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SUMMARY  As the virtualization technology becomes the core ingre-
dient for recent promising IT infrastructures such as utility computing and
cloud computing, accurate analysis of the internal behaviors of virtual ma-
chines becomes more and more important. In this paper, we first propose
a novel 1/O fairness analysis tool for virtualization systems. It supports the
following three features: fine-grained, multimodal and multidimensional.
Then, using the tool, we observe various I/O behaviors in our experi-
mental XEN-based virtualization system. Our observations disclose that
1) I/O fairness among virtual machines is broken frequently even though
each virtual machine requests the same amount of 1/Os, 2) the unfairness
is caused by an intricate combination of factors including I/O scheduling,
CPU scheduling and interactions between the I/O control domain and vir-
tual machines, and 3) some mechanisms, especially the CFQ (Completely
Fair Queuing) I/O scheduler that supports fairness reasonable well in a non-
virtualization system, do not work well in a virtualization system due to
the virtualization-unawareness. These observations drive us to design a
new virtualization-aware I/O scheduler for enhancing I/O fairness. It gives
scheduling opportunities to asynchronous 1/Os in a controlled manner so
that it can avoid the unfairness caused by the priority inversion between the
low-priority asynchronous I/Os and high-priority synchronous I/Os. Real
implementation based experimental results have shown that our proposal
can enhance I/O fairness reducing the standard deviation of the finishing
time among virtual machines from 4.5 to 1.2.

key words: storage, 1/O virtualization, fairness, analysis tool, virtualiza-
tion-aware I/O scheduler

1. Introduction

Virtualization is a technology that allows multiple virtual
machines to run concurrently on a physical machine by ab-
stracting physical resources into multiple logical ones[1].
It plays a key role of utility computing, which flexibly pro-
vides computing resources for both computation and storage
to users on demand. Also, it becomes the essential part for
cloud computing owing to its merits such as elasticity, iso-
lation, consolidation, and live migration [2].

The virtualization technology brings in a new software
layer called hypervisor (also known as VMM (Virtual Ma-
chine Monitor)) that governs the behavior of virtual ma-
chines [3], [4]. The goal of the hypervisor is managing var-
ious logical resources efficiently and fairly among virtual
machines. To achieve the goal, it makes use of a variety
of policies and mechanisms. For instance, the borrowed
virtual time scheduling [3], proportional-share algorithm [6]
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and virtualized multicore [7] are used for CPU virtualiza-
tion, while the difference engine [8] and ballooning [4] are
used for memory virtualization. Also, for I/O virtualization,
the hypervisor makes use of the I/O emulation technique [9],
IOMMU [10] and IDD (Isolated Device Domain) [3]. The
IDD, which is commonly used in a XEN-based virtualiza-
tion system, is an isolated and privileged I/O control domain
that takes fully charge of the I/O device management.

This separation of the isolated software components,
such as virtual machines, hypervisor and I/O control do-
main, provides several strengths including isolation, porta-
bility and easy development. However, the coexistence of
these components requires interactions across protection do-
mains, which causes performance and fairness issues, es-
pecially for I/O. For instance, an I/O request issued by
an application is delivered to the corresponding I/O device
through the virtual machine, hypervisor, and control domain
using various complex data structures such as I/O ring and
event channel [3]. Also, a response is returned in reverse
order across the protection domains. These interpositions
of the isolated domains in the I/O path often lead to per-
formance degradation and unfairness in virtualization sys-
tems [12].

To explore these issues more quantitatively and with a
system-wide viewpoint, we propose a novel virtualization-
aware I/O fairness analysis tool. It consists of two modules,
on-line monitor and off-line analyzer. The on-line monitor
has two features, fine-grained and multimodal feature. It
defines five focal layers, namely I/O request, I/O queuing,
1/O dispatch, I/O completion and I/O response layer to ex-
amine I/O fairness in a fine-grained manner. In addition, it
keeps track of not only I/O events but also scheduling data
to provide multimodal information. The off-line analyzer
has a multidimensional feature that presents the monitoring
results with various viewpoints such as timeline or resource
share.

Using this tool, we have conducted several observa-
tions based on our experimental XEN based virtualization
system. Our observations have revealed that I/O fairness
among virtual machines is broken frequently due to the
combined reasons of diverse aspects including I/O schedul-
ing, CPU scheduling and interactions between virtual ma-
chines and the I/O control domain. The superficial reason is
due to the CPU scheduler in the XEN hypervisor that does
not schedule some virtual machines during a specific period.
Further investigation discloses that this non-scheduling is
caused by the delay of I/O responses from the I/O control
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domain to virtual machines, which, in turn, makes the re-
lated virtual machines to be set as the inactive state.

The real reason behind this unfairness is due to the
virtualization-unawareness of the CFQ (Completely Fair
Queuing) I/O scheduler used in the I/O control domain. The
CFQ 1I/O scheduler, which was originally designed for a
non-virtualization system, supports fairness at the process
basis, not at the virtual machine basis. This mismatch causes
the I/O priority inversion problem, where the low-priority
asynchronous I/Os hinder the progress of the high-priority
synchronous I/Os, which eventually leads to the unfairness.

Our observation drives us to design a virtualization-
aware I/O scheduler for enhancing fairness. The key idea
is giving scheduling opportunity to asynchronous I/Os in a
well controlled fashion so that they can be completed and
their responses are delivered to the corresponding virtual
machine. Then, the virtual machine becomes the active
state, having a chance to be scheduled and to issue the pend-
ing I/O requests. To this end, we devise an integrated queue
that orchestrates synchronous and asynchronous I/Os all to-
gether while handling synchronous I/Os with higher priority.

We have implemented our proposed I/O scheduler in a
XEN-based virtualization system. The system equips with
the quad-core 3.2 GHz Phenom processor, §GB DRAM, and
two WD 500GB hard disks. On this hardware platform, we
install the XEN hypervisor version 4.1.2-pre and make one
control domain and four virtual machines. The Linux kernel
version 2.6.32.45 is used for the control domain and virtual
machines. Experimental results have exhibited that our pro-
posal can enhance I/O fairness without causing considerable
management overheads.

This paper makes the following contributions:

o We design a new tool for analyzing I/O fairness in a
virtualization environment. It gathers diverse informa-
tion at the fine-grained level and visualize them with
multiple viewpoints.

e We observe that virtual machines often suffer from I/O
unfairness. This unfairness is the combined results of
several virtualization techniques such as VM schedul-
ing, I/O ring mechanism and I/O scheduling. To our
knowledge, this is the first paper that investigates how
the interactions among I/O scheduler, CPU scheduler,
and inter-VM communication affect I/O unfairness in a
virtualization system.

e We devise a virtualization-aware CFQ I/O sched-
uler that gives more scheduling chances to the asyn-
chronous I/Os in a controlled manner, preventing the
related virtual machine from being inactivated (not
scheduled). Also, we claim that applying a scheme
originally developed for a non-virtualization system
into a virtualization system requires virtualization-
awareness.

e We implement the tool and scheduler in a XEN-based
real system and evaluate their effectiveness quantita-
tively.

This paper is organized as follows. In Sect.2, we de-
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Fig.1 T/O structure in a XEN-based virtualization system.

scribe the background of this study. Then, the I/O fairness
analysis tool are presented in Sect. 3. Analysis of I/O behav-
iors and details of our proposed I/O scheduler are elaborated
in Sects. 4 and 5, respectively. In Sect. 6, we discuss exper-
imental results. Related work is given in Sect.7. Finally,
conclusion and future work are summarized in Sect. 8.

2. Background

In this section, we first explain an I/O path in a XEN-
based virtualization system. Then, we present three mech-
anisms, namely communication mechanism, I/O scheduler,
and CPU scheduler, that are closely related to the analysis
of I/O fairness.

Figure 1 shows the structure of a XEN-based virtual-
ization system. It consists of three types of isolated soft-
ware component, XEN hypervisor, control domain, and a
couple of virtual machines. The control domain and vir-
tual machine are also called as Domain 0 and Domain U,
respectively, in XEN’s nomenclature. Each virtual machine
can execute any operating system (also called as Guest OS)
such as MS windows and Linux, supporting an independent
computing platform. The control domain is in charge of
managing I/O devices and carries out I/O accesses on be-
half of Guest OSes.

The XEN hypervisor employs the split device driver
model [3]. It supports two types of driver, a front-end driver
in a Guest OS and a back-end driver in the control domain.
For communication between the two drivers, the XEN hy-
pervisor provides two mechanisms, I/O ring and event chan-
nel. The former is used for data transfer while the latter
for notification. When a I/O request is triggered by an ap-
plication, the front-end driver in a Guest OS puts the re-
quest into the 1/O ring and notifies it to the back-end driver
through the event channel. Then, the back-end driver deliv-
ers the request to the native driver that actually performs I/O
operations by directly manipulating related registers in de-
vices. When the request is completed, a response is returned
through the inverse order; device, control domain, hypervi-
sor, and Guest OS. Note that the I/O ring and event channel
are limited resources. Hence, when they are full, a virtual
machine can not send further requests even though it has
lots of pending I/O requests.
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One of the mechanisms that affects I/O fairness is 1/O
scheduling. In the control domain, a I/O scheduler locates
between the back-end driver and the native driver. In this
experimental environment, we use the Linux kernel version
2.6.32.45 as the operating system for the control domain. In
Linux, there are four types of I/O scheduler; Noop, deadline,
anticipatory, and CFQ (Completely Fair Queuing) [13].

The Noop scheduler arranges requests based on the
FCFS (First Come First Serve) algorithm. Both the dead-
line and anticipatory schedulers are trying to minimize head
movements by serving requests in ascending (or descend-
ing) order of their sector numbers. The anticipatory goes
one step further in that it waits for new in-coming read re-
quests for a predetermined period for handling bursty 1/Os
more efficiently. Finally, the CFQ scheduler provides a sep-
arate queue for each process and serves requests of queues
in a round-robin order which enables to support fair share of
I/Os among processes. The default one used in the control
domain is the CFQ scheduler.

Another mechanism that affects I/O behaviors is CPU
scheduling. The XEN hypervisor originally used the BVT
(Borrowed Virtual Time) scheduler [3], but recently adopts
the credit scheduler [14]. The credit scheduler manages vir-
tual CPUs based on their credits, a kind of time quantum.
The credit determines the priority of virtual CPUs; BOOST,
UNDER and OVER. When a virtual CPU has a remain-
ing credit, it has the UNDER priority, meaning schedula-
ble. Otherwise, it becomes the OVER priority. Finally, a
virtual CPU has the BOOST priority when it wakes up from
a long sleep for giving more opportunity to handle the pend-
ing I/Os.

In addition to the priority, each virtual CPU has its own
state; active or inactive. When a virtual CPU is idle for a
long time (specifically, when it accumulates a credit above
a 30ms worth [14]), the XEN credit scheduler marks it as an
inactive state and excludes it from scheduling candidates.

3. 1/O Fairness Analysis Tool

In this paper, we propose a novel virtualization-aware I/O
fairness analysis tool, that provides the following three fea-
tures. The first feature is a fine-grained monitoring. One
characteristic of a virtualization system is the coexistence of
multiple isolated software components such as virtual ma-
chine, control domain, and hypervisor. The processing steps
of I/O requests are interposed across several protection do-
mains. Therefore, to perform I/O analysis more accurately,
it is indispensable to investigate I/O behaviors down to the
details at the appropriate points.

As those appropriate points, we define five focal lay-
ers, namely I/O Request layer, I/O Queuing layer, I/O Dis-
patch layer, I/O Completion layer, and I/O Response layer,
as shown in Fig.2. Each layer represents an inter-relation
between isolated components. For instance, the I/O Request
layer is a point where we can examine the interactions be-
tween a Guest OS and the XEN hypervisor. Similarly, we
can inspect the interactions between the XEN hypervisor
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Fig.2  File layers for fine-grained I/O analysis.

and control domain at the I/O queuing layer, the interactions
between the control domain and devices at the I/O Dispatch
layer, and so on.

The strong point of this fine-grained analysis is that it
can disclose useful information on the potential causes when
it monitors unfairness at each layer. For instance, when we
observe a fairness violation at the I/O Request layer, we can
infer that the delayed virtual machine suffers from the short-
age of the virtual CPU, possibly due to the lack of virtual
CPU’s credit. Also, when we observe a fairness anomaly
at the I/O Queuing layer, we can suspect the I/O ring or
event channel handling mechanisms. Similarly, unfairness
observed at the I/O Dispatch, Completion, and Response
layer indicates that there might be some causes or prob-
lems in the I/O scheduling policies, device characteristics
and optimization techniques, and inter-domain communica-
tion mechanisms, respectively. This inference gives us a rel-
evant clue to understand and solve a fairness violation.

The second feature of our proposed tool is a multi-
modal monitoring. Note that the I/O fairness analysis is
closely associated with CPU scheduling decisions. Hence,
to carry out I/O analysis in a system-wide viewpoint, the
tool needs to monitor not only I/O related but also CPU re-
lated data. Specifically, it monitors I/O related data occurred
in the I/O ring, event channel, back-end driver’s queue, and
native driver’s queue. Besides, it collects the virtual CPU
status of each virtual machine such as credit, priority and ac-
tivity. The collected data are stored in main memory. Since
the overhead for collecting is quite small, compared with
the processing time of an I/O request, we expect that this
monitoring rarely affects the I/O analysis results.

The third feature is a multidimensional presentation. It
shows the records with various aspects. One is a time di-
mension. It displays I/O behaviors as time goes by, which
will be illustrated in Fig. 3. Another aspect is a share dimen-
sion. It shows how much I/O bandwidth a virtual machine
uses at a certain time or period, which will be illustrated in
Fig. 4. The final aspect is an integrated dimension. It depicts
I/O behaviors and CPU scheduling information at the same
time scale, which will be further discussed using Fig. 5.

4. Analysis Results

We have implemented the tool and conducted several ob-
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Fig.3  1/O fairness comparison among 4 virtual machines.

servations based on our experimental virtualization system,
consisting of the quad-core 3.2 GHz Phenom processor,
8GB DRAM, and two WD 500GB hard disks. On this hard-
ware platform, we install the XEN hypervisor version 4.1.2-
pre and configure one I/O control domain and four virtual
machines. The XEN hypervisor creates eight virtual CPUs
and assigns four into the control domain and other four into
the four virtual machines, separately. Also, it allocates 1GB
memory to each virtual machine. Finally, it divides a disk
into four partitions with the size of 125GB and allots a par-
tition into a virtual machine. As the results, each virtual ma-
chine has one virtual CPU, IGB memory and 125GB disk
space. On this virtual machine, we install the Linux ker-
nel version 2.6.32.45, the same one used by the I/O control
domain.

Then, we execute the Linux ‘dd” command in each vir-
tual machine that reads a file with the size of 1GB at the
same time. While executing, the tool monitors various infor-
mation such as the number of I/O requests at the five layers,
I/O size, elapsed time and CPU scheduling data. Figure 3
presents one monitoring result with a timeline viewpoint,
where the x-axis is the elapsed time and the y-axis is the cu-
mulative I/O size. In the figure, four lines, denominated as
VM 1 to 4, represent the four virtual machines.

Figure 3 shows that there is indeed a fairness violation
among the virtual machines. In this case, the finishing time
of the command in the virtual machine 4 is around 38 sec-
ond, which are 1.31 times slower than the command in the
virtual machine 1, whose finishing time is 29 second. We
also observe that such unfairness occurs frequently, roughly
4 out of 5 trials even though the ‘dd’ application performs
I/Os only without any complex CPU or memory operations
and the CFQ is used as the default I/O scheduler. For the
comparison purpose, we conduct the same experiment in a
non-virtualization system, installing the identical Linux ker-
nel on the aforementioned hardware platform and executing
the ‘dd’ command using the four tasks. In this case, we
hardly observe the unfairness. It implies that the unfairness
observed in Fig. 3 is mainly due to the software complexity
introduced by the virtualization technology.

For further investigation, we examine I/O behaviors
with a different viewpoint by exploiting the multidimen-
sional feature of our proposed tool. Figure 4 illustrates the
monitoring results in a share dimension, while Fig. 3 is il-
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Fig.4  1/O bandwidth shares among 4 virtual machines at the five layers.

lustrated in a time dimension. Specifically, we plot the I/O
bandwidth shares of the four virtual machines at the inter-
esting moments, 15, 17 and 20 second, respectively, at the
timeline of Fig.3. Figure 4 (a) shows the shares at the 15
second. Obviously, the four virtual machines consume 1/O
bandwidth fairly through all five focal layers. However, at
the 20 second as presented in Fig. 4 (c), the virtual machine
4 does not use I/O bandwidth at all. Interestingly, this phe-
nomenon is observed from the first layer that is the I/O Re-
quest layer.

At the beginning, we suspect that this unfairness is
due to the XEN CPU scheduling policy since the ‘dd’ ap-
plication tries to trigger I/Os whenever possible. As we
already discussed in Sect. 2, the XEN hypervisor uses the
credit scheduler with three priorities; UNDER, OVER, and
BOOST [14]. We doubt that the virtual machine 4 is in the
OVER priority, that means no remaining credit, which leads
to the lack of the share at the I/O Request layer.

To explore our speculation, we observe the virtual CPU
information during the ‘dd’ execution, as depicted in Fig. 5.
Note that the scale of the x-axis of this figure is the same
as that of Fig.3, owing to the multimodal feature of our
tool. Unfortunately, it shows that our speculation is incor-
rect. The virtual CPU for the virtual machine 4 has a positive
credit, resulting in having the UNDER or BOOST priority,
as shown at the middle graph in Fig. 5.

The actual reason of the unfairness at the 1/O request
layer is the activity state of the virtual CPU, as shown at the
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bottom graph in Fig.5. When a virtual CPU is idle for a
long time due to the lengthy delay of I/Os, the XEN credit
scheduler marks it as an inactive state and excludes it from
scheduling candidates. When an interrupt is occurred and
there is a pending job in the event channel, it becomes an ac-
tive state and gets a chance to be scheduled according to its
priority. Since the virtual CPU related to the virtual machine
4 is in the inactive state during the time interval between
4~12 and 17~21 second, it cannot use the I/O bandwidth
during those intervals.

Now the question is why the virtual CPU becomes in-
active. This is because the responses of the previously is-
sued requests are delayed from the control domain to the
virtual machine 4. We perform a time travel from 20 second,
as shown in Fig.4 (c), to 17 second, as shown in Fig. 4 (b),
which is the starting point of the unfairness presented in
Fig.3. Figure 4 (b) shows that the I/O bandwidth share is
reduced between the I/O Queuing and Dispatch layer, from
25% to 14% in the virtual machine 4. When we plot this fig-
ure, we use the moving averaged value of successive moni-
toring results. If we plot using the monitoring results indi-
vidually, the share often goes down to 0%, not dispatched
at all even though there are 1/O requests in the queue of the
back-end driver.

These phenomena are more evident when we examine
the raw collected data directly, presented in Table 1 and il-
lustrated in Fig.6. It shows that the request listed at the
3rd entry in the table is inserted into the queuing layer at
17.38196 second. Then, the request is moved into the dis-
patch layer at 17.38198 second by the CFQ I/O scheduler.
However, the request listed at the 4th entry is moved into the
dispatch layer at 20.53013 second even though it is inserted
into the queuing layer at 17.38266 second. There exist con-
siderable gap, roughly 3 seconds. This delayed dispatching
defers the completion of this request, which making the fol-
lowing requests to be queued after that gap, as shown in the
6th entry. In other words, the delayed dispatching postpones
the completion response from the control domain to the vir-
tual machine 4, which eventually makes the virtual machine
4 as inactive state, shown in Fig. 5.

Figure 4 (b) and Table 1 reveal that the real cause of
the unfairness is the CFQ I/O scheduler that governs the dis-
patching decisions between the queuing and dispatch layers.
These decisions affect the communication between the con-
trol domain and virtual machines, which, in turn, influence
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Table 1 1/O Information of the virtual machine 4.
(a) Queueing Layer

RW | Size | Sector |

l Entry | Time (sec)

1 17.38099 Read | 45056 | 336010368
2 17.38106 Read | 45056 | 336010456
3 17.38196 Read | 45056 | 336010544
4 17.38266 | Write | 4096 | 367018256
5 17.38269 | Write | 20480 | 371476136
6 20.53105 Read | 45056 | 336010624
7 20.53109 Read | 45056 | 336010712
(b) Dispatch Layer

[ Entry | Time(sec) | RW | Size [ Sector |
1 17.38101 Read | 45056 | 336010368
2 17.38108 Read | 45056 | 336010456
3 17.38198 Read | 45056 | 336010544
4 20.53013 | Write | 4096 | 367018256
5 20.53049 | Write | 20480 | 371476136
6 20.85929 Read | 45056 | 336010624
7 20.85929 Read | 45056 | 336010712
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Fig.6  Elapsed time between layers (numbers are differences between
Queueing time and Dispatching time at eacy entry).

the XEN CPU scheduling decisions. Our further examina-
tion shows that the problem of the CFQ I/O scheduler is due
to the virtualization-unawareness, which will be discussed
in details in the next section.

5. Virtualization-Aware 1I/O Scheduler

Figure 7 shows the details of the CFQ I/O scheduler used
in the I/O control domain. The CFQ I/O scheduler has two
objectives; 1) providing fair share of I/O bandwidths among
processes that have the same priority and 2) preferring syn-
chronous 1/Os to asynchronous I/Os. Note that, in general,
read requests are classified into synchronous, while writes
into asynchronous. To accomplish these objectives, the CFQ
I/O scheduler assigns different queue into each process for
synchronous I/O requests and serves them in a round-robin
order. Also, it use another separated queue (or queues) for
asynchronous I/O requests and serve them only when the
synchronous queues are all empty.

The CFQ I/O scheduler works well in a non-
virtualization system [13]. However, in a virtualization sys-
tem, some conditions assumed by the scheduler are not
valid. Specifically, in the control domain, each back-end
driver shown in Fig.2 is treated as a process. However,



3138

(CFQ 1/0 Scheduler)

Sync /0 B
/‘ Process s | |y F;m:)r)d
Process 2 CFQ-Queue \ obin .
/ (Sync /o) [ @ Dispatch
3 Queue

o
0o
CFQ-Queue

request

Fig.7 Interaction among processes and CFQ I/O scheduler in a non-
virtualization system.

(CFQ I/O Scheduler)
Sync /O

Backend 1 request
..... Round
% CFQ-Queue = Robin
Backend 2 [¢ ____. —— snci0) Dispateh
T 5
)
fmmetenen —»| CFQ-Queue ie%
1 Backend 7 iquo .. Async /0 | (ASync 1/0) * RB-Tree
"""" i > *ee‘ request
- Completion messages ~~~""""""" -

Fig.8 Interaction among backend drivers and CFQ I/O scheduler in a
virtualization system.

in actuality, the back-end driver corresponds to a virtual
machine, not a process, as illustrated in Fig.8. A virtual
machine consists of a set of heterogeneous processes, is-
suing various types of synchronous and asynchronous I/Os
together. In addition to this conceptual mismatch, in a vir-
tualization system, I/O requests and responses need to be
transferred between a virtual machine and a back-end driver
through the inter-domain communication mechanisms such
as I/O ring and event channel. Since the capacity of the I/O
ring and event channel is limited, sending I/O requests can
be blocked until responses for the previously issued requests
are returned to a virtual machine.

Let us elaborate the observed unfairness using example
with Fig. 8. Assume that a virtual machine sends some read
and write requests together. Then, read requests are inserted
into the corresponding synchronous queue while write re-
quests are into the asynchronous queue. The synchronous
requests are served in a round-robin fashion while the asyn-
chronous requests wait until the synchronous queues are
empty. By the way, when another read requests are is-
sued by other virtual machines, the dispatching of the asyn-
chronous requests are delayed further. This delayed dis-
patching, in turn, postpones the completion of the asyn-
chronous requests. If the postponement is longer than a cer-
tain threshold, it makes the virtual machine as inactive as
observed in Fig. 5. As the result, the virtual machine cannot
send the remaining I/Os to the control domain, as shown in
Fig. 4 (c), until the completion of the postponed I/Os.

Note that, in this example, the low-priority asyn-
chronous I/Os are delayed by synchronous I/Os issued from
other virtual machines, which eventually blocks the progress
of the high-priority synchronous I/Os, requested later from
the same virtual machine. It looks like the well-known pri-
ority inversion problem in a real-time system [20]. We call
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Fig.9  Virtualization-aware CFQ 1/O scheduler based on Integrated
Queue.

this situation as the 1/O priority inversion problem in a vir-
tualization system.

To overcome this problem, we propose a new
virtualization-aware CFQ I/O scheduler. The key idea of
our proposal is giving more scheduling opportunity to asyn-
chronous I/Os in a controlled manner. The controlled man-
ner implies the following two principles; 1) still giving pref-
erence to synchronous I/Os in the same virtual machine
and 2) avoiding starvation of asynchronous I/Os due to syn-
chronous I/Os issued from other virtual machines.

To materialize the principles, we devise an integrated
queue, as depicted in Fig.9. The integrated queue, that is
assigned into each back-end driver separately, contains both
synchronous and asynchronous I/Os. In the queue, syn-
chronous I/Os get higher priority than asynchronous ones
using RB-tree structure. Also, all queues are served in a
round-robin manner. Hence, when there exist asynchronous
I/Os only in a queue, they can be dispatched and served,
enabling to respond the completion message to the related
virtual machine. Hence, the virtual machine can send re-
maining I/Os without blocking.

6. Experimental Results

To validate the effectiveness of the virtualization-aware
CFQ I/O scheduler, we have implemented the scheduler in
our experimental system and conducted the same experi-
ment, discussed in Fig.3. Note that the workload used in
this experiment also has been used in several previous stud-
ies [21], [22] since it represents the characteristics of large
and sequential I/Os observed in a virtualization environ-
ment [23].

Figure 10 presents the experimental result. Fig-
ure 10(a) is the I/O behaviors under the traditional CFQ
I/O scheduler while Fig. 10 (b) is those under our proposed
scheduler. From the figure, we notice that our proposal in-
deed enhances the fairness among virtual machines reducing
the standard deviation of the finishing time of applications
on virtual machines from 4.5 to 1.2. It implies that our pro-
posal can overcome the I/O priority inversion problem in
a virtualization system. It is noteworthy that asynchronous
I/Os occurs frequently from the kthread daemon or journal-
ing requests from the Ext4 file systems, even though users
request synchronous I/Os only. The result also uncovers that
our proposed analysis tool supports quite relevant and useful
information for analyzing I/O behaviors in a virtualization
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Fig.11  Comparison of CPU allocation among virtual machines.

system.

One concern of our proposed scheduler is that it may
hurt the overall performance. Note that the finishing times of
the four applications in Fig. 10 (a) are relatively shorter than
those in Fig. 10 (b). One reason is that giving a dispatching
chance to asynchronous I/Os increases the seek distance for
handling those requests, reducing the possibility of the seek
optimization in devices. Another and more important reason
is that the finishing times measured in Fig. 10 (b) includes
the completion of the background asynchronous I/Os while
those in Fig. 10 (a) do not. Achieving both performance and
fairness is left as future work.

Figure 11 shows the CPU allocation among vir-
tual machines during the experiment. It shows that the
virtualization-aware CFQ I/O scheduler can handle the I/O
requests of virtual machines fairly, which, in turn, balances
the CPU allocation among virtual machines. It also shows
that I/O scheduling decisions affects not only I/O fairness
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but also CPU allocation decisions, and vice versa. This is
why we design the I/O fairness analysis tool with the con-
sideration of multimodal feature.

7. Related Work

As the I/O virtualization becomes an important issue in term
of performance and fairness in a virtualization system, sev-
eral notable researches have been carried out over the last
decades [12]. Barham et al. have proposed the IDD (Iso-
lated Device Domain) and split-driver model for making use
of the reusability of native drivers [3]. I/O emulation and dy-
namic translation have been suggested in [9] and [4], respec-
tively, where 1/O requests of a virtual machine are trapped
into the hypervisor, which makes direct access to I/O de-
vices.

Ben-Yehuda et al. have suggested the IOMMU (10
Memory Management Unit) for safe direct device access
from a virtual machine [10]. Liu et al. have designed a
VMM-Bypass technique that allows time-critical I/O opera-
tions to be carried out directly in a virtual machine without
involvement of the hypervisor or the control domain[11].
Kim and Lee have proposed a novel distributed hash table
based mechanism for flexible storage virtualization [15].

Santos et al. have observed the overheads due to the in-
teractions among virtual machines, control domain and hy-
pervisor, and have proposed several optimization techniques
such as a lightweight page grant mechanism [18]. Gordon
et al. have proposed ELI (Exit Less Interrupt) that handles
interrupts within a virtual machine without involvement of
the hypervisor [19].

Two researches are closely related to our work. Gulati
et al. have devised an algorithm, called mClock, that sup-
ports proportional-share fairness on the IO allocations for
virtual machines [16]. Kim et al. have noticed that the XEN
CPU scheduler can affect the I/O performance and fairness
among virtual machines [17].

The schemes proposed in [16] and [17], and our
scheme have the same goal, enhancing I/O fairness and per-
formance in a virtualization system. The difference between
[17] and ours is that our scheme is an I/O scheduler, while
[17] is a VM scheduler. Compared with [16], our scheme
does not require any QoS related parameters, while [16] can
provide more flexible I/O controls among VMs. We think
that these schemes are orthogonal and can be used indepen-
dently each other, creating a synergy effect.

In actuality, this paper is an extended version of the pa-
per appeared in [5]. In [5], we have proposed the analysis
tool only, while in this paper, we investigate the analysis re-
sults in depth, design a new virtualization-aware I/O sched-
uler, and evaluate its effectiveness through implementation-
based experiments.

8. Conclusion

As the usage of the virtualization technology increases, a
bunch of mechanisms that are used popularly in a non-
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virtualization system are migrated into a virtualization sys-
tem. However, a naive migration incurs unexpected perfor-
mance degradation and/or fairness violation due to the en-
vironmental and conceptual mismatches between two sys-
tems. In this paper, we have proposed a new I/O fairness
analysis tool to examine such mismatches with fine-grained,
multimodal and multidimensional viewpoints. Also, we
have designed a virtualization-aware CFQ I/O scheduler for
enhancing fairness among virtual machines.

We are considering three research directions as future
work. The first direction is further evaluating the effective-
ness of the proposed tool with various applications including
I/O and CPU intensive workloads. Another direction is ana-
lyzing the tradeoffs between performance and fairness, and
exploring new scheme to enhance both. The final direction
is extending our virtualization-aware CFQ I/O scheduler to
guarantee the different QoS (Quality of Service) requested
by cloud computing users.
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