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Learning Deep Dictionary for Hyperspectral Image Denoising∗

Leigang HUO†,††, Xiangchu FENG†, Nonmembers, Chunlei HUO††a), Member,
and Chunhong PAN††, Nonmember

SUMMARY Using traditional single-layer dictionary learning meth-
ods, it is difficult to reveal the complex structures hidden in the hyperspec-
tral images. Motivated by deep learning technique, a deep dictionary learn-
ing approach is proposed for hyperspectral image denoising, which consists
of hierarchical dictionary learning, feature denoising and fine-tuning. Hi-
erarchical dictionary learning is helpful for uncovering the hidden factors
in the spectral dimension, and fine-tuning is beneficial for preserving the
spectral structure. Experiments demonstrate the effectiveness of the pro-
posed approach.
key words: dictionary learning, deep learning, hyperspectral image de-
noising, fine-tuning

1. Introduction

Hyperspectral image denoising is an important preprocess-
ing step for the subsequent procedures such as classification
and target recognition. However, hyperspectral image de-
noising is more challenging than the multispectral images
due to the complex noise caused by the high spectral bands.

Dictionary learning is an effective tool for image de-
noising. As for the hyperspectral images, in order to avoid
the prohibitive computation and improve the separability be-
tween the signal and noise, the dictionaries are usually ap-
plied on the reduced feature space instead of the original
high dimensional spectral space. For instance, Chen [1], [2]
proposed to keep the first few significant components and
denoise the components of low energies individually by bi-
variate wavelet thresholding [1] and BM3D [2], [3] respec-
tively, followed by 1-d wavelet shrinkage along the spec-
tral dimension. Lam [4] suggested projecting the hyper-
spectral image into the feature space spanned by the first
few eigvectors and denoising the transformed components
separately by the bilateral filtering. Lam’s approach outper-
forms Chen’s approaches [1], [2] due to the difficulty of the
latter technique in selecting the proper “clean” components
and balancing the fine features and noise. The other way to
learn the dictionary is by matrix factorization. For instance,
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Cerra [5] proposed to denoise the hyperspectral images si-
multaneously with the unmixing procedure, where the end-
member acts as the role of the dictionary.

Despite of the effectiveness in removing noise, the tra-
ditional dimension reduction and dictionary learning frame-
work is limited for hyperspectral images due to the “shal-
low” architecture. In other words, the complex hidden
relationship between the original high-dimension spectral
space and the reduced low-dimension feature space is dif-
ficult to be revealed using the simple single-layer dictio-
nary learning configuration. To address this problem, a
novel hyperspectral image denoising approach is proposed
based on deep dictionary learning. The main difference be-
tween the proposed approach and the traditional ones lies
in the hierarchical dictionary learning architecture and the
back-propagation mechanism. By the hierarchical dictio-
nary learning architecture, the separation between the sig-
nals and noises is improved progressively. By taking ad-
vantages of the back-propagation mechanism, the spectral
structure and the useful detail can be preserved.

2. The Proposed Approach

As illustrated by Fig. 1, three following steps are involved in
the proposed approach, and we will elaborate the detail step
by step below.

2.1 Hierarchical Dictionary Learning

Given the observed hyperspectral image X ∈ Rp×n and the
clean version Y ∈ Rp×n, the hyperspectral image denois-
ing problem can be modeled as X = Y + e, where p is
the band number, n = h × w, h and w denote the row
and column number of each band, the ith row of X is ex-
tracted from the ith band by the row-wise manner. e is the

Fig. 1 The flowchart of the proposed approach
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additive signal-independent noise mainly caused by elec-
tronic devices. Dictionary learning is to learn a group of
bases(dictionary) D ∈ Rp×k and approximate the hyperspec-
tral image by X = DC. C denotes the decomposition coeffi-
cient.

The aim of hierarchical dictionary learning is to learn
the hidden structures of the original data progressively. As
illustrated in Fig. 1, hierarchical dictionary learning is real-
ized by the successive dictionary learning. In detail, at the
first layer, the hyperspectral image X is approximated as

X ≈ D1C1 (1)

Where D1 ∈ Rp×k1 , C1 ∈ Rk1×n. p is the number of dictionary
atoms, and k1 the dimension of each atom. At the ith(2 ≤
i ≤ m) layer, the feature(the decomposition coefficient) Ci−1

achieved at the i − 1th layer is decomposed as

Ci−1 ≈ DiCi (2)

Where m is the levels of dictionary learning, Ci−1 ∈ Rki−1×n,
Di ∈ Rki−1×pi , Ci ∈ Rpi×n. The hierarchical dictionary learn-
ing problem can then be modeled as the concatenative ma-
trix multiplication:

X ≈ D1D2 · · ·DmCm (3)

The hierarchical dictionary learning procedure can be
considered as the progressive dimension reduction layer by
layer. For the traditional single-layer dimension reduction
technique such as PCA, the dimensions of the features are
reduced dramatically, and the real useful information may
be killed and difficult to be recovered.

Various dictionary learning techniques can be used for
this step without problem. Since the focus of this paper
is validating the advantages of the deep dictionary learning
framework, for simplicity, the dictionaries are learned by the
convex semi-nonnegative matrix factorization [6], where the
decomposition coefficient Ci contains only non-negative el-
ements. Noting the role of Ci in representing the probabil-
ity(abundance) that each voxel belongs to certain material
types(end-member), this constraint is reasonable.

2.2 Feature Denoising

After hierarchical dictionary learning, the noises are mainly
gathered at the mth layer Cm ∈ Rpm×n. In consequence, fea-
ture denoising is applied on Cm. In this paper, BM3D [3]
is used to denoise each component of Cm. In detail, Cm is
firstly arranged as the data-cube G with the size pm × h × w.
Then, each component in G, Gi ∈ Rh×w, is denoised individ-
ually by BM3D, and the denoised data-cube is reorganized
as 2-D matrix of the size pm × n. For convenience, the de-
noised version of Cm is still denoted as Cm.

2.3 Fine Tuning

Hierarchical dictionary learning is a biased feature learn-
ing procedure, the spectral structure will be impacted by
various factors(such as the decomposition level, dictionary
size and dictionary dimension) if the reconstructed version

X = D1D2 · · ·DmCm is used as the denoised result directly.
To address this problem, the dictionary and decomposition
coefficient at each layer are adjusted iteratively driven by the
reference denoised hyperspectral image Xre f . Considering
the facts that the ideally clean hyperspectral image is diffi-
cult to obtain and that the denoised hyperspectral images by
the promising approaches are similar in performances and
formed to a cluster, it is not necessary for Xre f to have the
very high denoising performance. The role of Xre f is to di-
rect the fine-tuning procedure, and the hyperspectral image
denoising approaches in the literature can be used for gen-
erating Xre f . In other words, the fine-tuning procedure is a
weakly supervised back-propagation, and the denoising per-
formance will be enhanced gradually.

The objective of fine-tuning is to minimize the error
between the reference hyperspectral image Xre f and the re-
constructed denoised version by tuning the dictionary and
the decomposition coefficient layer-by-layer. The cost func-
tion of the fine-tuning procedure is formulated as follows:

Error =
1
2
‖Xre f − D1 D2 · · ·Dm Cm‖2F

= tr[XT
re f Xre f − 2XT

re f D1 D2 · · ·Dm Cm]+

Cm
T

Dm
T · · ·D1

T
D1 D2 · · ·Dm Cm.

(4)

Where Di and Ci denote the adjusted version of Di and Ci

respectively. By setting ∂Error
∂Di
= 0, the update rule of Di can

be achieved as follows:

Di = (AT A)−1AT Xre f Ci
T

(Ci Ci
T

)−1 = A†Xre f Ci
† (5)

Where A = D1 · · ·Di−1, A† = (AT A)−1AT , Ci
†
=

Ci
T

(Ci Ci
T

)−1. Considering the non-negative constraint on
Ci, the update rule of Ci is represented as follows based on
Proposition 4 in [6]:

Ci
jk
= Ci

jk

√√
[AT Xre f ]

jk
+ + [AT A] jk

− Ci

[AT Xre f ]
jk
− + [AT A] jk

+ Ci

(6)

Where P+ =
(|P|+P)

2 and P− = (|P|−P)
2 are the positive and

negative part of the matrix P, respectively. Pjk denotes the
element of P at the jth row and kth column.

The solution of fine-tuning is the alternative update of
Di and Ci, whose initial values are Di and Ci respectively.
The fine-turning procedure starts from the first layer, and
the alternative updates are repeated layer-by-layer until the
stopping criterion is reached. In this paper, the stopping cri-
terion means reaching the maximized iterations(e.g., 100)
or the relative error between two successive iterations is less
than a given threshold(e.g., 0.001).

After fine tuning, the final denoised hyperspectral im-
age Xden is approximated by Xden = D1 D2 · · ·Dm Cm.

3. Experiments

To validate the effectiveness of the proposed approach, three
datasets are illustrated in this paper, one is the synthetic
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hyperspectral image over Indian Pines generated using the
ground truth of Indian Pines data [7] and the spectral sig-
natures extracted from the USGS digital spectral library [8],
and other two datasets are taken over Pavia Center by RO-
SIS [9] and Office by SOC710[10] respectively. Some bad
bands are removed before denoising, and the datasets are
described in detail in Table 1.

The novelties of the proposed approach lie in the hi-
erarchical deep learning and fine-tuning. By experiments,
we found that satisfied performances can be achieved when
the layers are set to be 3, and the performances improved by
more layers can be neglected. The layer configurations for
each dataset are listed in Table 1. For convenience, the pro-
posed approach is denoted as DDL3+FT. To validate the
novelties of the proposed approach, other five related ap-
proaches are used for comparison:

(1) PCA+BM3D. PCA framework [4] is utilized, but
BM3D [11] is used for denoising each component instead
of the bilateral filter. And the results taken by PCA+BM3D
is selected as the reference hyperspectral image Xre f for
DDL3+FT.

(2) rPCA+saBM3D. Robust PCA framework [12] is
utilized, and shape-adaptive BM3D [11] is used for denois-
ing each component.

Table 1 Datasets description

Dataset Size Band number Layer Configuration
Indian Pines 145*145 151 [80,40,20]

Office 640*640 120 [80,60,40]
Pavia Center 646*485 102 [90,60,30]

Fig. 2 Results comparison on Indian Pines, σ = 0.3. (a): noisy pseudo-color image at bands(1,76,151),
(b): PCA+BM3D, (c): rPCA+saBM3D, (d): BM4D, (e): DDL3+FT, (f): DDL1+FT, (g):DDL3.

Fig. 3 Results comparison on Office. (a): noisy image at band 1, (b): PCA+BM3D, (c):
rPCA+saBM3D, (d): BM4D, (e): DDL3+FT, (f): DDL1+FT, (g): DDL3.

Fig. 4 Results comparison on Pavia Center. (a): noisy pseudo-color image at bands (1,51,102), (b):
PCA+BM3D, (c): rPCA+saBM3D, (d): BM4D, (e): DDL3+FT, (f): DDL1+FT, (g): DDL3.

(3) BM4D[13]. BM4D is one of the state-of-arts ap-
proaches for the volumetric data denoising.

(4) DDL3. DDL3 is same as DDL3+FT in hierarchical
deep learning, but fine-tuning is omitted. DDL3 is used to
investigate the importance of fine-tuning.

(5) DDL1+FT. DDL1+FT is similar to DDL3+FT, but
single-layer dictionary learning is used. DDL1+FT is uti-
lized to demonstrate the advantages of multi-layer learning.

For the synthetic dataset, the spectral responses are
normalized to [0, 1], and the noises of varying standard
variances(σ = 0.1, · · · , 0.5) are added to the synthetic data.
PS NR(Peak Signal-to-Noise Ratio) between the denoised
hypersectral image and the ground truth is used for perfor-
mance evaluation. The performances on the synthetic data
are listed in Table 2. For the real datasets, two metrics are

Table 2 Performance comparison on the synthetic dataset

σ 0.1 0.2 0.3 0.4 0.5
PCA+BM3D 39.5 31.8 26.5 22.8 18.3

rPCA+saBM3D 41.1 31.9 26.2 22.1 18.1
BM4D 36.0 30.8 27.7 25.7 22.8

DDL3+FT 40.9 31.9 28.2 26.5 23.1
DDL1+FT 39.6 31.9 26.6 23.0 18.6

DDL3 25.2 22.4 22.0 17.2 14.9

Table 3 Performance comparison on the real data sets

approach Office Pavia Center
PCA+BM3D (0.83, 0.07) (0.38, 0.05)

rPCA+saBM3D (0.84, 0.08) (0.37, 0.04)
BM4D (0.84, 0.07) (0.35, 0.04)

DDL3+FT (0.86, 0.06) (0.41, 0.04)
DDL1+FT (0.84, 0.07) (0.22, 0.14)

DDL3 (0.45, 0.29) (0.20,0.31)
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utilized for performance evaluation: the blind image qual-
ity index Qbqi[14] and spectral angle mapper Qsam[15]. Qbqi

lies within the range (−1, 1), and it is used to measure the
denoised image quality. The larger Qiad is, the better de-
noising performance will be. Qsam is used to evaluate the
spectral structure preservation confidence. Smaller Qsam

means the better performance. In Table 3, the performances
(Qbqi,Qsam) on the real datasets by different approaches are
listed, where Qbqi means the averaged Qbqi over bands.

From Table 2, it can be indicated that the proposed
approach, DDL3+FT, outperforms other techniques. For
instance, at σ = 0.1, PSNR is improved from 39.5 by
PCA+BM3D and 36.0 by BM4D to 40.9 by DDL3+FT.
DDL3+FT is superior to PCA+BM3D and BM4D due to
the multi-layer dictionary learning architecture and back-
propagation mechanism. In detail, DDL3 is inferior to
PCA+BM3D due to the lack of fine-tuning, and DDL1+FT
is comparable with or inferior to BM4D. However, by
taking advantages of multi-layer dictionary learning and
fine-tuning, DDL3+FT exceed other approaches, including
PCA+BM3D who generates the reference for DDL3+FT.
In other words, the improvements cannot be achieved if
only one of the above two factors is considered, hierar-
chical dictionary learning or fine-tuning. The advantages
of DDL3+FT can be validated visually by Fig. 2, where
the results by different approaches are shown. Noting that
rPCA+saBM3D outperforms best at σ = 0.1 due to the
shape-adaptive neighborhoods employed in saBM3D, how-
ever, its performances reduce rapidly with the increasing σ
even with the help of robust PCA, the underlying reason lies
in the low confidence of the shape-adaptive neighborhoods
extracted from the noisy components.

For the real data, as can be informed from Table 3,
DDL3+FT still performs best with respect to image qual-
ity improvement and spectral structure preservation. Similar
to the synthetic data, DDL3 performs worst in two metrics.
Take Office dataset as an example, Qbqi is 0.45 and Qsam

0.29, both metrics are inferior to other approaches, which
can be verified by Fig. 3. The underlying reason lies in the
fact that dictionary learning is the biased feature leaning
procedure, and the bias will be accumulated by the multi-
layer configuration if no reliable supervised information can
be utilized. In contrast, directed by the reference informa-
tion and back-propagation mechanism, DDL1+FT is supe-
rior to DDL3 and even competitive to PCA+BM3D. This
comparison demonstrates the importance of (weakly) su-
pervised information and back-propagation mechanism in
improving the denoising performance. Nevertheless, as il-
lustrated by the performances on Pavia Center dataset, the
improvement by single-layer dictionary learning equipped
with fine-tuning is limited due to its inability in revealing the
complex relations between the features spaces before and af-
ter dimension reduction. For the similar reason, DDL3+FT
outperforms PCA+BM3D and BM4D. In short, the combi-
nation of deep dictionary learning and fine-tuning is very
important for hyperspectral image denoising. From Fig. 3

and Fig. 4, the above remarks can be validated in detail.

4. Conclusion

Hyperspectral image denoising is challenging due to the
complex noises and the limitation of the traditional single-
layer strategy in discovering the complex relationship hid-
den in the dimension reduction procedure. A novel denois-
ing approach is proposed for hyperspectral images based on
the deep dictionary learning architecture and the fine-tuning
mechanism. The former is helpful in revealing the com-
plex hidden factors and improving the image quality, and
the latter plays an important role in preserving the spectral
structure. The future developments are mainly related to the
extension of newly proposed denoising approaches into the
deep dictionary learning framework.
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