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PAPER

Fuzzy Multiple Subspace Fitting for Anomaly Detection

Raissa RELATOR†a), Nonmember, Tsuyoshi KATO†, Member, Takuma TOMARU†, Nonmember,
and Naoya OHTA†, Member

SUMMARY Anomaly detection has several practical applications in
different areas, including intrusion detection, image processing, and be-
havior analysis among others. Several approaches have been developed for
this task such as detection by classification, nearest neighbor approach, and
clustering. This paper proposes alternative clustering algorithms for the
task of anomaly detection. By employing a weighted kernel extension of
the least squares fitting of linear manifolds, we develop fuzzy clustering al-
gorithms for kernel manifolds. Experimental results show that the proposed
algorithms achieve promising performances compared to hard clustering
techniques.
key words: fuzzy algorithm, subspace fitting, kernel vector subspace, ker-
nel affine subspace, anomaly detection

1. Introduction

Anomaly detection is the task of finding patterns within the
data that do not conform to the norm. Depending on the
specialization domain, the uncovered patterns are usually
termed as anomalies, outliers, or novelty points. These of-
ten translate to some significant information about the data,
which allows us to interpret the data or determine a suitable
approach to handle it. Over the years, anomaly detection
has gained interest from the scientific community due to its
significance in practical applications such as intrusion de-
tection, fraud detection, image processing, sensor networks,
traffic networks, and behavior analysis [1]–[4].

Several techniques have been developed addressing
anomaly detection problems, depending on their specific
application [2], [4]. Some popular straightforward methods
include employing classifiers, nearest neighbor-based tech-
niques, and clustering [2], [4]–[6]. While classification is a
supervised technique and requires known labels, and near-
est neighbor-based classification performs better for semi-
supervised than unsupervised, clustering may be more ad-
vantageous when the data is assumed to be free of anomaly,
which is the case for most anomaly detection settings. In
this study, clustering is not an objective but a means for fit-
ting multiple simple units to a given dataset to represent a
complicated normal class model, as depicted in Fig. 1. The
focus is on fuzzy clustering for anomaly detection, in par-
ticular, algorithms are developed by applying weighted least
squares fitting to update cluster models, and we discuss the
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case where only normal data are given.
Least squares fitting of a linear manifold such as vector

subspaces and affine subspaces have been utilized in a vari-
ety of applications such as pattern recognition, anomaly de-
tection [2], [4], de-noising [7], data compression [8], and vi-
sualization [9]. However, linear manifolds cannot represent
curved surfaces, and thus kernel methods have been often
employed to address this issue, and other concerns such as
handling high-dimensional data. Existing clustering meth-
ods related to manifold learning and kernel functions are
summarized in Table 1, together with the contributions of
this paper. The techniques for fitting vector subspaces and
affine subspaces have been used for several decades [10] and
were generalized to kernel methods in the late 1990s [11]–
[13]. Ho et al. [14] developed a clustering method with vec-
tor subspaces, and Lu and Vidal [15] presented its affine sub-
space version. Ho et al.’s clustering method was kernelized
by Li and Fukui [16] and extended to fuzzy clustering by Li
et al. [17]. To develop the fuzzy clustering algorithm with
vector subspaces, Li et al. devised an elementary technique
called the weighted singular value decomposition (WSVD).
The WSVD assumes that each entry in the design matrix is
to be weighted, unlike in our setting where each input vec-
tor is assumed to be weighted. Also, the WSVD is an itera-
tive algorithm and the theoretical guarantee for optimality is
not given in their paper, whereas the algorithm presented in
this paper is guaranteed to achieve the optimal solution. Al-
though weighted PCA [18] has also been proposed, the de-
viation for the kernel version of the weighted least squares
fitting of the manifold with more than one dimension has not
been clearly described.

In this paper, we develop new fuzzy algorithms that
learn multiple subspaces, and provide empirical evidence
indicating promising performances of the proposed methods
in the area of anomaly detection compared to other known
algorithms. The rest of the paper is organized as follows.
An overview of the problem is presented in Sect. 2. We then
proceed to the development of the algorithms for fuzzy clus-
tering of subspaces in Sects. 3 and 4. In Sect. 5, we give the
details of the experimental results in applying the aforemen-
tioned algorithms to anomaly detection on real-world data
including face images, sounds, and amino acid sequences,
and provide a performance comparison with hard cluster-
ing. Finally, we conclude the paper in Sect. 6. Although
all the algorithms presented in this paper are developed in
the reproducing kernel Hilbert space, all discussions are de-
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(a) Single subspace model. (b) Multiple subspace model with classical dis-
tance.

(c) Multiple subspace model with κ distance.

Fig. 1 Normal class models. In this study, the normal class is modeled by a set of points S(Θ).
Classically, the anomalism of an input data point is examined with the distance to its projection onto the
point set S(Θ). Figure (a) describes a model that uses a single affine subspace S(Θ) = Ssa(U,μ). In (b),
the normal class model is given by the union of two affine subspaces S(Θ) = Ssa(U1,μ1)∪Ssa(U2,μ2).
The classical distance to the set is the square Euclidean distance to the nearest subspace. In this study,
we introduce the κ-distance that is the linear combination of the distances with weights κ1 and κ2, as in
(c).

Table 1 Clustering methods with linear manifolds.

Vector Subspace Kernel Vector Subspace Affine Subspace Kernel Affine Subspace
Single Cluster Oja [10] Tsuda [13] Oja [10] Maeda and Murase [12]

Hard Clustering Ho et al. [14] Li and Fukui [16] Lu and Vidal [15] New
Fuzzy Clustering (Li et al. [17]) New New New

scribed in Euclidean space for the sake of readability. We
underline that all the proposed algorithms can be kernelized
straightforwardly with the kernel trick [19].

Notation. We denote vectors by bold-faced lower-case
letters and matrices by bold-faced upper-case letters. Entries
of vectors and matrices are not bold-faced. The transpose
of a matrix A is denoted by AT, and the inverse of A by
A−1. The n × n identity matrix is denoted by In. The n-
dimensional vector whose entries are all one is denoted by
1n. We use R and N to denote the set of real and natural
numbers, Rn and Nn to denote the set of n-dimensional real
and natural vectors, and Rm×n to denote the set of m × n real
matrices. The set of real nonnegative numbers is represented
by R+. For any n ∈ N, we use Nn to denote the set of natural
numbers less than or equal to n. We use Sn to denote the
set of n × n symmetric matrices, and Om×n the set of m ×
n orthonormal matrices, i.e. Om×n ≡ {A ∈ Rm×n | AT A =
In}. This definition implies that Om×n = ∅ if m < n. A
permutation of the set Nn is a bijective map from Nn to Nn.
We use Pn to denote the family of permutations of Nn. The
n-dimensional probabilistic simplex is denoted by Δn ≡ {x ∈
R

n
+ | xT1n = 1}.

2. Problem Setting

Anomaly detection is a task of learning from a set of normal
examples. Given � normal examples xi ∈ Rd (i ∈ N�), an
anomalous pattern is detected if it is distant from the nor-
mal class model learned using the examples. This section
focuses on the normal class model which is given by a set of
points in a d-dimensional space, say S(Θ) ⊂ Rd, where Θ is
the set of model parameters. If x ∈ Rd is an unknown input
vector, its square Euclidean distance to the model S(Θ) is
given by

deuc(x,S(Θ)) ≡ min
y∈S(Θ)

‖x − y‖2.

This provides the confidence level for the anomalism of x,
where larger distances yield higher confidence levels. In-
stead of the square Euclidean distance, one may also use
the Mahalanobis distance [20] or the distance with a learn-
able Gram matrix [21]. However, these are not rotationally
invariant, thus prohibiting us from kernelizing them.

3. Distance to Normal Class Models

We now introduce four normal class models wherein values
of the parameterΘ are determined such that the mean square
deviation of the training examples given by

J(Θ) ≡ 1
�

�∑

i=1

deuc(xi,S(Θ)) (1)

is minimized in the conventional method.
Single Vector Subspace Model. When we employ the

vector subspace with orthonormal bases u1, . . . ,um, the nor-
mal class model is given by

S(Θ) = Sss(U) ≡ {y ∈ Rd | ∃α ∈ Rm s.t. y = Uα},
and Θ = U ≡ [u1, . . . ,um] ∈ Od×m.

Single Affine Subspace Model. The normal class model
using a single affine subspace is described as

S(Θ) = Ssa(U,μ) ≡ {y ∈ Rd | ∃α ∈ Rm s.t. y−μ = Uα},
where Θ = {U,μ}, U ∈ Od×m and μ ∈ Rd.

Vector Subspace Set Model. This model is defined by a
set of L vector subspaces:
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S(Θ) = Sms(U) ≡
L⋃

k=1

Sss(Uk),

whereU ≡ {Uk}k∈NL and Θ = U. The clustering method of
[14] finds a local optimum ofU. Each subspace is expected
to represent a cluster of normal class data.

Affine Subspace Set Model. The normal class model
can also be defined by a set of L affine subspaces,

S(Θ) = Sma(U,M) ≡
L⋃

k=1

Ssa(Uk,μk),

where U = {Uk}k∈NL , M ≡ [μ1, . . . ,μL], and Θ = {U,M}.
A local optimum of Θ is found using a trick similar to the
K-means method, as in the algorithm of Lu and Vidal [15].

4. Learning Normal Class Models

In this section, we present how to determine the model pa-
rameter Θ. First, a conventional method, Hard Clustering,
is described in 4.1, and then two Fuzzy Clustering Methods
are presented in 4.2 and 4.3.

4.1 Hard Clustering

When using a vector or an affine subspace set (i.e. S(Θ) =
Sms(U) or S(Θ) = Sma(U,μ)), the distance from the model
can be expressed as

deuc(x,S(Θ)) = min
k∈NL

deuc(x,Sk(Θk)), (2)

where Sk(Θk) is the kth cluster model with parameter Θk.
Meanwhile, the cluster model is given by Sk(Θk) = Sss(Uk)
with Θk = {Uk}, when a single vector subspace is used, and
Sk(Θk) = Ssa(Uk,μk) with Θk = {Uk,μk} when using a sin-
gle affine subspace. The mean square deviation (1) is rewrit-
ten as

J(Θ) =
1
�

�∑

i=1

min
ki∈NL

deuc(xi,Ski (Θki )).

This implies that minimizing J(Θ) with respect to Θ is
equivalent to finding the optimal partitions of training ex-
amples, index sets {Ik}Lk=1, such that

⋃L
k=1 Ik = N�, and

∀k,∀k′ ∈ NL s.t. k � k′ : Ik ∩ Ik′ = ∅.
If {I∗k}Lk=1 is the optimal partition, then

min
Θ

J(Θ) =
1
�

L∑

k=1

min
Θk

∑

i∈I∗k
deuc(xi,Sk(Θk)),

which elucidates that, in learning the model parameters Θ,
each example contributes to only one out of L cluster mod-
els. That is, training examples are not shared among cluster
models.

A self-organizing map (SOM) [22] is a clustering

model in which clusters share training examples. Usually,
SOM is designed so that each cluster is put on the grid
in advance, and each example is shared with the clusters
near to the winner cluster in the grid. The cluster models
of SOM are, thereby, learned as a ‘single connected com-
ponent.’ However, clusters in real world data are not al-
ways ‘connected’. Motivated by this observation, similarly
to fuzzy c-means method [23], we now propose two fuzzy
algorithms that learn multiple subspaces. In the algorithms,
cluster models can share examples, but do not necessarily
have to be ‘connected.’

4.2 Fuzzy Clustering with κ-Distance

Using the set of predefined weights κ ∈ RL
+ of the clusters,

such that

κ1 ≥ κ2 ≥ · · · ≥ κL ≥ 0, (3)

we replace the distance in (2) with a linear combination of
L distances with weights in κ,

dκ(x,S(Θ)) = min
π∈PL

L∑

k=1

κπ(k)deuc
(
x,Sπ(k)

(
Θπ(k)
))
, (4)

during learning, where PL is the set of permutations on the
index set NL and π(k) returns the index value where π ∈
PL maps k. Here, we redefine the objective function J(Θ)
(defined previously in (1)) by replacing deuc with dκ. We
refer to this distance as the κ-distance. Since the (4) is equal
to (2) when

κk =

⎧⎪⎪⎨⎪⎪⎩
1 for k = 1,

0 for k ≥ 2,

the κ-distance is a generalization of the square Euclidean
distance in (2). From the assumption in (3), if π∗ is the opti-
mal permutation, then

deuc
(
x,Sπ∗(1)

(
Θπ∗(1)

)) ≤ · · · ≤ deuc
(
x,Sπ∗(L)

(
Θπ∗(L)

))
.

Using the optimal permutation π∗i ∀i ∈ N�, the minimum of
the mean square deviation is expressed as

min
Θ

J(Θ) =
1
�

L∑

k=1

min
Θk

�∑

i=1

vk,ideuc(xi,Sk(Θk)), (5)

where vk,i is defined as

∀i ∈ N�, ∀k ∈ NL : vπ∗(k),i ≡ κk. (6)

The kth cluster model is learned from every training exam-
ple with weight vk,i > 0, hence, training examples can be
shared with multiple cluster models, resulting to ‘naturally
connected’ cluster models.

The block coordinate ascent method [24] for minimiz-
ing J(Θ) with respect to Θ is given in the following algo-
rithm.
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Algorithm 1. Alternate the following steps until conver-
gence.

• Step 1: For each example xi, i ∈ N�, update the permu-
tation such that ∀k ∈ NL−1 :

deuc
(
xi,Sπ(t+1)(k)

(
Θπ(t+1)(k)

))

≤ deuc
(
xi,Sπ(t+1)(k+1)

(
Θπ(t+1)(k+1)

))

by sorting the L distances and compute v(t+1)
k,i using (6).

• Step 2: For each cluster model, update the parameters
as: ∀k ∈ NL,

Θ
(t+1)
k := arg min

Θk

�∑

i=1

v(t+1)
k,i deuc(xi,Sk(Θk)).

The definition of the algorithm guarantees that the se-
quence {J(Θ(t))}t∈N is monotonically decreasing. Further-
more, the values of model parameters become unchanged
within a finite number of iterations since the cardinality of
the permutation set PL is finite.

In updating the model parameters in Step 2, Theorem 1
and Corollary 2 (in Appendix) are applied to each cluster
model to update Θk for the vector subspace set model. For
the affine subspace set model, Theorem 4 and Corollary 5
(in Appendix) are employed.

4.3 Fuzzy Clustering with Bezdek Distance

Another approach to sharing the training examples with
multiple clusters is to extend the square Euclidean distance
(2) to the Bezdek distance [23] defined by

dbez(x,S(Θ)) = min
w∈ΔL

L∑

k=1

wbbez

k deuc(x,Sk(Θk)), (7)

where bbez (≥ 1) is constant. A similar distance is used in
fuzzy c-means method [23] and is equivalent to (2) when
bbez = 1. If bbez > 1, the optimal weight w∗ can be derived
using the method of Lagrange multipliers, and the kth entry
is given by

w∗k ∝
1

(deuc(x,Sk(Θk)))1/(bbez−1)
. (8)

The clustering algorithm using the Bezdek distance is
given as follows.

Algorithm 2. Alternate the following steps until conver-
gence.

• Step 1: For each example xi, i ∈ N�, update weight
w(t+1)

i using (8), and set

∀k ∈ NL, ∀i ∈ N� : v(t+1)
k,i = ([w(t+1)

i ]k)bbez .

• Step 2: For each cluster model, update the parameters
as: ∀k ∈ NL,

Θ
(t+1)
k := arg min

Θk

�∑

i=1

v(t+1)
k,i deuc(xi,Sk(Θk)).

Fig. 2 Examples of face images. (a) Normal data. (b) Anomalous data.
(c) Anomalous data that were detected by MA-κC, but were not detected
by other existing methods when the specificity is 0.95. (d) Normal data that
was not detected as an anomaly by MA-κC, but falsely detected by existing
methods.

Algorithm 2 is formed such that the sequence
{J(Θ(t))}t∈N is decreasing monotonically, where J(Θ) (firstly
defined in (1)) is redefined by changing deuc to dbez. More-
over, from the definition of J(·), the sequence is non-
negative. Hence, the algorithm must converge.

5. Experiments and Results

To investigate the anomaly detection performance of each
model presented in the previous section, experiments on
face images, sounds, and string patterns were conducted.

The face images data are from the Extended Yale Face
Database B which contains 2,350 192×168 gray-scaled im-
ages of 39 people. The images of the first three people are
used as normal data, and the remaining images are regarded
as anomalous data (See Fig. 2 (a),(b)), yielding 192 normal
images and 2,158 anomalous images. The kernel function
defined by K(I, I′) = tr(ITI′), for any I, I′ ∈ R192×168, is
used.

For the second data, sounds are recorded in a bath-
room and the power spectra are extracted to obtain 256-
dimensional input vectors. The linear kernel is used to ob-
tain the kernel values. This dataset contains 1, 406 normal
data and 94 anomalous data.

Lastly, for string patterns, we used 3, 427 amino-acid
sequences in 12 folds classified in the protein structure
database SCOP [25]. The sequences in the first four folds
are assumed to be in the normal class, and the remaining
data in the anomalous class, yielding 909 normal data and
2, 518 anomalous data. Kernel values are obtained via a
string kernel by Lodhi et al. [26] that are capable of effi-
cient inner product computation without explicit extraction
of very high-dimensional input vectors.

Eighty percent of the normal data are randomly se-
lected and used as training data, while the remaining normal
data together with the anomalous data are used for perfor-
mance evaluation. For the single vector and single affine
subspace models, we determine the number of dimensions
m of the manifold so that m is the maximum dimension for
which the ratio of the cumulative variances is below 0.95. To
obtain the value of m for the subspace set models, we per-
formed single-linkage clustering to divide the training data
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Table 2 Performances on anomaly detections.

(a) Face Images
SS MS-κC MS-BC MS-HC SA MA-κC MA-BC MA-HC

Highest 0.757 (0.034) 0.954 (0.010) 0.952 (0.004) 0.921 (0.018) 0.835 (0.028) 0.955 (0.007) 0.950 (0.007) 0.911 (0.040)
Average 0.757 (0.034) 0.924 (0.018) 0.918 (0.020) 0.842 (0.026) 0.835 (0.028) 0.936 (0.012) 0.930 (0.008) 0.860 (0.025)

(b) Sounds
SS MS-κC MS-BC MS-HC SA MA-κC MA-BC MA-HC

Highest 0.846 (0.019) 0.955 (0.007) 0.944 (0.004) 0.964 (0.004) 0.846 (0.019) 0.993 (0.004) 0.993 (0.001) 0.990 (0.006)
Average 0.846 (0.019) 0.911 (0.014) 0.943 (0.004) 0.908 (0.015) 0.846 (0.019) 0.988 (0.005) 0.990 (0.001) 0.976 (0.004)

(c) Strings
SS MS-κC MS-BC MS-HC SA MA-κC MA-BC MA-HC

Highest 0.811 (0.014) 0.838 (0.017) 0.841 (0.017) 0.813 (0.015) 0.813 (0.014) 0.836 (0.017) 0.845 (0.017) 0.814 (0.015)
Average 0.811 (0.014) 0.836 (0.016) 0.834 (0.015) 0.811 (0.015) 0.813 (0.014) 0.831 (0.017) 0.838 (0.016) 0.813 (0.015)

into the predetermined number of clusters and searched for
the maximum number of dimensions for which the ratio of
the cumulative variances is below 0.95 in any cluster. We
varied the number of clusters with L = 10, 20, 30. The
weights κ in the κ-distance are set as κ1 = 0.9, κ2 = 0.1,
and κ3 = 0, while the parameter of the Bezdek distance is
set to bbez = 2.

We tested eight methods: SS, MS-κC, MS-BC, MS-
HC, SA, MA-κC, MA-BC, and MA-HC. SS and SA, respec-
tively, are the single vector and the single affine subspace
models, while MS and MA correspond to the vector and the
affine subspace set models. We have κC, BC, and HC in-
dicating the types of learning methods, where κC and BC
are clustering methods with the κ-distance and the Bezdek
distance, and HC is classical hard clustering such as the K-
means method. The square Euclidean distance is used in the
prediction stage, while the κ-distance or the Bezdek distance
is employed during learning. Accordingly, MS-κC, MA-κC,
MS-BC, and MA-BC are the new methods proposed in this
paper. Furthermore, to the best of our knowledge, no work
uses a kernel version of MA-HC (See Table 1).

The detection performances are summarized in Table 2.
The values are the area under the ROC curve (AUC) where
‘Highest’ refers to the maximum among the three AUCs ob-
tained when L = 10, 20, 30, and ‘Average’ is their mean.
Four random partitions are made dividing the data into train-
ing and test sets. The average and the standard deviation
of the AUCs are used to determine the performance quality
given Table 2. We employed the one-sample t-test to detect
statistical significance of the differences among the detec-
tion performances, and set the significance level to 0.01. In
Table 2, bold-faced figures represent the best AUC, and un-
derlined figures indicate performances with no significant
difference from the best AUC.

In the first experiment using face images, MA-κC
achieves the best performance when the Highest values are
considered in all methods. The Highest AUC of MA-HC
is 0.044 lower than that of MA-κC, however, they are not
significantly different since standard deviation for MA-HC
is large (0.040). The Highest AUC of MA-κC is also the
best among the eight methods. In general, the values of the
hyper-parameters, such as the number of clusters, can be de-
termined by using cross-validation in supervised learning,
although the use of the cross validation method is not easy

in the scenario of anomaly detection. For MA-HC, Average
is 0.051 lower than Highest, which is larger compared to the
difference between Average and Highest in MA-κC (0.019).
For MS-κC, MS-BC, and MA-BC, respectively, Average
and Highest values differ by 0.030, 0.034, and 0.020, while
the difference is 0.059 for MS-HC. This suggests that per-
formances using fuzzy clustering do not change drastically
with different number of clusters compared to the hard clus-
tering. Similar observations are derived using the dataset of
sounds, while MA-BC exceeded the performance of other
methods using the string patterns.

For MS-κC, MS-BC, MA-κC, and MA-BC, the results
presented in Table 2 make use of the square Euclidean dis-
tance in prediction, and the fuzzy distances — the κ-distance
and the Bezdek distance — in learning, as described pre-
viously. Experiments using the generalized distances, dκ
and dbez, both in learning and in prediction are also done.
The prediction performances when the square Euclidean
distance deuc is used with the manifold learned using the
generalized distances dκ and dbez are slightly better than the
performances of the methods using the κ-distance dκ and
Bezdek distance dbez.

Kernel methods are often employed to obtain nonlinear
learning machines. Any kernel in our experiments enjoys no
nonlinear effect, although the pre-computed kernel values
can be transformed easily to nonlinear kernels: (K(x, x′) +
c)p for polynomial kernel, and exp(−γ(K(x, x)+ K(x′, x′)−
2K(x, x′))) for RBF kernel, where c, p, and γ are constants.
We used these tricks to test the nonlinear kernels, but no
improvements were exhibited.

We also applied the one-class SVM to anomaly de-
tection for performance comparison, employing both lin-
ear and RBF kernels. Similar settings as above were em-
ployed while the value of the parameter ν of the one-class
SVM was varied as 0.1, 0.2, . . . , 0.7. We report here the
best AUC values among all trials for each dataset. For all
datasets, Highest AUC is obtained using RBF kernel: 0.868
for the face images, 0.890 for the sound data, and 0.836 for
the strings data, and their respective Averages are given by
0.751, 0.867, and 0.789. While the Highest AUC value in
the last experiment using string patterns has no significant
difference from the best AUC obtained using the proposed
algorithm according to statistical tests performed, compar-
ing the said values to the those from the proposed algorithms



RELATOR et al.: FUZZY SUBSPACE FITTING FOR ANOMALY DETECTION
2735

as presented in Table 2 reveals that the proposed methods
outperform one-class SVM.

6. Conclusions

We have developed fuzzy clustering algorithms with vector
and affine subspaces in a reproducing kernel Hilbert space.
The performances of the algorithms in detecting anomalous
patterns proved to be stable against using different number
of clusters. Utilization of fuzzy multiple subspace fitting is
not limited to anomaly detection, so our technique can also
be applied to several other tasks. We consider de-noising
as one promising application. Future work includes perfor-
mance evaluation on other applications.
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Appendix A: Fitting of Subspaces

Weighted least square fitting of cluster component is a nec-
essary step in fuzzy clustering. In this Appendix we give
algorithms for weighted least squares fitting of vector and
affine subspaces in a kernelizable manner (See Fig. A· 1).

Fitting of Vector Subspaces. The square Euclidean dis-
tance from any input vector x ∈ Rd to a linear subspace
Sss(U) is given by

d(x,Sss(U)) = min
y∈Sss(U)

‖x − y‖2

=
∥∥∥(Id − UUT)x

∥∥∥2. (A· 1)

For a training set {xi}�i=1, it is known that a value of the pa-
rameter U ∈ Od×m minimizing the unweighted mean square
deviation is the matrix whose columns are the m major
eigenvectors of

�∑

i=1

xixT
i .

Our goal is to give a kernelizable solution to minimize the
weighted mean square deviation
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(a) Unweighted Least Squares (b) Weighted Least Squares

Fig. A· 1 Fitting of one-dimensional linear manifolds in a two-
dimensional toy problem. Plots (a) and (b) are the fitting results using the
unweighted least squares and the weighted least squares, respectively. The
weights here are given by exp(−(x − 0.3)2/8). The darkness of each point
indicates the value of the weight. It is observed in (b) that darker points
tend to be nearer to the manifold.

Jss(U; v) ≡
∑�

i=1 vid(xi,Sss(U))
∑�

i=1 vi

with respect to U, where vi ∈ R+ is the weight of the ith
example xi.

Let X ∈ Rd×� be the design matrix

X ≡ [x1, . . . , x�] .

For arbitrary vectors x, y ∈ Rd, the function K(x, y) is given
by

K(x, y) ≡ 〈x, y〉.
In kernel methods, various analyses are performed by
rewriting the definition of K(x, y) in terms of a positive def-
inite kernel. The inner-product matrix for the input data
{xi}�i=1 is defined as the �×�matrix K ∈ S� whose entries are
Ki j ≡ K(xi, x j). Moreover, such matrices are always posi-
tive semidefinite. We also define the vector-valued function
k : Rd �→ R� as

k(x) ≡ [〈x1, x〉, . . . , 〈x�, x〉]T.

The following theorem gives the algorithm for the
weighted least squares estimation of a vector subspace.

Theorem 1. Define a symmetric matrix K̃ ≡ D1/2
v K D1/2

v .
Assume that r ≥ m, where r ≡ rank

(
K̃
)
. Denote the m major

eigenvectors of K̃ by λ1, . . . , λm ∈ R++ and the correspond-
ing eigenvalues by b1, . . . , bm ∈ R�. Let λ ≡ [λ1, . . . , λm]T

and B ≡ [b1, . . . , bm], and define

Ûss ≡ X D1/2
v Bdiag(λ)−1/2. (A· 2)

Then

Ûss ∈ arg min
U∈Od×m

Jss(U; v).

Proof. The weighted mean deviation can be written as

Jss(U; v) =
1
2

tr(X DvXT) − 1
2

tr(UTX DvXTU). (A· 3)

Hence, the columns of the optimal U are the m major eigen-
vectors of a symmetric matrix X DvXT. Moreover, each

column lies in the span of the input vectors with positive
weights. Therefore, there exists a matrix A ∈ R�×m such
that U = X D1/2

v A. Substituting this to Jss(U; v), the second
term in (A· 3) becomes

1
2

tr(UTX DvXTU)

=
1
2

tr(AT D1/2
v XTX DvXTX D1/2

v A)

=
1
2

tr(ATK̃
2

A)

From the orthonormality of U, A must satisfy ATK̃ A = Im.
Hence, the optimal matrix A is the solution of the following
constraint optimization problem:

max tr
(
ATK̃

2
A
)

wrt A ∈ R�×m

subj to ATK̃ A = Im.

Furthermore, the columns of A should be proportional to the
m major eigenvectors of K̃. Thus, we have

∀h ∈ Nm, ∃th ∈ R+ : ah = thbh.

Now, the columns of U must be unit vectors. And since
∀h ∈ Nm,

1 = ‖uh‖2 = ‖X D1/2
v thbh‖2

= t2
htr
(
X D1/2

v bhbT
h D1/2

v XT)

= t2
htr
(
bT

h K̃bh
)
= t2

hλh,

then th = λ
−1/2
h . Therefore, an optimal value of uh is obtained

such that

∀h ∈ Nm : uh = λ
−1/2
h X D1/2

v bh,

and the conclusion follows. �

To kernelize the method, input vectors are embedded
in the inner product. Nevertheless, the input vectors remain
explicitly in the result of Theorem 1. Fortunately in many
applications, what are important are the distances from ar-
bitrary vectors to the manifold, and not the basis vectors in
U.

Corollary 2.

d
(
x,Sss

(
Ûss
))
= K(x, x) − ∥∥∥diag(λ′)−1/2 AD1/2

v k(x)
∥∥∥2.

The equation holds by substituting the result of Theo-
rem 1 into Eq. (A· 1).

Thus, distances to the vector subspace spanned by the
columns of the matrix Ûss do not include any input vector
explicitly, enabling us to kernelize the distance to the vector
subspace even if the training data are weighted.

Note that the optimal solution is not unique since the
set of eigenvectors of a symmetric matrix is not unique. For
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instance, if u is an eigenvector corresponding to an eigen-
value λ, then so is the negative of u. Hence, in our problem,
UR, where R ∈ Om×m, is also an optimal solution whenever
U is an optimal solution. The set of optimal solutions are
further expanded when the mth largest eigenvalue of K̃ is
equal to its (m + 1)st largest eigenvalue.

We now build the relationship between Theorem 1 and
some classical results. If inputs are given by vectors (e.g. in-
puts are not given by structured kernels), the non-kernelized
method can be used to obtain the vector subspace linear
to the input vectors. Furthermore, if d � �, the non-
kernelized method is faster: The algorithm in Theorem 1
requires eigen-decomposition of an � × � symmetric matrix.
The following result shows that the optimal basis vectors of
U are also obtained by eigen-decomposition of a d × d ma-
trix.

Corollary 3. The m columns of Ûss defined in Theorem 1
are the m major eigenvectors of

M =
�∑

i=1

vixixT
i .

Any set of the m major eigenvectors of M minimizes
Jss(U; v).

Fitting of Affine Subspaces. In a similar manner as be-
fore, we give a method for fitting affine subspaces using
weighted least squares. For any x ∈ Rd,

d(x,Ssa(U,μ)) = min
y∈Ssa(U,μ)

‖x − y‖2

=
∥∥∥(Id − UUT)(x − μ)

∥∥∥2. (A· 4)

Given the weight vi ∈ R+ for each data xi, we wish to find
the affine subspace minimizing

Jsa(U,μ; v) ≡
∑�

i=1 vid(x,Ssa(U,μ))
∑�

i=1 vi

.

Without loss of generality, we can assume that∑�
i=1 vi = 1 since the set of optimal solutions is invariant

of the scalar product of vectors in R�. Let us denote the
training input vectors shifted with Xv ∈ Rd by

∀i ∈ N� : x̄i ≡ xi − Xv,

and the shifted design matrix by

X̄ ≡ [x̄1, . . . , x̄�] .

Previously, we defined the functions K(·, ·) and k(·), and a
matrix K to represent inner products of input vectors. For
the shifted input vectors, we introduce two functions, K̄ :
R

d × Rd �→ R and k̄ : Rd �→ R�, such that

K̄(x, y) ≡ 〈x − Xv, y − Xv〉 ,
k̄(x) ≡ [〈x̄1, x − Xv〉, . . . , 〈x̄�, x − Xv〉]T.

Then the shifted inner product matrix is given by K̄ ∈ S�,

where K̄i, j = 〈x̄i, x̄ j〉. The following properties of the func-
tions K̄(·) and k̄(·), and matrix K̄, are useful for kerneliza-
tion:

K̄(x, y) = K(x, y) − 〈k(x) + k(y), v〉 + vTKv,

k̄(x) = k(x) − 〈k(x), v〉 1� − K̄v + 〈v, K̄v〉1�,
K̄ = (I − 1�vT)K(I − v1T

� ).

Finally, we have the following weighted least squares
estimation and the distance to the optimal affine manifold in
an analytic and kernelizable form.

Theorem 4. Define a symmetric matrix K̄ ≡ D1/2
v K̄ D1/2

v .
Suppose r ≥ m, where r̄ ≡ rank

(
K̄
)
. Denote the m major

eigenvectors of K̄ by λ̄1, . . . , λ̄m ∈ R++ and the correspond-
ing eigenvalues by b̄1, . . . , b̄m ∈ R�. Let λ̄ ≡ [λ̄1, . . . , λ̄m]T

and B̄ ≡ [b̄1, . . . , b̄m], and define

Ûsa ≡ X D1/2
v B̄diag(λ̄)−1/2 and μ̂sa ≡ Xv.

Then

(
Ûsa, μ̂sa

) ∈ arg min
U∈Od×m,μ∈Rd

Jsa(U,μ; v).

Proof. Substituting (A· 4) into Jsa(U,μ; v) gives us

Jsa(U,μ; v) =
1
2

�∑

i=1

vi

∥∥∥(Id − UUT)(xi − μ)
∥∥∥2, (A· 5)

with the assumption that
∑�

i=1 vi = 1. To minimize this, we
set

∂Jsa(U,μ)
∂μ

=
(
Id − UUT)

�∑

i=1

vi(μ − xi) = 0,

and obtain the solutions

∀β ∈ Rm, μ = Xv + Uβ. (A· 6)

The result of Theorem 4 follows when β = 0m. Substituting
(A· 6) into (A· 5) yields

Jsa(U, Xv; v) =
1
2

�∑

i=1

vi

∥∥∥(Id − UUT)x̄i

∥∥∥2,

which is equal to Jss(U; v) when the x̄i’s are treated as input
vectors. By applying Theorem 1, the theorem is established.

�

Corollary 5.

d
(
x,Ssa

(
Ûsa, μ̂sa

))

= K̄(x, x) − ∥∥∥diag(λ)−1/2BD1/2
v k̄(x)

∥∥∥2.

The equation follows when the result of Theorem 4 is
substituted in Eq. (A· 4).

For completeness, we give the non-kernelized form in
the following corollary.
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Corollary 6. The m columns in Ûsa defined in Theorem 4
are m major eigenvectors of

M̄ =
�∑

i=1

vi(xi − μ̂sa)(xi − μ̂sa)T.

Any set of m major eigenvectors of M̄ minimizes
Jsa(U, μ̂sa; v).
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