspond-
ing ground truth. And in the next 4 rows, there are Chro-
maticity [12], Large region texture (LR Texture) [11], LOB-
STOR [15] and Multi-Cues [13] which are usually used to
detect the foreground and remove the shadow. The first
two of them are the individual shadow removal process af-
ter GMM background subtraction. If the background sub-
traction don’t work well, the shadow removal step is often
failed as well. We show this situation in column 2, row 3 and
4. And the rest of them are shadow invariant object detec-
tion methods based on multi-feature and local binary sim-
ilarity patterns. In the bottom three rows, we compare our
three-part ICRPCA method to the classic RPCA method via
IALM [7] and hard-threshold RPCA method (RPCA-HT).

Fig. 2 ICRPCA results (bottom row) versus other methods for moving
object detection.

In the RPCA-HT, we first get the foreground via classic
RPCA, and simply use a constant value C which is the same
as the one mentioned in (3) to threshold the pixels in the
foreground region.

To distinguish the shadow region in our results, we
used gray intensity value (255, 50, 0) to represent the mov-
ing foreground pixel, the shadow, and the background, re-
spectively. As mentioned in the Introduction, the real in-
tention of using RPCA method is to provide fundamental
binary data for further detection or tracking. We there-
fore added bounding boxes automatically to our results with
morphology and image region tools in matlab, also shown in
the figure. In column 1, all other methods except the RPCA-
HT and ours add a large error region, which is caused by the
moving shadow entering the foreground; this results in the
subsequent detection phase to incorrectly identify two mov-
ing objects instead of just one. And in column 2, methods
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which are based on chromaticity and texture are failed to
detect the foreground because GMM background subtrac-
tion doesn’t works well on this scene. In column 3, the
MutilCue, LOBSTER, and RPCA-IALM methods are not
so robust to shadows. In essence, the inequality constraint of
our method causes most entries of sparse matrix S (i.e., the
background pixels) to be close to constraint c, but less than
c. In other words, we do not have a hard threshold here, but
rather a soft threshold with constraint of the mean value of
the whole sparse matrix. Therefore, as evident in column 2,
our method can distinguish shadows from the moving dark
color foreground to a significant extent.

Lastly, we report on the amount of computations costed
by our ICRPCA algorithm on a work station with Intel i5-
4690 CPU and 4GB memory executing Matlab code. The
average processing time on a sequence of 100 frames with
resolution 320 × 240 is about 21 seconds. So it can be used
as the first step of our surveillance video analysis, index-
ing and searching system. The comparative experiments are
also with the help of BGSLibrary [14].

3. Conclusions and Future Work

Error pixels in an object’s bounding box or an erroneously
detected object will clearly cause interference to object
recognition or tracking applications. Our proposed ICR-
PCA method overcomes these limitations and problems by
successfully removing moving shadows and effectively sep-
arating foreground elements. In the future, we will study
moving camera scenes. Moreover, additional types of con-
straint forms will be discussed. Extensive experiments are
also needed on a wider range of different datasets.
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