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PAPER

Algorithm for the Length-Constrained Maximum-Density Path
Problem in a Tree with Uniform Edge Lengths∗∗

Sung Kwon KIM†∗a), Member

SUMMARY Given an edge-weighted tree with n vertices and a positive
integer L, the length-constrained maximum-density path problem is to find
a path of length at least L with maximum density in the tree. The density
of a path is the sum of the weights of the edges in the path divided by
the number of edges in the path. We present an O(n) time algorithm for
the problem. The previously known algorithms run in O(nL) or O(n log n)
time.
key words: length-constrained paths, maximum-density paths, uniform
edge lengths

1. Introduction

Let T be an edge-weighted tree with n vertices. Each edge
e in T is associated with a real number, called its weight,
we. Let πu,v denote the path connecting two distinct vertices
u, v in T . The weight of πu,v is the sum of the weights of the
edges in it, w(πu,v) =

∑
e∈πu,v

we, its length l(πu,v) is the num-
ber of edges in it, and its density is d(πu,v) = w(πu,v)/l(πu,v).

The length-constrained maximum-density path prob-
lem is: Given an edge-weighted tree T and a positive in-
teger L, find a maximum-density path of length at least
L in T , namely, a path π such that d(π) = max{d(πu,v) |
u, v are vertices in T & l(πu,v) ≥ L}.

For this problem, Lin, Kuo, and Chao [11] presented
an O(nL) time, dynamic programming algorithm, and Lau,
Ngo, and Nguyen [10] gave an O(n log n) time, divide-and-
conquer algorithm based on centroid decomposition. In this
paper, we develop an O(n) time algorithm.

In Sect. 2, we review some previous results that will be
used in designing our algorithm. In Sect. 3, our algorithm
for the case where T is a binary tree is first presented, and
then we show how to tackle the case of general trees.

A similar approach was previously used to solve an-
other problem by the author [9].
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2. Preliminaries

The following lemma was first presented by Huang [7] and
was previously used in [11], which enables us to consider
only the paths of length at least L and at most 2L − 1 in
finding a length-constrained maximum-density path.

Lemma 1: If π is a length-constrained maximum-density
path, then l(π) ≤ 2L − 1.

Chung and Lu [2] presented a linear time algorithm for
the following problem: Given an array A of n real num-
bers and two positive integers L ≤ U, find a maximum-
density segment A[ j.. j′] with L ≤ j′ − j + 1 ≤ U. This
corresponds to an array version of the length-constrained
maximum-density path problem with both lower and up-
per length bounds∗∗∗. They also gave a linear time algo-
rithm for a “location-constrained” variant of the problem in
which two integer intervals [x, y] and [x′, y′] with y < x′
are additionally given and it is required that j ∈ [x, y] and
j′ ∈ [x′, y′].

Let T be a binary tree with n vertices. A component of
T is a connected subtree of T . Two components are adjacent
if there is an edge of T such that one of its endpoints is in one
component and the other is in the other. The external degree
of a component is the number of its adjacent components.

Frederickson [5] developed a method that partitions a
binary tree into a number of components by removing some
of its edges and builds a hierarchical sequence of parti-
tions based on incremental merging of the components.
Eppstein [3], [4], and Italiano and Ramaswami [8] used the
method in developing algorithms for dynamically maintain-
ing trees and graphs. We borrow the definitions from [8]
with slight modification.

For an integer 2 ≤ z ≤ n, a restricted partition of order
z of T is a partition of T into components such that

1. Each component has external degree at most three.
2. Each component of external degree three consists of a

single vertex.
3. Each component of external degree one or two consists

of at most z vertices.
4. No two adjacent components can be combined and still

satisfy 1–3.

Figure 1 shows a restricted partition of order two of a
∗∗∗They solved a more general version of the problem: the

lengths are nonuniform, i.e., they are positive real numbers.
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Fig. 1 A restricted partition of order two.

Fig. 2 A restricted multilevel partition of order two.

tree.
The following gives a hierarchical method of recon-

structing T from the components by restoring the removed
edges, which has certain nice properties (detailed later). A
restricted multilevel partition of order z of T is a hierarchi-
cal sequence of partitions of T such that:

1. The components at level 1 (called basic components)
are those of a restricted partition of order z of T .

2. Each component at level i > 1 is either a copy of a
component at level i−1 or is formed by combining two
adjacent components at level i − 1 with the addition of
the edge between them. This is done by finding a re-
stricted partition of order two of the tree obtained after
contracting the components at level i − 1.

3. There is only one component, T , at the topmost level.

Figure 2 depicts a tree and its restricted multilevel par-
tition of order two.

A rooted binary tree, called a topology tree for T , can
naturally be formed from a restricted multilevel partition of
T .

1. A node† at level i in the topology tree represents a com-
ponent at level i in the restricted multilevel partition.

2. A node at level i > 1 has at most two children that
represent the components at level i − 1 whose union is
the component represented by the node.

Frederickson [5] proved that

1. a restricted partition of order z of T can be found in
O(n) time and the number of components in the parti-
tion is O(n/z),

2. a topology tree has O(n/z) leaf nodes and is of height
†Nodes are used in a topology tree to distinguish them from

vertices in an input tree.

Fig. 3 The topology tree for the tree in Fig. 2.

O(log(n/z)), and
3. a topology tree can be constructed in O(n) time.

Figure 3 illustrates the topology tree for the tree in
Fig. 2.

A solution for the following path sum query problem
is employed in the design of our algorithm. Let T be a tree
in which the edges are associated with real values. The path
sum of the path πu,v for vertices u, v in T , denoted by s(πu,v),
is the sum of the values of the edges in πu,v. In our applica-
tion, s(πu,v) is l(πu,v) or w(πu,v). The path sum query problem
is: Preprocess T so that, after preprocessing, for any query
pair of vertices u, v in T , the path sum s(πu,v) can be an-
swered quickly. A solution for the problem consists of two
parts: preprocessing and query-answering.

The following solution is well-known, whose prepro-
cessing works as follows:

1. Pick up a vertex t in T and convert T into a rooted tree
with root t.

2. Compute s(πt,v) for each vertex v in T .
3. Preprocess T so that, given any query pair of vertices

u, v in T , their lowest common ancestor can be found
quickly.

After the preprocessing, given any pair of vertices u
and v, the query-answering finds their lowest common an-
cestor t′ and computes s(πu,v) = s(πt,u) + s(πt,v) − 2 · s(πt,t′ ).
Since solutions with O(n) preprocessing time and O(1)
query answering time for the lowest common ancestor prob-
lem are given by Harel and Tarjan [6], and Schieber and
Vishkin [12], the path sum query problem can be solved
within the same complexity.

3. Algorithm

Let T be an edge-weighted binary tree with n vertices for
which we want to solve the length-constrained maximum-
density path problem. Let L be a positive integer that corre-
sponds to lower length bound.

Briefly, our algorithm works as follows: We first di-
vide T into components by removing some of the edges of
T , and separately solve the problem for each of the compo-
nents. These components and their solutions are at level 1.
To reach the topmost level where only one component T it-
self and its solution exist, we explain how to go from level
i − 1 to level i for i > 1. We select some distinct pairs of
adjacent components out of those at level i − 1. For each
pair selected, we merge the two components by restoring
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Fig. 4 The case of p having two children q and r.

the edge between them and combine their solutions at level
i − 1 to get one at level i. The unselected components and
their solutions at level i − 1 are copied and stored at level
i. We repeat this procedure until the topmost level reaches.
Described later are details about how large the components
at level 1 are, which pairs are selected from the components
at level i − 1, and how the two solutions at level i − 1 are
combined to get one at level i.

We first perform preprocessing of the path sum query
on T with respect to both length and weight of edges so that,
after preprocessing, l(πu,v) and w(πu,v) for any two vertices
u, v in T can be found in O(1) time. This preprocessing takes
O(n) time as mentioned in Sect. 2.

We next build in O(n) time a topology tree T ∗ that cor-
responds to a restricted multilevel partition of order z = L
of T . As explained in Sect. 2, T ∗ is a rooted binary tree of
height O(log(n/L)) with O(n/L) leaf nodes, and each node
of T ∗ represents a component of T . Let Tp for a node p in T ∗
denote the component of T that p represents. If p is a leaf,
then Tp is a basic component and has at most L vertices. If p
has a single child q only, then Tp = Tq. If p has two children
q and r, then Tp = Tq ∪ Tr ∪ {(b, c)}, where (b, c) is the edge
between Tq and Tr, and b and c are vertices in Tq and Tr,
respectively. See Fig. 4. In other words, two components Tq

and Tr are combined to produce Tp by restoring the edge.
We call b (respectively, c) the connector of Tq (respectively,
Tr). If p has a single child q, then we define the connector
of Tq to be equal to the connector of Tp. So, each Tp has
one connector.

T ∗ requires O(n) memory as proved in [5]. We augment
T ∗ by storing the basic component Tp at each leaf node p,
and the connector of Tp at each non-root node p. This aug-
mented T ∗ clearly requires O(n) memory.

For a node p in T ∗ and a vertex a in T , define Wa
p to be

an array of size 2L− 1 such that, for 0 ≤ i ≤ 2L− 2, Wa
p[i] =

max{w(πa,v) | v is a vertex in Tp & l(πa,v) = i}. (Refer to
Lemma 1.) Wa

p[i] is the maximum of the weights of the
paths of length i in T between a and the vertices of Tp, and
Wa

p[i] = −∞ if there is no such path.
If a belongs to Tp, then Wa

p can be computed in
O(max{|Tp|, L}) time by the following “direct” method. Set
Wa

p[i] = −∞ for all 0 ≤ i ≤ 2L − 2. Transform Tp into a
rooted tree by naming a its root. Traverse Tp in preorder
and for each currently visited vertex v, set Wa

p[l(πa,v)] =
max{w(πa,v),Wa

p[l(πa,v)]} if l(πa,v) ≤ 2L− 2. Note that l(πa,v)

Fig. 5 Algorithm for computing Wp.

and w(πa,v) can be found in O(1) time using the path sum
query.

For notational simplicity, Wp is used to denote Wa
p if

a is the connector of Tp. We compute Wp for the nodes
p of T ∗. If we use the “direct” method for every node p,
it takes at least O(n log(n/L)) time as T ∗ has O(log(n/L))
levels and at each level O(n) time is sufficient to apply the
“direct” method to the nodes at the level. We show that this
can be done in O(n) time by presenting an algorithm that
works in bottom-up fashion.

If p is a leaf, then Tp, which is a basic component,
contains at most L vertices and thus Wp can be computed in
O(L) time by the “direct” method. If p has a single child q
only, then Wp = Wq.

Consider the case where p has two children q and r.
Both Wq and Wr have been computed and are available for
reference. As mentioned before, Tp = Tq ∪ Tr ∪ {(b, c)},
where b and c are the connectors of Tq and Tr, respectively.
Let a be the connector of Tp. Then, Wp[i] = Wa

p[i] =
max{Wa

q [i],Wa
r [i]} for 0 ≤ i ≤ 2L − 2.

In order to explain how to compute Wa
q and Wa

r , as-
sume, without loss of generality, that a belongs to Tq. We
first compute Wa

r from Wr. Note that Wr = Wc
r as c is the

connector of Tr. Since a is not in Tr, any path from a to a
vertex of Tr contains πa,c as its subpath (See Fig. 4). Thus,
Wa

r [i] = −∞ for 0 ≤ i ≤ min{l(πa,c)−1, 2L−2}, and Wa
r [i] =

w(πa,c)+Wr[i− l(πa,c)] for min{l(πa,c), 2L− 1} ≤ i ≤ 2L− 2.
Since both l(πa,c) and w(πa,c) can be obtained in O(1) time,
Wa

r can be found in O(L) time.
Wa

q can be computed recursively. Both Tp and Tq con-
tain a in Fig. 4. So, computing Wa

p and computing Wa
q are

basically identical except that Tp and Tq, respectively, are
involved. The method that computes Wa

p can be used to
compute Wa

q if p is replaced by q (or, if Tp is replaced by
Tq). The recursion stops if a leaf node is reached. Summa-
rizing the explanations given so far, our algorithm for com-
puting Wp is shown in Fig. 5. To compute Wp for the nodes
p of T ∗, traverse T ∗ in postorder and call computeW(p) for
each node p.

We analyze the time complexity of computing Wp for
the nodes p of T ∗. Remember that T ∗ is a rooted binary
tree of height h = O(log(n/L)), and has O(n/L) leaf nodes
at level 1 and its root at level h. Moreover, Frederickson [5]
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proved that the number of nodes at level i is at most 5/6 of
the number of nodes at level i − 1. So, if m is the number
of leaf nodes of T ∗, then the number of nodes at level i is at
most (5/6)i−1m.

For a node p at level i, a call to computeW(p) makes at
most i recursive calls to recursion(·) until a leaf is reached.
So, the total number of calls to recursion(·) while computing
Wp for the nodes p of T ∗ is at most

∑h
i=1 i(5/6)i−1m, which

is less than 36m. Note that
∑∞

i=1 iαi = α/(1 − α)2 for 0 <
α < 1. Since each call to recursion(·) takes O(L) time and
m = O(n/L), the time of computing Wp for the nodes p of
T ∗ is at most 30m · c1L ≤ 30 · c2(n/L) · c1L = O(n) for
constants c1, c2 > 0.

We now have Wp for every node p of T ∗. To locate
a length-constrained maximum-density path in T we need
to consider only the paths of length at least L and at most
2L − 1 by Lemma 1. Our idea is to traverse T ∗ in postorder
and to find a maximum-density path πp in Tp of length at
least L and at most 2L − 1 and its density dp for each node
p of T ∗. Then, droot for the root of T ∗ is the density of a
length-constrained maximum-density path of T . For ease
of explanation, our algorithm is designed to compute the
density dp only, and an easy modification of the algorithm
locates the path πp itself.

If p is a leaf node in T ∗, then Tp has at most L vertices
and thus contains no path of length at least L. So, set dp =

−∞. If p has a single child q in T ∗, then Tp = Tq and so set
dp = dq.

Suppose that p has two children q and r. Then, Tp =

Tq ∪ Tr ∪ {ê}, where ê is the edge connecting Tq and Tr.
At this point, we have dq and dr. Since dq (respectively,
dr) is the density of a length-constrained maximum-density
path of Tq (respectively, Tr), we need d′, the density of a
length-constrained maximum-density path such that one of
its endpoints is in Tq and the other is in Tr. Then, dp =

max{dq, dr, d′}.
To compute d′, we employ the linear time algorithm for

the “location-constrained” version of the problem of Chung
and Lu [2] reviewed in Sect. 2. From Wq and Wr, construct
an array A[−2L+2 . . 2L−2] of size 4L−3 as follows: A[0] =
wê, A[−i] = Wq[i]−Wq[i− 1] for 1 ≤ i ≤ 2L− 2, and A[i] =
Wr[i]−Wr[i−1] for 1 ≤ i ≤ 2L−2. For j ∈ [−2L+2,−1] and
j′ ∈ [1, 2L − 2], we have

∑ j′
i= j A[i] = Wq[− j] + wê +Wr[ j′],

which is the maximum of the weights of the paths of length
− j + j′ + 1 such that one of their endpoints is in Tq and the
other is in Tr. After setting U = 2L − 1, [x, y] = [−2L +
2,−1], and [x′, y′] = [1, 2L − 2], find a solution on A using
the algorithm, which is d′. This takes O(L) time.

Since computing dp for a node p of T ∗ takes O(L) time
and there are O(n/L) nodes in T ∗, the computation of dp for
the nodes p of T ∗ takes O(n) time.

Our algorithm can be summarized as follows:

1. Perform the preprocessing of the path sum query on T
with respect to both edge length and edge weight.

2. Build a topology tree T ∗ which corresponds to a re-
stricted multilevel partition of order z = L of T .

Fig. 6 v has four children v1, v2, v3 and v4. w1,w2,w3 and w4 are edge
weights. Square vertices and dashed edges are new. 0, 0 denote the length
and weight of a new edge and 1,wi denote the length and weight of an old
edge.

3. Compute Wp for the nodes p of T ∗ by traversing T ∗ in
postorder.

4. Compute dp for the nodes p of T ∗ by traversing T ∗ in
postorder. Then, droot is the final solution.

Theorem 1: A length-constrained maximum-density path
in a binary tree can be computed in O(n) time.

To find a length-constrained maximum-density path in
a (general) tree, we transform the tree into a binary tree.
Given an edge-weighted tree T0, a binary tree T is obtained
as follows [13]: Select a vertex of degree one of T0 and
make it the root of the rooted version of T0. For each ver-
tex v of T0 with k ≥ 3 children, v1, . . . , vk, replace v with
a path (v, u2, . . . , uk−1), where u2, . . . , uk−1 are new vertices
and (v, u2), (u2, u3), . . . , (uk−2, uk−1) are new edges. Each of
these new edges has le = we = 0. Replace the edges
{(v, vi) | 2 ≤ i ≤ k−1} with the edges {(ui, vi) | 2 ≤ i ≤ k−1}
of corresponding weights, and replace the edge (v, vk) with
the edge (uk−1, vk) of corresponding weight. The edge (v, v1)
remains unchanged. Each of these “old” edges has le = 1.
See Fig. 6. A proof that every path in T0 has a corresponding
path in T with the same length and weight, and vice versa
can be found in [1]. This transformation runs in O(n) time.

Now, T is an edge-weighted binary tree with binary
edge lengths. The length of a path is redefined to be the
sum of the lengths of the edges in the path, or the number of
edges with le = 1. Theorem 1 is about binary trees with uni-
form edge lengths (all le = 1) while the current T is a binary
tree with binary edge lengths. We focus on explaining what
must be changed in the description of the algorithm above
when the edge lengths are not uniform but binary.

Since the preprocessing of the path sum query can be
done with respect to any real values, step 1 is not affected by
the fact that the edge lengths are binary. Since a restricted
multilevel partition and a topology tree are constructed on
the unweighted version of T , step 2 can be executed as is.

In Fig. 5, when p is a leaf, Wa
p can be computed using

the “direct” method without any change since each l(πa,v) is
from the path sum query. Similarly, the computation of Wa

r
is unchanged because the path sum query enables us to find
l(πa,c). So, we can execute step 3 as in the algorithm above.

In step 4, the only part that needs explanation is about
A. We construct an array A[−2L+ 2 . . 2L− 2] of size 4L− 3
from Wq and Wr as we did previously. For j ∈ [−2L+2,−1]
and j′ ∈ [1, 2L − 2],

∑ j′
i= j A[i] = Wq[− j] + wê + Wr[ j′],

which is the maximum of the weights of the paths of length
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− j + j′ + lê such that one of their endpoints is in Tq and the
other is in Tr. If lê = 0, then wê = 0 and thus

∑ j′
i= j A[i] =

Wq[− j] +Wr[ j′]. So, step 4 correctly works.
As each of steps 1–4 again takes O(n) time, we have

proved the following theorem.

Theorem 2: A length-constrained maximum-density path
in a tree can be computed in O(n) time.
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