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A Study on Consistency between MINAVE and MINMAX in SSIM
Based Independent Perceptual Video Coding

Chao WANG†a), Student Member, Xuanqin MOU†, and Lei ZHANG††, Nonmembers

SUMMARY In this letter, we study the R-D properties of independent
sources based on MSE and SSIM, and compare the bit allocation perfor-
mance under the MINAVE and MINMAX criteria in video encoding. The
results show that MINMAX has similar results in terms of average distor-
tion with MINAVE by using SSIM, which illustrates the consistency be-
tween these two criteria in independent perceptual video coding. Further
more, MINMAX results in lower quality fluctuation, which shows its ad-
vantage for perceptual video coding.
key words: optimal bit allocation, MINAVE, MINMAX, perceptual video
coding

1. Introduction

The goal of optimal bit allocation in video encoding is
to allocate the given quota of bits efficiently to differ-
ent sources so that the best encoding performance can be
achieved. Here, a source can be a group of pictures (GOP),
a frame, or a sub image in a frame (e.g., basic unit (BU) in
H.264/AVC [1]). The optimization of bit allocation among
dependent sources is computationally complex and difficult
to use in practical encoding [2]. Most optimization methods
assume independent sources, e.g., GOPs in a sequence, or
the BUs in an inter-frame [3]–[5].

Generally, the encoding results are evaluated by the av-
erage distortion or quality fluctuation of the sources. There
are two commonly used optimization criteria for bit al-
location problems: the minimum average criterion (MI-
NAVE) and the minimum maximum criterion (MINMAX).
MINAVE suggests minimizing the average distortion of the
sources under the bits constraint, which can be solved with
a constant multiplier by using the Lagrangian multiplier
method [2]. Meanwhile, MINMAX suggests minimizing
the maximum distortion of the sources under the bits con-
straint, which would result in uniform distortion for all
sources [6].

Usually, the distortion metric used in optimal bit allo-
cation is the mean square error (MSE) metric. However, it
is well known that the MSE metric cannot faithfully reflect
perceptual quality. Benefiting from the great progress in
image quality assessment (IQA) studies in the past decade,
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perceptual based metrics such as SSIM [7] have been intro-
duced into image/video encoding [4], [8], [9]. However, to
the best of our knowledge, no work has compared the bit al-
location performance of different optimization criteria when
using perceptual distortion metrics, which motivated the re-
search reported in this letter.

In this letter, we first discuss the properties of MINAVE
and MINMAX based optimizations, and show that there is
some consistency between their solutions when using per-
ceptual based distortion metrics. We then validated this by
encoding experiments. The results show that MINMAX
has similar average distortion to MINAVE and lower quality
fluctuation. This property suggests that MINMAX has the
advantage over MINAVE for perceptual video coding, and
should be used in practical encoding.

The rest of this letter is organized as follows. Sec-
tion 2 briefly introduces the MINAVE and MINMAX cri-
teria, and discusses their relationships when using MSE and
SSIM metrics. Section 3 compares the encoding results on
BU layer bit allocation. Finally, conclusions are drawn in
Sect. 4.

2. MINAVE and MINMAX Criteria for Bit Allocation
among Independent Sources

The purpose of optimal bit allocation is to find the best en-
coding parameters X = {x1, x2, . . . , xN} for the constrained
minimization problem:

min
X

f (X) s.t.
N∑

i=1

ri(xi) ≤ RT , (1)

where f (X) is the objective function, N is the number of
sources, ri(xi) is the number of bits for the ith source which
is encoded by xi, RT is the bit constraint. In this letter, the
encoding parameter xi is the quantization parameter (QP).

In the MINAVE criterion, the objective function is:

f (X) =
N∑

i=1

di(xi), (2)

where di(xi) is the distortion of the ith source. In the MIN-
MAX criterion, the objective function is:

f (X) = max
i∈N

di(xi). (3)

2.1 The Optimal Bit Allocation in Independent Encoding

The MINAVE based constrained minimization problem can
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Fig. 1 An example of the bit allocation between two independent sources
with rate constraint RT . (a) The ideal solutions of MINAVE and MIN-
MAX based optimization, respectively. (b) The situation when MINAVE
and MINMAX have the same solution.

be converted into a non-constrained problem by using
the Lagrange multiplier method with a constant multiplier
λ [2]:

min
X

J(X) = min
X

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

di(xi) + λ ·
N∑

i=1

ri(xi)

⎞⎟⎟⎟⎟⎟⎠ (4)

=

N∑
i=1

min
xi

(di(xi) + λ · ri(xi)) , (5)

where J(X) is the Lagrangian cost function, and λ is de-
termined by RT . Equation (5) is derived from independent
assumption. Geometrically, the solution of independent MI-
NAVE problem is to find for each source a point (xi) on its
R-D curve, at where the tangent has a fixed slope of λ, and
the total number of bits corresponding to these points equals
to RT .

In MINMAX based optimization, the maximum distor-
tion of the sources is minimized, and thus the number of bits
for the source which has the maximum distortion should be
increased. Due to the bits constraint, the bits allocated to the
other sources should then be decreased, and this would in-
crease their distortions. As a result, the ideal balance point is
that the one where all the sources have a constant distortion.
Due to the discreteness of the QPs, constant distortion solu-
tion may not exist, the MINMAX method usually achieves
the solution with the minimum quality fluctuation.

Figure 1 (a) shows the ideal solutions of MINAVE (x1

and x2 with constant slope λ) and MINMAX (x′1 and x′2 with
constant distortion) by taking an example of bit allocation
between two independent sources with bit constraint RT ,
i.e., r1+r2 = r′1+r′2 = RT . In some special case, at any given
distortion d, if the corresponding slopes λ on all the R-D
curves are identical to each other, the solutions of MINAVE
and MINMAX based optimizations will be the same. This
case correspond to that all the R-D curves are overlapped or
parallel along the R-axis, as illustrated in Fig. 1 (b).

2.2 R-D Properties under Different Distortion Metrics

Since the sources have different contents from each other,
their MSE based R-D properties vary a lot. Generally, a
source with complex contents has higher MSE than a source
with simple contents when encoded at similar bit rate. Thus,

Fig. 2 The R-D curves of 7 intra frames with different contents. The
distortions are measured by (from left to right and top to bottom): MSE,
SSIM, NSER, and FSIM, respectively.

Table 1 Test sequences.

ID Sequences ID Sequences
1 bus@CIF 7 container@CIF
2 foreman@CIF 8 walk@CIF
3 coastguard@CIF 9 intotree@720P
4 paris@CIF 10 mobcal@720P
5 flower@CIF 11 parkjoy@720P
6 twoducks@CIF 12 stockholm@720P

the R-D curve of complex source will lie above that of sim-
ple source. However, based on the error masking effect of
HVS [10], the complex sources can tolerate more encoding
error than the simple ones. This will reduce the perceptual
distortion of the complex sources and do the opposite to the
simple ones. As a result, when using perceptual based IQA
metrics, the R-D curves of different sources will be closer to
each other or even overlapped.

Figure 2 shows the R-D curves of 7 frames with dif-
ferent contents which are selected from the sequences in
Table 1 and encoded by the H.264 intra frame encoder at
QP = {10, 15, 20, 25, 30}, respectively. The distortions are
measured by MSE and three perceptual based IQA metrics:
SSIM [7], NSER [11], and FSIM [12]. Here, the perceptual
distortion metrics are defined as:

D(x, y) = 1 − Q(x, y), (6)

where x and y are the original and the reconstructed frames,
respectively, and Q(x, y) is the quality metric function of a
specific IQA index. It is clear that, the R-D curves are more
overlapped by using the perceptual distortion metrics, espe-
cially at moderate and high bit rates, while the MSE based
R-D curves vary greatly between frames.

By encoding a frame with a QP, we can get a data pair
(d, λ), where d is the distortion of the frame and λ is the
slope of the tangent at the corresponding point on the R-
D curve. We draw the data pairs (d, λ) of all the encoded
frames in Fig. 3. MSE and SSIM metrics are used here. The
SSIM based distortion metric is denoted as DSSIM here-
after. The slope λ of the ith frame at QP xi is calculated by:

λi(xi) =
1
2

(
di(xi)− di(xi − t)
ri(xi − t)− ri(xi)

+
di(xi)− di(xi + t)
ri(xi + t)− ri(xi)

)
, (7)
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Fig. 3 The distribution of (d, λ) of independent frames under different
distortion metrics MSE (left) and DSSIM (right).

where t is an integer that is set as 5 here.
We can see from Fig. 3 that, the (d, λ) points under

DSSIM locate in a narrow band, which indicate that the cor-
responding R-D slopes are nearly the same under a given
distortion. Recall the discussion in Sect. 2.1, these findings
illustrate that by using perceptual distortion metrics, the out-
put of MINMAX is consistent with MINAVE. However, this
property does not hold for MSE. We will validate this con-
clusion by practical encoding in next section.

3. Experiments and Results

In this section, we compare the encoding performance of
MINAVE and MINMAX based optimal methods on BU
layer bit allocation in P frames. Both MSE and DSSIM
metrics are used for comparing. The H.264/AVC baseline
encoder [1] is used here, in which the encoding of BUs in-
side a P frame are independent of each other. The sequences
used for comparison are listed in Table 1. In the encoding,
each GOP has 15 frames, with an I frame followed by all
P frames. Each sequence was encoded by three methods:
the fixed QP method (which encodes all the BUs in a frame
with a fixed QP), and the MINAVE and MINMAX based
optimal bit allocation methods. In the two optimal meth-
ods, the I frames were encoded by the same QP used by the
fixed QP method. The QPs for the BUs in each P frames for
the two optimal methods were selected optimally by a full
search method based on MINAVE and MINMAX criteria,
respectively, constrained by using the same number of bits
that used by the fixed QP method. In all the three methods,
the reference frame number was set to 1 for simplicity. In
the CIF sequences, a BU is constituted by a group of 2x2
MBs, and in the 720P sequences, it is a group of 5x5 MBs.
The encoding performance was compared in terms of aver-
age distortion and quality fluctuation, respectively.

3.1 R-D Performance and QP Assignment

The encoding results of bus based on MSE and DSSIM met-
rics are shown in Figs. 4 and 5, respectively, where the QPs
used by the fixed QP method are {10, 15, 20, 25, 30}. In the
figures, Mean(D) states for the average distortion of all the
BUs, and S td(D) states for the mean standard deviation of
distortion among BUs in each frame. More details about the
results are given in Fig. 6, which shows the QP assignments
for the BUs by different methods when the QP used by the
fixed QP method is 20.

Fig. 4 The BU layer bit allocation results of bus. Left: the average MSE
of BUs. Right: the standard deviation of MSE of BUs.

Fig. 5 The BU layer bit allocation results of bus. Left: the average
DSSIM of BUs. Right: the standard deviation of DSSIM of BUs.

Fig. 6 The QP assignment for the BUs in the 1st P frame of bus by using
different distortion metrics. Top: MSE. Bottom: DSSIM.

From the results we have the following findings:
1) When using MSE (Fig. 4), the fixed QP method

has similar results to the MINAVE method in terms of
both Mean(D) and S td(D). The results of QP assignments
(Fig. 6) show that the MINAVE method chooses nearly con-
stant QP for BUs. This is because there is an approximately
fixed relationship between QP and Lagrangian multiplier λ
under MSE [13], and thus the fixed QP method corresponds
to a constant λ method, which is actually MINAVE in inde-
pendent encoding.

2) Under MSE (Fig. 4), the results of MINMAX has
almost similar Mean(D) and much lower S td(D) than MI-
NAVE. The QP assignments (Fig. 6) show that the quantiza-
tion schemes are very different between these two methods.
This is due to the difference on the R-D properties between
BUs under MSE, as discussed in Sect. 2. The results im-
ply that there are multi solutions for bit allocation under the
same bit constraint with similar Mean(D) but quite different
values on S td(D).

3) When using DSSIM (Fig. 5), the MINAVE method
has much better results than the fixed QP method. This is
because that the fixed relationship between QP and λ does
not exist under IQA metrics. Besides, the MINAVE and
MINMAX methods have similar results, which can be seen
clearly in Fig. 6. Since the R-D properties of different con-
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tents become closer under IQA metrics (refer to Sect. 2), the
MINAVE and MINMAX methods choose more similar so-
lutions.

4) Though the MINMAX method has similar Mean(D)
results to MINAVE with DSSIM, it has lower S td(D), which
demonstrates that the MINMAX method has advantage in
perceptual (SSIM based) video encoding.

3.2 Numeric Comparison

In order to compare the encoding performance of different
methods more directly, we convert the curves in Figs. 4 and
5 into numeric values. We use a method which is similar to
that proposed in [14]. Taking the bits − Mean(D) curve for
example, we denote the bits number and Mean(D) of the M
data points on a specific curve by R = {r1, r2, . . . , rM} and
D = {d1, d2, . . . , dM}, respectively. The integration interval
of R is T = {r1, r2 − r1, . . . , rM − rM−1}. Then, the value
Mean(D) is calculated by:

Mean(D) =

∑N
i=1 di · ti∑N

i=1 ti
, (8)

where ti is the ith item of T . The value of bits − S td(D)
curves can be calculated similarly.

Results of the test sequences in Table 1 based on MSE
and DSSIM are shown in Figs. 7 and 8, respectively. All the
results have the same properties as we discussed before.

Fig. 7 Numeric comparison of the encoding performance on BU layer
bit allocation based on MSE. Top: Mean(D). Bottom: S td(D).

Fig. 8 Numeric comparison of the encoding performance on BU layer
bit allocation based on DSSIM. Top: Mean(D). Bottom: S td(D).

4. Conclusions

In this letter, we studied the problem of optimal bit allo-
cation among independent sources in perceptual video cod-
ing. Bit allocation on the BU layer was tested. Our exper-
iments showed that by using SSIM, the MINMAX based
optimization has similar average distortion to MINAVE,
which demonstrates the consistency between the two crite-
ria in perceptual video coding. The results also show that
the MINMAX method achieves lower quality fluctuation,
which shows the advantage of MINMAX. We suggest that
the MINMAX criterion should be used to optimize the bit
allocation among independent sources in perceptual video
encoding.
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