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PAPER

A Novel Statistical Approach to Detect Card Frauds Using
Transaction Patterns

Chae Chang LEE†, Nonmember and Ji Won YOON†a), Member

SUMMARY In this paper, we present new methods for learning the
individual patterns of a card user’s transaction amount and the region in
which he or she uses the card, for a given period, and for determining
whether the specified transaction is allowable in accordance with these
learned user transaction patterns. Then, we classify legitimate transactions
and fraudulent transactions by setting thresholds based on the learned indi-
vidual patterns.
key words: pattern mining, fraud detection, autoregressive, Gaussian pro-
cesses, association rule

1. Introduction

Credit and debit cards, rather than actual money, have be-
come the universal payment means. With these cards, it
has become possible to buy expensive items easily without
an additional complex authentication procedure being con-
ducted. However, card transaction features are targeted by
criminals seeking to use a lost or stolen card or looking for
a chance to replicate a consumer’s card information at the
point of purchase.

A lot of crime involving card fraud is being perpetrated
due to transaction card cloning or theft. In many countries in
order to prevent fraudulent transactions due the replication
of a card at source, information in a card are moved into In-
tegrated Circuit (IC) chip from Magnetic Stripe (MS). How-
ever in contrast to banks which can easily introduce ATMs
dedicated to IC cards, it is not easy for retail stores to re-
place the previous card reader at Point of Sale (POS) ter-
minals with an IC reader device. Therefore, at present, the
card data, which include the consumer’s credit information
and transaction data are included in both the MS and IC of a
card, and as a result, it still seems difficult to prevent illegal
card use resulting from theft or replication.

Card companies have recently introduced a variety of
measures to prevent damage to the consumer by an unau-
thorized card transaction, such as sending an SMS about the
transaction and a copy of the transaction by E-mail, sus-
pending the use of the credit card, and so on. However, these
methods are dependent on the consumer’s attention. When
they do not pay attention to the received billing messages
and are therefore not aware of a fraudulent transaction per-
petrated using their card, it is difficult to detect fraud cases
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early and take appropriate action.
The card companies may take voluntary action to pre-

vent unauthorized payments by determining in what loca-
tion and the amount of the transaction for which a card is
used. For example, if a payment involving a large amount
of money is made in Southeast Asia, and the previous trans-
action had occurred an hour previously in Seoul, Republic
of Korea, the company may conduct a verification process
through a phone call to the customer. Because the same
card cannot be used almost simultaneously in two distant
locations, a rational explanation is that a duplicate of the
card was used.

However, there is a limit to the number of fraudulent
transactions that can be detected by simply using a fixed
threshold value for the geographic distance between trans-
actions, and the location or amount of payment, because the
consumption levels of people differ, and a cloned or lost card
can be used in a location close to the legitimate owner’s nor-
mal use area.

In this paper, we therefore propose methods for detect-
ing an illegal card transaction using large scale data analy-
sis. The customers’ unique billing pattern is used in the pro-
cess. In the next section, we provide related studies and dis-
cuss the differences between these and our study. In Sect. 3,
we provide the background of statistical methods and data
mining approaches. In Sect. 4, we discuss the model for
our experiment on the detection of fraudulent transactions,
which is based on transaction patterns. In Sect. 5, we present
our experimental results, and we discuss the reasons for the
results in Sect. 6. Finally, we present our conclusions in
Sect. 7.

2. Material and Methods

Data mining is finding patterns in data that are statistically
reliable, previously unknown, and can be analyzed to pro-
vide useful insights [1]. Fraud detection is a main research
area in the field of data mining. The goal of using the data
mining approach in the detection of card fraud is to deter-
mine whether the card used in a transaction has been used
by the legitimate card user. Here, a card is a means of pay-
ment used for transactions, such as a credit, debit, or pur-
chase card, and the user is the authorized owner of the card.
The data used for data mining constitutes a user’s transac-
tion records.

Statistical fraud detection methods have been classi-
fied into two broad categories: “supervised” and “unsu-
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pervised” [2], [3]. In supervised methods, estimated statis-
tical models are used to discriminate between fraudulent
and legitimate purchase behaviors by classifying new obser-
vations into the appropriate class: fraudulent or legitimate
transaction [2], [3]. This method requires samples from both
classes, fraudulent and legitimate observations, as the mod-
els are trained based on examples of observations in both
classes [3]. The models created by the method are assessed
by measuring their accuracy in correctly classifying new ob-
servations as fraudulent or non-fraudulent [3]. Since 2001,
most fraud detection studies using supervised algorithms
have focused on the misclassification rate (i.e., the false pos-
itive and false negative error rate) [4].

Related works in which supervised methods are used
for classifying credit card transactions into legitimate and
fraudulent transactions have been published: [3] employed
a transaction aggregation strategy to create variables for the
estimation of a logistic regression model, and [5] used a bi-
nary support vector system based on the support vectors in
support vector machines and a genetic algorithm to solve
credit card fraud problems that had not been well identi-
fied [6].

Unsupervised methods attempt to detect unusual obser-
vations, such as customers, transactions, or accounts whose
behavior may be different from the norm [3], which can be
identified by clustering based on normal legitimate behav-
ior patterns. As unsupervised methods do not require sam-
ples of fraudulent and legitimate transactions, there may be
cases where there is no prior knowledge of classes of obser-
vations [3].

In earlier studies, unsupervised methods were also used
for clustering to detect credit card fraud. [7] built a Hidden
Markov Model for the sequence of operations in credit card
transaction processing. [8] focused on real-time fraud detec-
tion and presented a new model. [9] created a model of typ-
ical cardholder behavior and analyzed deviations in transac-
tions in order to identify suspicious ones. The studies of [8]
and [9] were based on a self-organizing map algorithm [6].

A data mining approach for mobility patterns is also
used to predict the location of drivers or mobile phone users.
[10] presented a Hidden Markov Model-based approach to
provide real-time predictions of a driver’s destination and
route. [11] focused on the regions of interest and the typ-
ical travel time of moving objects from region to region.
They introduced a novel form of spatio-temporal pattern,
which formalizes the idea of aggregate movement behavior
which they discuss. [12] proposed a context model, based
on classification using a certain moving profile and history
of movements. They evaluated their schemes with Bayesian
algorithms, decision-tree, and rule induction.

Using supervised methods to detect fraudulent card
transaction involves many constraints. Because aca-
demicians have difficulty acquiring credit card transaction
datasets, it is not easy to exchange ideas and possible inno-
vations related to credit card fraud detection because of the
dearth of published literature in this subject [3], [13], [14].

In this paper, we therefore detect fraudulent transaction

based on the pattern of the amount of a customer’s payment
using the purchase card data that are publicly available. The
pattern is analyzed through Gaussian Processes (GPs) and
the Autoregressive (AR) model, which have not previously
been well documented in the area of fraud detection. Fur-
ther, to characterize the pattern of a customer’s payment re-
gion, we collect the location of the customer and track the
mobility confidence. Then, we find abnormal values by ex-
tracting the association rules of the payment region of a card
user by applying an association rule algorithm [15], which
has previously been used to predict the movement of mobile
phone users.

3. Theory and Calculation

3.1 Autoregressive Model

Given a dataset of N observations {yi}Ni=1, where yi ∈ R,
AR(p) is the autoregressive model that expresses the i-th

data with p prior data
{
y j

}i−p

j=i−1
. The equation of AR(p) is

defined as

yi = a0 +

p∑
j=1

a jyi− j + εi

where
{
a j

}p

j=1
are parameters of the model, a0 is a constant,

and εi is white noise.
We can express the terms from y1 to yN by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3
...

yN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 y1 0 . . . 0
1 y2 y1 . . . 0
...

...
...

...
...

1 yN−1 yN−2 . . . yN−p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2
...

ap

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ε. (1)

Here, yi, where 1 ≤ i ≤ N, are training data and used
to estimate a target yN+1. In order to impose a restriction
such that not all previous data can be used to infer the target
data, it is also possible to utilize only the data close to the
target data by using a fixed small window size. Let the left
hand term of Eq. (1) be Y , the N × (p + 1) matrix of the
right term be X, and the matrix that contains unknown values
a0, a1, · · · , an, be A. Then, the equation can be rewritten as
a simple linear form given by

Y = XA + ε. (2)

This represents that Eq. (2) is a simple linear model
with input data X and parameters A. The observed data Y
have a noise term ε, which is assumed to be independent
and identically distributed (i.i.d.) Gaussian distribution

ε ∼ N(0, τ−1I),

where N(a, b) denotes a Gaussian distribution with mean a
and variance b, and τ is a precision value that is an inverse
of the variance.
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This noise assumption, together with the model, di-
rectly gives rise to the likelihood (i.e., the probability den-
sity of the observations given the parameters), which is fac-
tored over the cases in the training set (because of the inde-
pendence assumption) to give [16][chap. 2]

P(Y |X, A) =
N∏

i=1

p(yi|xi, A)

=

N∏
i=1

1
(2πτ−1)1/2

exp

{
− (yi − xiA)2

2τ−1

}

=
1

(2πτ−1)N/2
exp

{
− 1

2τ−1
|Y − XA|2

}

= N(XA, τ−1I). (3)

Then, the residual vector is Y − XA. A generalized
least squares method is used to estimate A by minimizing
the squared Mahalanobis length of this residual vector:

Â = argA min
{
(Y − XA)Tτ−1I(Y − XA)

}
.

Hence,

Â = (XT X)−1XT Y. (4)

The variance of an error term ε, τ−1, is obtained by the
maximum likelihood

τ̂−1 = argτ−1 max P(Y |Â, τ−1).

Substituting P(Y |Â, τ−1) for the form of the Gaussian dis-
tribution, we obtain the log likelihood function in the form
[17, chap. 1]

L = ln P(Y |Â, τ−1)

= −τ
2

(Y − XÂ)T (Y − XÂ) +
N
2

ln
τ

2π
. (5)

Now, we can obtain the estimated precision by inducing the
differential equation of Eq. (5) equal to 0 as

τ−1 =
1
N

(Y − XÂ)T (Y − XÂ). (6)

Now, based on the probability distribution of Eq. (3),
the target data yN+1 can be predicted by expectation Ŷ = XÂ
with a 95% confidence level with the range:

Ŷ − 2τ−1 ≤ yN+1 ≤ Ŷ + 2τ−1.

3.2 Gaussian Processes

Gaussian Processes (GPs) are the extension of multivariate
Gaussians to infinite-sized collections of real-valued vari-
ables and distributions over random functions [18]. That is,
they predict the subsequent data by revealing the distribu-
tion of the nonlinear function f = { fi}Ni=1, which represents
the relationship between the output data y = {yi}Ni=1 and the
input data x = {xi}Ni=1.

Each observation y ∈ R from its corresponding input
data x is given by

y = f (x) + ε

through the Gaussian noise model with variance σ2
n. The

function f (xi) can be expressed with a N × 1 matrix form as
f ∼ N(m,k),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f(x1)

...
f(xN )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∼N
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(x1)

...
m(xN )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(x1,x1) ··· k(x1,xN )

...
. . .

...
k(xN ,x1) ··· k(xN ,xN )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where m is a N × 1 matrix which contains mean functions
m(xi) and k is a N × N matrix which contains covariance
functions k(xi, x j) [18]. Usually, for notational simplicity we
take the mean function to be zero. We now choose the co-
variance function by writing

k(x, x′) = σ2
f exp

{−(x − x′)2

2l2

}
+ σ2

nδ(x, x′), (7)

where δ(x, x′)is the Kronecher delta function [16]. Its pa-
rameters θ =

{
l, σ f , σn

}
can be estimated through Bayes’

theorem. According to Bayes and [16], when we have little
prior knowledge about what θ should be, this corresponds to
maximizing ln p(y|x, θ), given by

ln p(y|x, θ) = −1
2

yT K−1y − 1
2

ln |K| − n
2

ln 2π. (8)

For estimating the parameters, the Nelder-Mead simplex,
multivariate optimization algorithm [19] is one method that
can be used.

However, in this study it is not enough to determine the
parameters using Eq. (8). Because there is no restriction on
parameter l, it can have any value from a negative value to
108. In this case, we use maximum a posteriori (MAP) to
find parameter l as

ln p(l|y) = ln
p(y|l)p(l)

p(y)
= ln p(y|l) + ln p(l). (9)

We can replace the term ln p(y|l) in Eq. (9) with Eq. (8). In
addition, we need to constrain parameter l in order to inter-
pret testing data yN+1 as an event related to the close training
data. That is, to estimate the 101-st testing data we focus
more on the 100-th training data than on the 50-th. We thus
assume that the parameter l follows a non-negative distribu-
tion l ∼ Γ(2, 2), where it is the gamma distribution with a
shape parameter 2 and a scale parameter 2. It is given by

ln p(θ|y) = −1
2

yT K−1y− 1
2

ln |K|− n
2

ln 2π+ln p(l). (10)

Hence, we can obtain restricted parameter l, as well as
σ f and σn, by calculating the arguments that maximize
Eq. (10). For simplicity, we assumed the prior distribution
of σ f and σn follow uniform distribution, which is an im-
proper distribution.
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Now, given N observations of y, in order to predict not
the actual f∗ but y∗, we prepare three matrices.

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1)· · · k(xN , xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

K∗ =
[
k(x∗, x1)k(x∗, x2)· · · k(x∗, xN)

]
(12)

K∗∗ = k(x∗, x∗). (13)

Then, y∗ can be predicted based on N observations of y
as a sample from a multivariate Gaussian distribution:

[
y
y∗

]
∼ N

(
0,
[

K KT∗
K∗ K∗∗

])

Given the data, a certain prediction for y∗ can be obtained
by conditional Gaussian distributions as

y∗|y ∼ N(K∗K−1y,K∗∗ − K∗K−1KT
∗ ).

That is, the best estimate for y∗ follows the distribution that
has the expectation of y∗, y∗ = K∗K−1y, and the uncertainty,
var(y∗) = K∗∗ − K∗K−1KT∗ . Therefore, y∗is decided with the
range:

y∗ − 2
√

var(y∗) ≤ y∗ ≤ y∗ + 2
√

var(y∗),

giving a 95% confidence level.

3.3 Extreme-Value Theory

Extreme-value theory is a branch of statistics that concerns
the distributions of data of unusually low or high value [20].
It forms representations for the tails of distributions, in this
article especially the right-hand tail.

Assume a set Zm = {z1, z2, · · · , zm} with m i.i.d. random
variables drawn from the one-sided standard Gaussian (i.e.,
D = |N(0, 1)|) and define z = max(Zm), which means the
largest element observed in m samples of Zm. Then, the ex-
treme value probability (EVP) of z is its probability of being
the largest value in the set and is obtained in the form of the
Gumbel distribution as [20], [21]

PEV (z|m) = exp

{
− exp

(
− z − μm

σm

)}
, (14)

where the location parameter is

μm = (2 ln m)1/2 − ln(ln m) + ln 2π
2(2 ln m)1/2

, (15)

and the scale parameter is

σm = (2 ln m)−1/2. (16)

Since the parameters μm and σm depend on the number
of data, m, m should be specified first in order to evaluate
an EVP. However, because we are not directly interested in
m, we obtain the EVP at time t by marginalizing out the run
length lt [21]:

Table 1 An example of four sequences of an actual transaction path.

Week(s) ago Actual transaction path sequence
4

〈
7, 1(2), 2

〉
3

〈
6(2), 9, 4(3), 10, 1(2)

〉
2

〈
1(3), 6(2), 1, 12, 3

〉
1 〈8, 11〉

PEV (t) =
t∑

m=1

PEV (t|lt = m)P(lt = m). (17)

The run length lt is the time since the last outlier [22].
Its probability P(lt = m) is PEV (t − 1) for m = 1 and
(1 − PEV (t − 1)) P(lt−1 = m − 1) for m ≥ 2, where P(lt =
1) = 1. Then, the EVP can be used as a novelty measure
and an outlier can be detected in the case of P(y) > θEV ,
where θEV is a threshold with 0 ≤ θEV ≤ 1 [21].

3.4 Association Rule

Association rule analysis is a data mining technique used
to find which events are likely to co-occur. In this study, it
is used to extract the region where transactions occur fre-
quently and the pattern of the movement path, by indicat-
ing the transaction locations as a sequence. For notational
convenience,

〈
a(i), b( j)

〉
defines the path sequence of a cus-

tomer who made payments with a card i times in region
a to j times in region b. For instance, a path sequence〈
1, 2(2), 3

〉
= 〈1, 2, 2, 3〉 represents the transition of a cus-

tomer’s location, such as, 1 → 2 → 2 → 3. Table 1 is
an example that shows the route where the transactions of a
certain customer occurred during a month.

By padding the end of each row of Table 1 with 0’s so
that the rows have the same number of columns, we obtain
the 4 × 9 matrix of the collected transaction path, U, as

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
7 1 1 2 0 0 0 0 0
6 6 9 4 4 4 10 1 1
1 1 1 6 6 1 12 3 0
8 11 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)

We can now infer which regions (i.e., numbers) are
likely to follow each other and which regions (i.e., numbers)
are associated with others based on each row of U. Let R(U)
be a collection of row spaces {Ui}4i=1 of matrix U. By apply-
ing the association rule to the row spaces, R(U), movement
patterns are mined using the support value by discovering
the correlation between the regions where a card user made
payments.

From Table 1, the supports of the length-1 pattern, P1,
are determined by the number of row spaces that contain the
pattern’s element. The support value of 〈a〉, an element of
P1, is calculated by

S 〈a〉 = |{R(U)| 〈a〉 ⊂ R(U)}| . (19)

The supports of the length-n pattern, Pn, are obtained
from the sum of the number of row spaces that contain the
length-n sequences and an incident support, S INC:
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Table 2 The patterns of length-1 and -2, and supports.

P1 Support P2 Support P2 Support
〈1〉 3 〈1, 1〉 3 〈6, 6〉 2
〈2〉 1 〈1, 2〉 1 〈6, 9〉 1
〈3〉 1 〈1, 3〉 0.5 〈6, 10〉 0.2
〈4〉 1 〈1, 6〉 1 〈6, 12〉 0.5
〈6〉 2 〈1, 12〉 1 〈7, 1〉 1
〈7〉 1 〈4, 1〉 0.5 〈7, 2〉 0.33
〈8〉 1 〈4, 4〉 1 〈8, 11〉 1
〈9〉 1 〈4, 10〉 1 〈9, 1〉 0.2
〈10〉 1 〈6, 1〉 1.17 〈9, 4〉 1
〈11〉 1 〈6, 3〉 0.33 〈9, 10〉 0.25
〈12〉 1 〈6, 4〉 0.5 〈10, 1〉 1

〈12, 3〉 1

S 〈a1,··· ,an〉 = |{R(U)| 〈a1, · · · , an〉 ⊂ R(U)}| + S INC . (20)

The incident support is a value that reflects the region where
the customer’s transactions diverged from the pattern of ar-
riving at an along the original path (i.e., a2, · · · , an−1) from
a1, and is given by

S INC =

⎧⎪⎪⎨⎪⎪⎩
1

1+t , in case of 〈a1, b1, · · · , bt, an〉
0 , otherwise.

(21)

Here, t of S INC in Eq. (21) represents that a customer go
along the learned path via t regions previously not visited.
That is, the incident support plays the role of improving
the supports by correcting the result value, even when a
customer goes indirectly to the destination moving along
a slightly different path from that which was mined. For
instance, the support value for a pattern 〈6, 1〉 based on U
is S 〈6,1〉 = 1 + 1

1+5 = 1.1667, since for U2, the second

row space of U,
〈
6, 9̇, 4̇, 4̇, 4̇, 1̇0, 1

〉
⊂ U2 and for U3, the

third row space of U, 〈6, 1〉 ⊂ U3. In the same manner,
S 〈6,4,1〉 = 0+ 1

1+2 = 0.33 because of
〈
6, 9̇, 4, 4, 4, 1̇0, 1

〉
⊂ U2.

In Table 2, the support values of length-1 patterns
P1 and length-2 patterns P2 are given. The supports of
P3, P3, · · · , PN can be obtained likewise.

Now, if a card payment in a particular region has oc-
curred, it is possible to calculate the confidence by analyz-
ing the association between the movement path of the cur-
rent consumer and the patterns of the locations of payments
that were made in the past. For an association rule of trans-
action region R : 〈a1, a2, · · · , ai−1〉 → 〈ai, ai+1, · · · , an〉, the
confidence is given by

Con f (R) =
S 〈a1,a2,··· ,an〉
S 〈a1,a2,··· ,ai−1〉

× 100. (22)

For example, suppose that we have recent transaction
data where the region is 〈6, 4, 1〉 and the card owner is cur-
rently in location number 1. Then, there are three possible
association rules:

R1 : 〈6〉 → 〈4, 1〉
R2 : 〈6, 4〉 → 〈1〉
R3 : 〈4〉 → 〈1〉 .

The confidence values of each rule are Con f (R1) = 10,

Fig. 1 Directed graph with conditional probability. Each node is repre-
sented by a circle, which contains the region number, and edges are repre-
sented by arrows. An arrow from one region to another means that there
was a history of movement between these regions with specific conditional
probability.

Con f (R2) = 40, and Con f (R3) = 50, and the maximum
value of these results, Con f (R3) = 50, is kept as the confi-
dence score of the transaction path 〈6, 4, 1〉.

3.5 Adjacency Matrix

An adjacency matrix is a means of representing which ver-
tices (or nodes) of a graph are adjacent to which other ver-
tices [23]. We set the transaction region, ai (0 ≤ i ≤ N),
as the vertices of a graph and put edges on a graph when a
customer moves from ai to a j (i.e., ai → a j). This graph
is called a directed graph. Furthermore, it has cycles (i.e.,
ai → ai) because it is possible to make more than one pay-
ment in the same area. By giving a weight, that is, the con-
ditional probability of the location a j given ai, on the edges
of a graph, we can obtain an N × N square adjacency ma-
trix. Figure 1 shows an example of a directed graph and the
conditional probability of Table 1 based on the adjacency
matrix.

For instance, given the current transaction data in the
region 〈6, 4, 1〉, the confidence score (or conditional proba-
bility) is P(a = 1|a = 4) = 0, from Fig. 1.

4. Model and Algorithm

We compare the accuracy of the methods of AR model [24]
and GPs [16] for detecting large payments according to the
transaction amount pattern, and also compare the accuracy
of the methods of association rule analysis [15] and adja-
cency matrix [25] for detecting abnormal movement accord-
ing to the transaction region pattern.

The data used for the experiments in this study were
classified into two broad categories: legitimate transactions
and fraudulent transactions. In our experiments, as legit-
imate transaction data, we used “Purchase Card Transac-
tions”. We used the data in the “Transaction amount” and
“Vendor State/Province” columns. This experimental data
has 8,843 transactions and are publicly available (Fig. 2,
https://opendata.socrata.com/).
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Fig. 2 OpenData used for the experiment.

Fig. 3 Datasets used in experiments for detecting fraudulent transac-
tions. Based on one legitimate transaction sequence, which consists of 100
transactions, we pad two kinds of data, subsequent legitimate transaction A
and arbitrary fraudulent transaction B, which consists of 5 transactions. We
call them dataset L and F respectively. This figure also shows the process
of constituting (i+1)-th dataset from i-th dataset. Each dataset L preserves a
certain transaction patterns by using a series of continuous legitimate trans-
actions. In contrast, testing data of dataset Fs has no relationship with
training data (i.e., legitimate transaction sequence).

Fraudulent transaction data were extracted from the
statistical results of [3] using a dataset of real-world credit
card transactions. The dataset contains 2,420 fraudulent
transactions; a good summary of the dataset is given in
[Table 4] [3]. Given the fraudulent dataset, the transaction
amount of fraudulent event is generated by non-negative dis-
tribution with the mean and standard deviation of the attri-
bution, that is, the average amount spent per transaction over
a month on all transactions up to this transaction. The trans-
action region of a fraudulent event is generated with the le-
gitimate transaction location by random permutation based
on the assumption that the transaction region pattern of per-
petrators is distinguishable from that of a legitimate normal
user of a card.

The datasets used our experiments are shown in Fig. 3.
We first train with 100 transactions, which is called a “le-
gitimate transaction sequence”, and learn the pattern of a
legitimate card user. Then, we test the next transaction data
whether it is legitimate or fraudulent. There are two kinds
of testing data with length 5: “subsequent legitimate trans-
action” data A and “arbitrary fraudulent transaction” data B.
The legitimate transaction data A are the subsequent contin-
uous transaction data of the training data, and the fraudulent
transaction data B are independent of the previous training
data. It should be noted that the number of the testing data
is even smaller than that of the training data. Because per-
petrators attempt to use stolen credit cards quickly to max-
imize the amount of the fraudulent payments, the sooner
these transactions are detected, the greater the loss that can
be avoided by stopping transactions made with the fraudu-
lent credit cards [3].

Now, let the 105 legitimate transaction data be dataset
L and other transaction data inserted into the fraudulent
transaction data be dataset F. We prepared 20 dataset Ls
and Fs each to conduct our experiment for various transac-
tion data. Both of dataset Ls and Fs include 105 transac-
tions, and (i+ 1)-th dataset consists of 100 training data and
5 testing data as:

• (i+1)-th dataset L = (rear part of legitimate transaction
sequence | 1-th A | · · · | i-th A || (i + 1)-th A)

• (i + 1)-th dataset F = (original legitimate transaction
sequence || (i + 1)-th B),

where “|” represents a concatenation and “||” represents a
division between training data and testing data.

The characteristics of them are distinguishable with ex-
istence of transaction patterns. All dataset Ls preserve a
certain transaction patterns, but Fs do not. While dataset
Ls consist of continuous legitimate transaction sequence,
dataset Fs consist of fraudulent transactions padded to a cer-
tain legitimate transaction sequence.

We conduct experiments using two methods to deter-
mine which method is better for detecting outliers that do
not follow the pattern of the legitimate consumer and what
threshold value is optimal for classifying the transactions of
a legitimate customer and those of a perpetrator as:

• For the transaction amount, we set a threshold value
and confirm whether the threshold allows a transaction
amount to be identified as legitimate or fraudulent.

• For transactions with amount and region, we give a
confidence score for each transaction, that is, the simi-
larity of the current transaction to previous transaction
patterns, and confirm the distribution of these scores
over legitimate and fraudulent cases. Then, we set a
threshold based on the distribution.

In AR(p) we should first make a decision over the num-
ber of AR terms, p, and the order of differencing, d. Here,
p represents the number of previous transactions used to
express a transaction with a linear combination of previ-
ous transactions, and d represents the number of differences
needed to stationarize a sample of the legitimate transaction
sequence.

The root mean square error (RMSE) shows the esti-
mated white noise standard deviation, and the autocorrela-
tion function (ACF) plot shows the coefficients of correla-
tion between data and lags for the sample. It is helpful to
decide p and d by focusing on the lowest standard deviation
and the small and patternless autocorrelations.

According to Table 3 and Fig. 4, we choose p = 5 and
d = 0.

In the AR model and GPs, we calculate the estimated
mean and variance of yN+1, E and V respectively, EVP of
yN+1, P and the confidence score of yN+1, C from the train-
ing data, Y = {yi}Ni=1, and testing data, yN+1 using algorithm 1
and 2. In algorithm 1, “cd f (Normal, yN+1, E,V)” represents
a cumulative distribution function value of normal distribu-
tion with mean E and variance V at yN+1.
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Table 3 The root mean square error (RMSE) for p and d over the sample
of legitimate transaction sequence, where p represents the number of AR
terms and d represents the order of differencing. The optimal value of p
and d can be often founded at which the lowest RMSE.

(p, d) RMSE
(1, 1) 1.92049
(2, 1) 1.91002
(3, 0) 1.64051
(4, 0) 1.64892
(5, 0) 1.61823

Fig. 4 The bar graph of autocorrelations of AR model with p = 5 and
d = 0 for transaction amount of the sample. Two red horizontal lines in-
dicate the approximate upper and lower confidence bounds. If the autocor-
relations are all small and patternless, then the data does not need a higher
order of differencing.

Algorithm 1 Predict and score the confidence of transaction
amount using the AR model
1: Autoregressive()
2: p← 5 and Y ← ln Y
3: X ← {1, yi}Ni=1 as X of equation (2)
4: Â← equation (4) and τ−1 ← equation (6)
5: E ← XÂ
6: V ← τ−1

7: P← PEV (yN+1) as equation (17)
8: C ← 1 − cd f (Normal, yN+1, E,V)
9: return E, V , P, C

Algorithm 2 Predict and score the confidence of transaction
amount using GPs
1: GaussianProcess()
2: x← (1 2 · · ·N)T

3: y← ln Y
4: K ← equation (11)
5: l, σ f , σn ← arg max {ln p(θ|x, y)} as equation (10)
6: k(x, x′)← equation (7)
7: K, K∗, K∗∗ ← equation (11), (12), and (13)
8: E ← K∗K−1y
9: V ← K∗∗ − K∗K−1KT∗

10: P← PEV (yN+1) as equation (17)
11: C ← 1 − cd f (Normal, yN+1, E,V)
12: return E, V , P, C

In the association rule and adjacency matrix, we cal-
culate only the confidence score C of the transaction region
aN+1 of the testing data from transaction path {ai}Ni=1 of the
training data using algorithms 3 and 4. In algorithm 3, Ui

means the i-th row of matrix U. In algorithm 4, A(i, j) means
an entry value of the i-th row, j-th column of matrix A.

Algorithm 3 Score the confidence of transaction region us-
ing association rule
1: AssociationRule()
2: for (i = 1→ N) do
3: U← ai with 10 columns as equation (18)
4: end for
5: for all subsequence s of 〈aN−1, aN , aN+1〉 do
6: i← 1
7: while Ui � ∅ do
8: if s ⊂ Ui then
9: S 〈s〉 ← S 〈s〉 + 1

10: else if for a ∈ s, a ∈ Ui then
11: S 〈s〉 ← S 〈s〉 + 1

1+t as equation (21)
12: end if
13: i← i + 1
14: end while
15: end for
16: C1 ← S 〈aN−1 ,aN ,aN+1〉/S 〈aN−1〉
17: C2 ← S 〈aN−1 ,aN ,aN+1〉/S 〈aN−1 ,aN〉
18: C3 ← S 〈aN ,aN+1〉/S 〈aN 〉
19: C ← max {C1,C2,C3}
20: return C

Algorithm 4 Score the confidence of transaction region us-
ing adjacency matrix
1: AdjacencyMatrix()
2: A← N × N zero matrix
3: for i = 1→ N do
4: A(ai, ai+1)← A(ai, ai+1) + 1
5: end for
6: for all A(i, j) do
7: A(i, j)← A(i, j)/

∑N
j=1 A(i, j)

8: end for
9: C ← A(aN , aN+1) return C

5. Results

5.1 Outlier Detection for the Transaction Amount

We first apply the logarithmic functions to datasets L and
F in the experiment, and perform outlier detection for the
transaction amount using GPs and AR(5) at a confidence
level of 95% (i.e., +2 SD), as shown in Fig. 5 and 6. The
upper plots in these figures help us to obtain a comprehen-
sive grasp of the transaction amount and its mean and upper
bound, while the lower plots focus on the range of testing
data, A and B, from the 101-st to 105-th transaction.

In the case of AR(5), as shown in Fig. 5, all the legit-
imate transactions in dataset L are identified as legitimate.
However, in dataset F, the fraudulent transactions are not
detected as such except one transaction, because the upper
bound for dataset F was too high to identify the amount of
the fraudulent transactions.

In the case of GPs, as shown in Fig. 6, GPs also iden-
tified the legitimate transactions in dataset L, and not the
fraudulent transactions in dataset F. It seems that the arbi-
trary fraudulent transactions, B, in dataset F do not over-
whelm the large amount of legitimate transaction sequences
that sometimes occurred.
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Fig. 5 Outlier detection with AR(5) and +2 SD. The transaction amount
of datasets L and F are represented by the solid black line. The vertical
blue line divides the transactions into the legitimate transaction sequence
on the left side and subsequent legitimate transactions on the right side in
(a), or arbitrary fraudulent transactions on the right side in (b). The mean
and 2 standard deviation estimated from AR(5) are represented by the red
dotted and solid line respectively.

Fig. 6 Outlier detection with GPs and +2 SD. The red dotted and solid
lines represent, respectively, the mean and 2 standard deviation estimated
from GPs. The datasets L and F are same as those used in AR(5).

When the confidence level threshold is adjusted to 68%
(i.e., +1 SD), in Figs. 7 and 8, outliers, indicated by magenta
square, are found more easily than when threshold is 95%
(i.e., +2 SD). However, false-positive errors were incurred
because the legitimate transactions were detected, as well as
the dataset F that contains fraudulent transactions.

Figures 9 and 10 show the results of outlier detection
for L and F using not the standard deviations but extreme-
value probability (EVP) with the threshold θEV = 0.6. The
red circles in the upper plots represent EVPs (i.e., PEV )
larger than 0.6, and the corresponding testing data are in-

Fig. 7 Outlier detection with AR(5) and +1 SD. Transaction amount and
estimated mean are same as in Fig. 5. Only the upper bound is downsized.

Fig. 8 Outlier detection with GPs and +1 SD. Transaction amount and
estimated mean are same as in Fig. 6. Only the upper bound is downsized.

Fig. 9 Outlier detection with AR(5) and EVP. The upper plots show the
extreme value probability of the transaction amount represented by the
solid red line. Means and standard deviations of each transaction amount
are used to draw EVP and obtained by AR(5). Red circles indicate the
points where PEV is larger than 0.6. The lower transactions correspond-
ing to these points are defined as outliers. They are indicated by magenta
squares in the lower plot. The lower plots show the transaction amounts
and outliers, which are transactions where PEV is larger than 0.6.

dicated as magenta squares in the lower plots. In Fig. 9,
the distribution of testing data is supposed to be one-sided
standard Gaussian having the estimated mean and standard
deviation from the AR(5) model. The distribution of test-
ing data in Fig. 10 is from GPs. In these cases, we found
that EVP gives a more reliable result because not only did
both AR(5) and GPs identify the fraudulent transactions in
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Fig. 10 Outlier detection with GPs and EVP. Means and standard devi-
ations of each transaction amounts are used to draw EVP and obtained by
GPs.

dataset F as fraud more accurately than the +1 SD method,
but also identified the legitimate transactions in dataset L as
normal more accurately than the +1 SD method. However,
since there are some data such that PEV > 0.6 in a legitimate
transaction sequence (i.e., on the left side of the vertical blue
line in the upper plots), we can assume that it still gives rise
to false-positive errors for the large amount transactions that
are sometimes generated by a legitimate consumer.

Therefore, we consider the association rule and adja-
cency matrix, as well as AR(5) and GPs, which handle the
movement pattern of a consumer path, and determine the
difference in the transaction pattern distribution of legiti-
mate and fraudulent transactions. Then, we propose a op-
timal threshold for classifying them.

5.2 Confidence on the Transaction Amount and Region

The confidence score for the transaction amount uses the
cumulative distribution function (CDF) of Gaussian distri-
bution, which has mean and standard deviations estimated
from AR(5) or GPs. In the case of Gaussian distribution with
0 mean and 1 variance (i.e., standard normal distribution), if
the random variable of a newly occurred transaction amount
is close to zero, (i.e., the average payment), we can under-
stand that it follows the transaction pattern. On the other
hand, if the random variable of a transaction amount is nega-
tive in standard normal distribution, we can ignore that event
due to the small transaction amount, which is not threaten-
ing. In another case, when a random variable of the amount
is positive in the distribution, we should pay attention to the
event, since it represents that a large amount transaction ex-
ceeds the existing pattern has occurred. In order to express
this possible threat as a numerical value, we define the confi-
dence score for the transaction amount as “1-CDF”. That is,
when the confidence score is higher, a smaller transaction
amount will not cause concern, and when the confidence

score is lower, a relatively large transaction amount that ex-
ceeds the pattern of the existing customer’s transactions will
be seen as threatening.

The confidence score for the transaction region is de-
fined as the result value of the association rule analysis and
the conditional probability of the adjacency matrix method.

Now, we can draw two attributions in a two-
dimensional plane by placing the confidence score of the
transaction region on the x coordinate and that of the trans-
action amount on the y coordinate. For each of 6 L and
F datasets with a total of 30 transaction data (i.e., 30 test-
ing data), we drew a simple distribution of the confidence
score using the transaction amount and region data. Fig-
ure 11 shows 30 legitimate transaction data indicated by
green points in the upper part and 30 fraudulent transac-
tion data indicated by magenta points in the lower part. As
shown in Fig. 11, the distribution of the experimental results
for dataset L is spread evenly, but in the case of dataset F
it is confirmed that the confidence scores are gathered at x
and y coordinate values of less than 50. In particular, when
the adjacency matrix is used for the confidence score for
the transaction region (right side of Fig. 11), the x coordi-
nate value is biased at less than 50. This means that the
association rule that considers the correlation between a va-
riety of regions is a more appropriate method for processing
the movement pattern of users than is the adjacency matrix,
which deals with only the prior location.

Thus, we constrain the method for finding the confi-
dence score of the transaction region to the association rule
and not allow the adjacency matrix. With the association
rule to obtain the confidence score of the transaction region,
Method 1 uses GPs, and Method 2 uses AR(5) to obtain that
of the transaction amount. For each of 20 L and F datasets, a
total 100 transaction data (i.e., 100 testing data), the compar-
ison of the two methods is plotted in Fig. 12. As in Fig. 11
the F data are gathered at x and y coordinate values of less
than 50. However, since the distribution of the confidence
score for the L data, indicated by circles in the upper part
of the figure, has spread in various places, it is difficult to
separate the dataset F from the mixed dataset with L and F
completely.

Therefore, even allowing some errors, we need to find
a threshold θx,y(= x < θ and y < θ) that maximizes the accu-
racy and minimizes the error rate, where the accuracy rate
is defined as the ratio of the number of correctly predicted
transaction to the total number of transaction data based on
a given threshold. The errors are divided into false-positive
and false-negative. The false-negative error rate is the ra-
tio of the number of transactions that failed to identify a
fraudulent transaction to the number of F data, and the false-
positive error rate is the ratio of the number of transactions
that raised a false alarm for a legitimate transaction to the
number of L data.

For example, based on a threshold θx,y = 30, the ac-
curacy at θx,y = 30 is the sum of the number of markers in
dataset L where x ≥ 30 or y ≥ 30 and the number of markers
in dataset F where x < 30 and y < 30. The false-positive
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Fig. 11 Comparison of four methods of classifying 30 transaction data. We first used the four methods
to observe the distribution of transactions in datasets L and F. Dataset L, which consists of legitimate
transactions, is indicated as green markers and dataset F, which consists of fraudulent transactions, is
indicated as magenta markers. We distinguished the methods by using different marker shapes for each.
The markers in the plots of methods with the adjacency matrix are biased on the left side of the xy-plane.

Table 4 The accuracy and error rate of each method. Method 1 is a combination method of associa-
tion rule and GPs (i.e., rectangular markers in Figs. 11 and 12). Method 2 is a combination method of
association rule and AR(5) (i.e., circle markers in Figs. 11 and 12). We determined the optimal thresh-
olds with the highest accuracy and the lowest error rates, indicated in bold type.

θx,y = 10 θx,y = 20 θx,y = 30 θx,y = 40 θx,y = 50
Method 1

Accuracy
115(.58) 129(.65) 144(.72) 160(.80) 159(.80)

Method 2 115(.58) 135(.68) 146(.73) 161(.81) 153(.77)

Method 1
False-positive 3 10 14 20 23
False-negative 82 61 42 20 18

Method 2
False-positive 4 7 14 19 29
False-negative 81 58 40 20 18

Fig. 12 Comparison of two methods for classifying 100 transaction data.
We chose the two better methods to observe the distribution of transactions
in datasets L and F from Fig. 11. The legitimate transactions are evenly
spread in various location while the fraudulent transactions are gathered
around the origin of the coordinates.

error is the number of markers in dataset L where x < 30
and y < 30, and the false-negative error is the number of
markers in dataset F where x ≥ 30 or y ≥ 30.

As a result, θx,y = 40 for Method 1 and θx,y = 50 for
Method 2 is the optimal threshold that maximizes the ac-

curacy and minimizes the error rate, as shown in detail in
Table 4.

5.3 Comparison

This section presents results from our experiments com-
paring the performance of data mining techniques only for
transaction amounts [26]. [26] developed three models from
training data of transaction amount dataset, and showed
Cross-validation performance of different techniques in ta-
ble 5 of their literature. It presents accuracy for detecting
credit card fraud with just one transaction pattern, while our
study uses two kinds of transaction patterns.

For detailed comparison of accuracy, we defined ad-
ditional measures: Specificity and Sensitivity. Specificity
gives the accuracy on the legitimate cases, that is, the ratio
of detecting legitimate transactions as legitimate. Sensitiv-
ity gives the accuracy on the fraud cases, that is, the ratio of
detecting fraudulent transactions as fraud. Comparative re-
sults are shown in Table 5. However, It should be considered
that datasets of those two studies are different.

6. Discussion

Until now, we gave the confidence scores to a customer’s
transaction amount and region according to the previous
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Table 5 Comparison of the accuracy by the number of learned patterns.

Our Methods [26]
(2 patterns) (1 pattern)

Technique(s)
GP AR

LR SVM RF
Association rule

Specificity 80% 81% 97% 98% 98%
Sensitivity 80% 80% 65% 52% 72%

transaction patterns, and examined the characteristics of the
distribution of the values by plotting them in a coordinate
plane. As a result, it was not easy to discriminate com-
pletely the data as legitimate or fraudulent, but by setting
the appropriate threshold we can obtain the optimal solu-
tion. In spite of these contributions, a discussion about the
false-positive errors and false-negative errors that occurred
in this experiment is required. The reasons for the errors and
countermeasures that can be considered are as follows:

1. The fraudulent transaction amount induced from Ta-
ble 4 of [3] was not very significantly higher than
the legitimate transaction amount. Some samples of
fraudulent transaction data contain a normal transac-
tion amount that is not larger than the legitimate trans-
action amount.
However, this may not be a problem in real-life trans-
actions because perpetrators attempt to use stolen cards
or duplicate cards quickly to maximize the amount of
fraudulent transactions so that they can complete be-
fore the fraud comes to light.

2. Immediately after a legitimate transaction involving the
payment of a large amount of money occurs, the es-
timated amount of the next transaction is increased
in accordance the amount of the previous transaction.
Therefore, a fraudulent transaction involving a rela-
tively small amount is not identified, and hence, a false-
negative error occurs.
This issue can be resolved by reducing the length of
the testing data, the number of transactions processed
to identify the fraud. We used 20 B datasets as testing
data in dataset F. Each the fraudulent set had five trans-
actions (i.e., 5-length). In our experiment using dataset
F, confidence scores of the first and second data of the
fraudulent B sets were generally lower than those of the
third, fourth, and fifth data.
Figure 13 shows the confidence scores of 20 arbitrary
fraudulent transaction data of the B datasets obtained
by GPs. They are plotted in ascending order. The con-
fidence scores of the first B data are represented by a
yellow line, which is lower than 10. Confidence scores
of the second data in the B dataset are represented by an
orange line, which is almost lower than 10. This means
that if we constrained the number of testing data as 2,
there would be less false-negative errors for the fraud-
ulent transactions in GPs using a threshold θx,y = 10.

3. Conversely, after a legitimate transaction involving the
payment of a small amount of money occurs, the es-
timated amount of the next transaction is decreased
in accordance the amount of the previous transaction.

Fig. 13 Confidence scores of fraudulent transaction set B in the order of
testing data obtained by GPs. An arbitrary fraudulent transaction set B has
5 transactions. For each of 20 fraudulent B testing datasets, the confidence
scores of the first data in the B datasets are represented by orange dots and
lines in ascending order. The second to fifth data are also represented by
different colors. This figure shows that the first and second transactions
of the B datasets almost never exceeded a confidence score of 10. This
demonstrates that the shorter the length of the testing data used, the lower
is the false-negative error rate in not only GPs but also AR(5).

Therefore, a legitimate transaction involving a rela-
tively large amount raises a false-alarm, and hence,
gives rise to a false-positive error.
This issue can also be resolved by adding a certain
transaction amount that may have occurred in a fraud-
ulent transaction to the threshold of confidence scores.

4. Because the confidence score is 0 for the first visit lo-
cation, many data are gathered on the y-axis, whether
the transaction is legitimate or fraudulent.
For consumers whose lifestyle is fixed and regular, it
seems that the cases where the data are clustered on
the y-axis are usually fewer. In addition, in this experi-
ment the region of a fraudulent transaction is obtained
randomly from the region of a legitimate transaction.
However, since in real life the region of a fraudulent
transaction is completely independent of the region of
a legitimate transaction, there may be more fraudulent
transaction data near the y-axis.

7. Conclusion

In this paper we propose methods that use the transaction
patterns of a consumer to detect fraudulent card use. Al-
though there were lots of researches of data mining to de-
tect fraudulent transactions, they only focused on single as-
pect for fraud detection. We introduce fraud detection with
two dimensions as transaction amount and movement pat-
tern. Even if some known learning algorithms gives better
accuracy for the legitimate transactions than our proposal as
shown in Table 5, it is also important to detect fraudulent
transactions as fraud in the area of card fraud detection. We
provide much better accuracy for the fraudulent transactions
not only receptible accuracy for the legitimate transactions
with a novel adaption of known algorithms.

Since our proposed method uses a small number of
transactions for training, it can be also applied for large-
scale dataset. We trained 100 transactions for testing 5 trans-
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actions in this paper but smaller training data would not
change the result of our experiments significantly. How-
ever, if we used more dimensions for fraud detection such
as purchasing item of a card user, it could not be applied to
real-world due to the computational complexity in spite of
its highly accuracy.

For many reasons, such as changes in income, lifestyle,
and place of abode, the consumption patterns of credit card
users also change frequently. Therefore, it is difficult to de-
tect a fraudulent card transaction when only certain fixed
conditions have been set. In this paper, we present a practi-
cal method for learning automatically the consumption pat-
tern of a customer, and detecting the fraudulent use of a card
that has been duplicated or stolen based on the pattern with
various perspectives.
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