
960
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

LETTER

Efficient In-Network Processing of Continuous Grouped
Aggregation Queries in Sensor Networks

Inchul SONG†a), Member, Yohan J. ROH†b), and Myoung Ho KIM††c), Nonmembers

SUMMARY In this letter, we propose an energy-efficient in-network
processing method for continuous grouped aggregation queries in wireless
sensor networks. As in previous work, in our method sensor nodes partially
compute aggregates as data flow through them to reduce data transferred.
Different from other methods, our method considers group information
of partial aggregates when sensor nodes forward them to next-hop nodes
in order to maximize data reduction by same-group partial aggregation.
Through experimental evaluation, we show that our method outperforms
the existing methods in terms of energy efficiency.
key words: grouped aggregation query, sensor network, multipath routing

1. Introduction

In this letter, we propose an energy-efficient way of answer-
ing continuous grouped aggregation queries in wireless sen-
sor networks (WSNs). A continuous grouped aggregation
query (aggregation query in short) divides tuples of sensor
readings into disjoint groups and reports an aggregate for
each group in a predefined interval. For example, the user
may pose the following query to monitor the occupancy of
the rooms in a building: “Report the average loudness of
each room on the sixth floor of a building every 60 seconds.”

In-network processing of aggregation queries is a
widely accepted technique to reduce energy consumption
for wireless communication in WSNs [1]. The main idea is
that aggregates are partially computed in the network to re-
duce data transferred as data flow through the sensor nodes.
In previous work [1]–[3], in-network processing is typically
conducted on a routing tree rooted at the base station. When
receiving tuples or partial aggregates from its child nodes,
an intermediate sensor node partially aggregates them into
smaller parital aggregates and forwards them to its parent
node. For grouped aggregation queries, only those tuples
or partial aggregates belonging to the same group can be
partially aggregated. The more the same-group partial ag-
gregation occurs, the less data is transferred.

In this letter, we propose an energy-efficient in-network
processing method called Group-aware Multipath Rout-
ing (GMR) for continuous grouped aggregation queries in
WSNs. In all of existing methods, sensor nodes forward

Manuscript received November 21, 2014.
Manuscript publicized January 21, 2015.
†The authors are with Samsung Advanced Institute of Technol-

ogy, Korea.
††The author is with KAIST, Korea.
a) E-mail: icsong@gmail.com
b) E-mail: yohan.roh@samsung.com
c) E-mail: mhkim@dbserver.kaist.ac.kr

DOI: 10.1587/transinf.2014EDL8237

tuples or partial aggregates to pre-determined parent nodes
without considering their group information. On the other
hand, our method is built upon a novel group distance mea-
sure with which sensor nodes determine where tuples of a
certain group may be generated. Based on this information,
sensor nodes forward tuples or partial aggregates in differ-
ent groups to different next-hop nodes such that the data re-
duction by same-group partial aggregation be maximized.
Through experimental evaluation in a range of simulated
sensor network environments, we show that our method out-
performs the existing methods in terms of energy efficiency
for query processing.

The rest of the letter is organized as follows. In Sect. 2,
we define the problem of answering continuous grouped ag-
gregation queries in WSNs. In Sect. 3, we describe our pro-
posed method in detail. In Sect. 4, we compare the energy-
efficiency of our method to those of existing approaches in
various WSN environments through experimental evalua-
tion. Finally, we conclude the letter in Sect. 5.

2. Preliminaries

A sensor network can be viewed as a distributed table,
named sensors(id, temp, light, loc, ...), which
has the identifier of a sensor node and one attribute for each
sensor. The user of a sensor network can query this sensors
table by using an SQL-like query language. Continuous
grouped aggregation queries for WSNs can be expressed as
follows [1]:

SELECT {aggregates, selected-attributes}
FROM sensors WHERE conditions-for-tuples

GROUP BY {group-attributes}
HAVING conditions-for-groups EVERY e.

The semantics of the above query is almost the same
as the SQL aggregation query, except for the EVERY
clause. A set of tuples, each of which is in the form of
<group id,aggregate1,aggregate2,...> per group, is
produced with a timestamp for each epoch. The duration
of each epoch is specified by the EVERY clause. We con-
sider only standard SQL aggregation operators (i.e., AVG,
SUM, MIN, MAX, and COUNT) in this letter.

Given a continuous grouped aggregation query, we
want the results to be collected at the base station once for
each epoch in such a way that data reduction by in-network
processing be maximized.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

LETTER
961

3. Group-Aware Multipath Routing

We model a sensor network as a connected undirected graph
G = (V, E). There is one distinguished node, called the root
node that is directly connected to the base station. There is
an edge between two nodes if they can communicate with
each other. The distance of vi in graph G, denoted by dG(vi),
is the length (i.e., the number of edges) of any shortest path
between vi and the root node, v0. The stratified graph S =
(V, E′) of a graph G = (V, E) is a subgraph of G, where an
edge {vi, v j} ∈ E is in E′ if and only if |dG(vi) − dG(v j)| = 1.
Figure 1 (a) shows a stratified graph with nine sensor nodes
(v0 is the root node). A node v is at level i if dG(v) = i.

Definition 1. Let S = (V, E) be a stratified graph. We define
a successor relation→ on V as follows:

→= {(vi, v j)| {vi, v j} ∈ E and dS (vi) = dS (v j) + 1}.
If a pair (vi, v j) is in →, we use a notation vi → v j.

When vi → v j, we say that v j is a successor of vi and vi is a
predecessor of v j. If a node has no predecessor, it is called
a terminal node. Otherwise, it is a non-terminal node. The
transitive closure of→ is denoted by→+. When vi →+ v j,
we say that v j is reachable from vi. Note that for any non-
root node vi, vi →+ v0 holds, where v0 is the root node. For
example, in Fig. 1 (a), the successors of v6 are v3 and v4, and
the nodes that are reachable from v6 are v3, v4, v1, v2, and
v0.

Given a query q, a node whose sensor readings satisfies
the conditions in the WHERE clause of the query is called a
qualified node (shortly, a Q-node) of q. For the query men-
tioned in Sect. 1, Q-nodes are the nodes on the sixth floor in
a building. Each Q-node is assigned a group ID based on
the group to which its sensor readings belong, which is de-
termined by the GROUP BY clause of the query. The group
ID of a Q-node v is denoted by Gq(v). For the aforemen-
tioned query, the group ID of a Q-node is the room number
where the node is placed.

In the following, we define the minimum aggregatable

Fig. 1 Q-nodes for three groups and minimum aggregatable distances.

distance (MD) that is assigned to every node for each group
of a given query. An intermediate node v uses the MD values
of its successor nodes to determine to which successor node
to forward each partial aggregate during query processing.

Definition 2. Given a stratified graph S = (V, E) and a
query q, the minimum aggregatable distance (MD) of a node
vi for a group g, denoted by MDq(vi, g), is defined as follows:

(1) If Gq(vi) = g, MDq(vi, g) = 0.
(2) Otherwise, MDq(vi, g) = min{dS (vi, v j) | vi →+ v j,

where Gq(v j) = g or v j is the root node}.
In other words, MDq(vi, g) is the distance from node vi

to the closest reachable Q-node belonging to group g on the
paths from vi to the root node v0. For example, in Fig. 1 (a),
all nodes except node v2 are Q-nodes for a given query q and
a group ID is indicated next to each Q-node in the figure.
Figure 1 (b) shows the MD values of nodes for groups g1,
g2, and g3. Note that when k number of groups are formed
by a query, each node has k number of MD values.

Observation 1. Let q be a given query. For the following
two cases (1) and (2), the MD of node v for group g can
be computed as follows: MDq(v, g) = min{MDq(w, g) | v →
w} + 1.

(1) v is a Q-node for query q, but Gq(v) � g.
(2) v is not a Q-node for query q.

From Observation 1, we can see that when MDq(v, g)
is not zero, it can be calculated based on only the MDs of
node v’s successors.

3.1 Distributed MD Computation

GMR proceeds in two phases: the setup phase and the query
processing phase. In the setup phase, which is executed
before any query is issued, the stratified graph of a sensor
network is constructed: that is, each node finds its distance
from the root node (i.e., its level) and determines its succes-
sors. To this end, a distance message floods from the base
station down to the network. This message contains an in-
teger, called a distance value, which is initially zero in the
root node and then incremented one by one as the message
passes through sensor nodes. Every node v j that sends a dis-
tance message to node vi becomes a successor of vi if the
distance of v j is less than the distance of vi by one. Each
node maintains its distance together with the identifiers of
its successors.

The query processing phase, which begins when the
user poses a query, consists of two steps: query dissemina-
tion and result collection. In the query dissemination step, a
query message that contains the query and the MD values of
the sender floods from the base station down to the network.
Starting from the root node, the delivery of a query message
together with the computation of MD values proceeds level
by level in a stratified graph. MD values at each node are
computed as follows:

962
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

• MDq(v0, g) = 0 for group g such that g = Gq(v0).
• Let vi be a non-root node. For each group g j, j =

1, · · · , k:

– if Gq(vi) = g j, then MDq(vi, g j) = 0.
– Otherwise, MDq(vi, g j)
= min

{
MDq(w, g j)|vi → w

}
+ 1.

Once the query dissemination and MD value compu-
tation are completed, the results of the query are collected
every epoch, which we call the result collection step. GMR
uses the slotted approach as in [4] for time synchroniza-
tion among sensor nodes organized in the form of a strat-
ified graph such that nodes are activated level-by-level from
the highest level nodes towards lower level nodes. A node,
in its time slot, first samples sensors, performs in-network
processing with the data received from its predecessors and
its own sensor readings, and produces several partial aggre-
gates. Then it forwards these partial aggregates to its suc-
cessors by the algorithm we describe next.

3.2 Multipath Routing with In-Network Processing

In this section we describe how a node forwards aggregates
to its successors based on their MD values. The basic idea
is that, for frequent and early partial aggregation, a node
forwards each aggregate for group g to the successor node
with the smallest MD for group g because that node is the
closest to some node that generates tuples in group g. Sup-
pose a given query is q. For node v, let Wg be a set of
successors of v that have the smallest MD for group g, i.e.,
Wg = arg minu

{
MDq(u, g)|v→ u

}
. Any node in Wg is called

a best successor of node v for group g.
(1) Operations in a terminal node v: If v is not a Q-

node for query q, do nothing and EXIT. Otherwise, let
Gq(v) = g. Create a message that contains a tuple of
the form <group id,aggregate1,aggregate2>. Here,
group id is g, and aggregate1, aggregate2, . . . are sim-
ply the sensor readings of v. Send this message to any best
successor node.

(2) Operations in a nonterminal node v:

• Collect all the messages from its predecessors.
• Perform in-network processing as much as possible to

obtain partial aggregates. Suppose n partial aggregates
(n ≥ 1) agg1, agg2, . . . , aggn are obtained. Let the
group of agg1 be g1, the group of agg2 be g2, . . . , the
group of aggn be gn. For a given partial aggregate aggi,
let Wi be the set of best successors of node v for group
gi.
• Create messages as follows: Initially, create n mes-

sages with one message mi for one partial aggregate
aggi. The number of these messages will be reduced
through the following two-step merging process.

– In the first merging step, we merge two messages
if there is a node that is the best successor for both
messages as follows: repeatedly merge two mes-
sages mi and mj into one message mi if there is at

least one node in both Wi and Wj. Update Wi such
that Wi = Wi ∩ Wj. If the merging of two mes-
sages causes a message overflow, do not merge
them. Repeat until no merge occurs.

– In the second merging step, we further merge mes-
sages by using a heuristic similar to the “first fit”
strategy as follows: repeatedly merge any two
messages mi and mj into one message mi if this
merging does not cause a message overflow. Up-
date Wi such that Wi = Wi ∪Wj. Repeat until no
merge occurs. Let k messages m1, . . . ,mk remain.

• Send k messages to its successors as follows: For i =
1, . . . , k, send each message mi to a node w in Wi that
is selected as follows: Select the node w in Wi that is
the best successor for the maximum number of partial
aggregates in message mi.

Note that the merging of two messages in the first
merging step always allows every partial aggregate in both
messages to be sent towards a closest reachable Q-node in
the same group while the merging in the second merging
step may not.

4. Evaluation

We conduct various experiments to compare our method
with two previous representative routing-tree based ap-
proaches for in-network processing of continuous grouped
aggregation queries in WSNs: TAG [1] and GaNC [3]. Both
of them use a routing tree for in-network processing, as de-
scribed in Sect. 1. What GaNC differs from TAG is that it
forms a routing tree such that sensor nodes that produce tu-
ples belonging to the same group are located close to each
other. However, in both of the methods, each node blindly
forwards tuples or partial aggregates to its pre-determined
parent node, regardless of their groups.

As performance metric, we use the total amount of en-
ergy consumption for wireless communication in collecting
the results of a grouped aggregation query in one epoch. We
model per-message energy consumption by the following
model used in [5]: energy = m × message size + b, where
m and b are device-specific constants, and message size de-
notes the size of message in bytes. As in [5], when sending
a message, m and b are set to 0.0144 mJ and 0.4608 mJ,
respectively; when receiving a message, m and b are set to
0.00576 mJ and 0.1152 mJ, respectively.

In our experiments, sensor nodes are deployed ran-
domly in a rectangular area whose size is 600m × 600m.
The base station is placed at the center of the network. The
communication range of each sensor node is set to 30m. A
grouped aggregation query divides sensor readings into dis-
joint groups. There are 10 groups by default. The selectiv-
ity, whose default value is 25%, specifies what percentage of
nodes are Q-nodes. Each Q-node belongs to a certain group
with equal probability. The node density, which is set to 10
in all experiments, denotes the average number of neighbor
nodes. The default size of a partial aggregate is 10 bytes

LETTER
963

Fig. 2 Experimental results.

Table 1 Various parameters used in the experiments.

Parameter Default value Range

Network size (m2) 600 × 600 —
Communication range (m) 30 —
Number of groups 10 1–19
Selectivity (%) 25 1–100
Node density 10 —
Size of partial aggregate (byte) 10 6–20

and a single message can contain up to 29 bytes. Table 1
summarizes the default values and ranges of the parameters
used in the evaluation. We assume that wireless communi-
cation is lossless. All the values in the figures are obtained
by computing the average of ten executions of a query over
randomly generated sensor networks.

In Fig. 2 (a), we vary the number of groups formed
by a query from 1 (aggregation query without grouping)
to 19 (close to a non-aggregation query where most of the
Q-nodes are in different groups). As shown in the figure,
GMR outperforms the other methods in all cases because
of its group-aware forwarding. Figure 2 (b) shows the re-
sults when we vary the selectivity from 1 (only few nodes
are Q-nodes) to 100 (the entire nodes are Q-nodes). When
the selectivity is low, the chances of in-network process-
ing are low in all the methods. However, as the selectiv-
ity increases, GMR reduces more data by increased same-
group partial aggregation through multipath routing. Lastly
we vary the tuple size from 6 (partial aggregates of small
sizes—few messages are used) to 20 (partial aggregates of
large sizes—every aggregate is sent in a separate message)

in Fig. 2 (c). The performance difference is noticeable when
the tuple size is large. This is because every partial aggre-
gate is sent in a separate message, and thus can be sent to-
wards a closest reachable Q-node in the same group.

5. Conclusions

We proposed an energy-efficient group-aware query pro-
cessing method for continuous grouped aggregation queries
in WSNs. The key idea is that an intermediate node for-
wards tuples or partial aggregates such that the chances of
same-group partial aggregation be maximized. We showed
through experimental evaluation that our method outper-
formed the existing tree-based methods in various sensor
network environments.

References

[1] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” SIGOPS Oper.
Syst. Rev., vol.36, no.SI, pp.131–146, 2002.

[2] Y. Yao and J. Gehrke, “Query processing in sensor networks,” CIDR,
pp.233–244, 2003.

[3] A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis, “Balancing
energy efficiency and quality of aggregate data in sensor networks,”
The VLDB Journal, vol.13, no.4, pp.384–403, 2004.

[4] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong,
“TinyDB: An acquisitional query processing system for sensor net-
works,” ACM Trans. Database Syst., vol.30, no.1, pp.122–173, 2005.

[5] B. Chen, W. Liang, and J. Yu, “Energy-efficient skyline query opti-
mization in wireless sensor networks,” Wireless Netw., vol.18, no.8,
pp.985–1004, 2012.

