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PAPER

Efficient K-Nearest Neighbor Graph Construction
Using MapReduce for Large-Scale Data Sets

Tomohiro WARASHINA†a), Nonmember, Kazuo AOYAMA††, Hiroshi SAWADA†††, Members,
and Takashi HATTORI††, Nonmember

SUMMARY This paper presents an efficient method using Hadoop
MapReduce for constructing a K-nearest neighbor graph (K-NNG) from
a large-scale data set. K-NNG has been utilized as a data structure for data
analysis techniques in various applications. If we are to apply the tech-
niques to a large-scale data set, it is desirable that we develop an efficient K-
NNG construction method. We focus on NN-Descent, which is a recently
proposed method that efficiently constructs an approximate K-NNG. NN-
Descent is implemented on a shared-memory system with OpenMP-based
parallelization, and its extension for the Hadoop MapReduce framework is
implied for a larger data set such that the shared-memory system is diffi-
cult to deal with. However, a simple extension for the Hadoop MapReduce
framework is impractical since it requires extremely high system perfor-
mance because of the high memory consumption and the low data trans-
mission efficiency of MapReduce jobs. The proposed method relaxes the
requirement by improving the MapReduce jobs, which employs an appro-
priate key-value pair format and an efficient sampling strategy. Experi-
ments on large-scale data sets demonstrate that the proposed method both
works efficiently and is scalable in terms of a data size, the number of ma-
chine nodes, and the graph structural parameter K.
key words: k-nearest neighbor graph, Hadoop MapReduce, distributed
computing

1. Introduction

The goal of K-nearest neighbor graph (K-NNG) construc-
tion is the efficient realization of a list of K vertices clos-
est to each vertex in a given vertex set based on a defined
dissimilarity between a pair of vertices. A graph can be
regarded as a general expression of a relationship between
objects, where a vertex and an edge correspond to an ob-
ject and a relationship, respectively. K-NNGs have been
used in a wide variety of research fields including computer
graphics [1], [2], data clustering [3], [4], dimensionality re-
duction [5], [6], recommender systems [7], and similarity
search [8], [9]. In these fields, large-scale high-dimensional
data sets are often used in practice. Hence a method that
efficiently constructs a K-NNG from such a data set is nec-
essary to make the developed techniques practical.

Methods that construct an exact K-NNG, such as those
based on the triangle inequality [10], [11], are not suit-
able for high-dimensional data sets due to their high com-
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putational cost. Most approaches represented by divide-
and-conquer methods [12]–[14] construct an approximate
K-NNG from a high-dimensional data set. Recently, the
heuristic method NN-Descent was proposed; it constructs
an approximate K-NNG more quickly and accurately than
other previously described approximate methods [15].

In [15], NN-Descent is implemented on a shared-
memory system with OpenMP-based parallelization. The
implementation may not be suitable for large-scale data sets
due to its limited disk access speed and memory capacity
since it serially reads a whole data set from a disk and loads
it onto the memory. An easy and convenient way of han-
dling a large-scale data set is to adopt a distributed system
based on a shared-nothing architecture. Hadoop MapRe-
duce is one of the most typical ways of implementing such
distributed systems. It is both a programming model and a
framework for processing large-scale data sets by exploiting
the parallelism among computing nodes in the distributed
system, and has gained popularity for its simplicity, flexibil-
ity and fault tolerance [16].

A MapReduce implementation of NN-Descent, which
we call simple extension, is implied along with the OpenMP-
based implementation in [15]. However, it is difficult to use
simple extension directly because of its high memory con-
sumption and low data transmission efficiency in MapRe-
duce jobs. In this paper, we propose an efficient method to
relax the burden of simple extension. The contributions of
this paper are as follows.

Sophisticated MapReduce jobs
The burden imposed by simple extension is the result
of the costly feature vectors needed to calculate the
dissimilarity between vertices. We rearrange the data
structure and the algorithm of simple extension, and
employ sophisticated MapReduce jobs, which main-
tain the same output as simple extension. The MapRe-
duce jobs use a novel format of input-outputs (key-
value pairs), which have none of the redundant feature
vectors that are included in simple extension.

High performance and unique properties of scalability
In addition to the sophisticated MapReduce jobs, we
employed an improved sampling strategy that enables
the proposed method to reduce the elapsed time for the
approximate K-NNG construction and increase the re-
call of the K-NNG to the corresponding exact K-NNG.
Our experimental results for both real large-scale data
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sets and synthetic data sets demonstrate that (1) the
proposed method constructs a K-NNG from a data set
of 1×107 vertices around five times faster than simple
extension, and (2) the method is scalable in terms of the
data size, the number of machine nodes, and the graph
structural parameter K.
When constructing an approximate K-NNG, in par-
ticular, our method requires an elapsed time of
O(K0.45∼0.55) experimentally while the original NN-
Descent requires O(K1.5∼1.8). This result means that
the proposed method has superiority over NN-Descent
in accuracy of the obtained approximate K-NNG. This
is because the proposed method can handle a larger K
value than NN-Descent; we can always make an ap-
proximate L-NNG (L > K) first, and then extract the
first K-nearest neighbors to make a more accurate ap-
proximate K-NNG than a directly made approximate
K-NNG.

The remainder of this paper consists of five sections.
Section 2 begins with a brief review of NN-Descent and
Hadoop MapReduce, and then describes simple extension
and related problems to clarify our motivation. Section 3
details the proposed method, which consists of four distinct
MapReduce jobs with a newly introduced format of key-
value pairs. Section 4 describes the experimental perfor-
mance of the proposed method. Section 5 provides a survey
of related work. The final section offers our conclusions.

2. Preliminaries
This section provides an overview of NN-Descent and in-
troduces Hadoop MapReduce after describing the notations
and definitions used in this paper.

2.1 Notations and Definitions

Given a set of n vertices (objects) V = {v1, v2, · · · , vn},
the number of neighbors K and dissimilarity measure σ :
V ×V → R, a problem of constructing a K-nearest neighbor
graph (K-NNG) is equivalent to finding the K vertices clos-
est to each vi based on σ. Note that we use identical symbols
for an object and a vertex, or a relationship and an edge.

Let B(v) be a set of approximate K-NN vertices of ver-
tex v (|B(v)| = K). A reverse vertex set and an adjacent
vertex set of v are defined by R(v) = {u ∈ V | v ∈ B(u)} and
A(v) = B(v) ∪ R(v), respectively. A set of neighbor’s neigh-
bors of v is expressed by T (v)=

⋃
u∈A(v) A(u)\{v}. Subsets of

B(v), R(v), and A(v) are indicated by Bs(v), Rs(v), and As(v),
respectively.

Figure 1 helps us understand intuitively the mean-
ings of the above symbols in the graph where each ver-
tex in v1, v2, · · · , v6 is connected to another vertex with
one directed edge. Note that the graph is not an exact 1-
NN graph in the two-dimensional Euclidean space. When
choosing vertex v4, B(v4) = {v3}, R(v4) = {v1, v2, v6}, and
A(v4) = B(v4) ∪ R(v4) = {v1, v2, v3, v6}. Focusing on v3,
T (v3)=

⋃
u∈A(v3) A(u)\{v3}=A(v4)\{v3}∪A(v5)\{v3}= {v1, v2, v6}.

We summarize the notations and definitions we use in
this paper in Table 1.

Fig. 1 Graph consisting of six vertices where each has one directed edge.
Ro(v) and Rn(v) are described in Sect. 2.2.

Table 1 Notations and definitions.

Notation Description and Definition

V Vertex (object) set
n The number of vertices in V; n = |V |
K The number of neighbors; K ∈N, K ≤ n − 1
σ(v, u) Dissimilarity from v to u, v∈V , u∈V (σ : V × V → R)

B(v) Approximate K-NN set of v
R(v) Reverse vertex set of v; R(v)= {u∈V | v∈B(u)}
A(v) Adjacent vertex set of v; A(v)=B(v) ∪ R(v)
T (v) Neighbor’s neighbor vertex set of v; T (v)=

⋃
u∈A(v) A(u)\{v}

Bs(v) Approximate K-NN vertex subset of v; Bs(v) ⊆ B(v)
Rs(v) Reverse vertex subset of v; Rs(v) ⊆ R(v)
As(v) Adjacent vertex subset of v; As(v) ⊆ A(v)
Ts(v) Neighbor’s neighbor vertex subset of v; Ts(v) ⊆ T (v)

Bo(v) Set of vertices with f alse flag in B(v)
Bn(v) Set of vertices with true flag in B(v)
Bn

s (v) Set of vertices sampled from Bn(v)
Ro(v) Set of vertices with f alse flag in R(v)
Rn(v) Set of vertices with true flag in R(v)
Ao

s (v) Set of vertices with f alse flag in As(v)
An

s (v) Set of vertices with true flag in As(v)

ρ Sampling rate; ρ∈ (0,1]
δ Parameter for early termination

2.2 NN-Descent
NN-Descent [15], which constructs an approximate K-NNG
from a given vertex set V , can be regarded as an iterative
algorithm that minimizes objective function F(V) expressed
as

F(V) =
∑

v∈V

∑

u∈B(v)

σ(v, u) ,

where σ(v, u) denotes the dissimilarity from v to u.
NN-Descent employs as the initial graph a random

graph where each vertex has K directed edges, i.e., the ini-
tial B(v) is a set of K vertices randomly sampled from V . At
each iteration, B(v) is updated by replacing the vertex in B(v)
with one closer to v, which is obtained by calculating a dis-
similarity from v to the vertices in a neighbor’s neighbor set
of v, i.e., T (v). NN-Descent terminates just when the number
of updates of B(v) falls below a pre-determined value.

Next, four techniques in NN-Descent are reviewed,
which are closely related to the method proposed in Sect. 3.

Local join in [15] is a procedure based on only the local
information, where dissimilarities from vertex u to its neigh-
bor’s neighbors are calculated and B(u) is updated. Given
vertex v ∈ V and As(v), local join on As(v) is to calculate a
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dissimilarity between each pair of u ∈ As(v) and p ∈ As(v)
(u�v), and to update B(u) and B(p). Figure 1 shows the op-
eration of local join. Let us consider updating B(v3) under
the condition of As(v)= A(v). A naı̈ve approach is to calcu-
late dissimilarities between v3 and ∀u ∈ T (v3) = {v1, v2, v6}
and update B(v3). On the other hand, by using only the
local information As(v4) instead of T (v3), the local join
on As(v4) calculates dissimilarities σ(v3, v1), σ(v3, v2) and
σ(v3, v6) and updates B(v3).

Incremental search is a technique that allows us to
avoid redundant dissimilarity calculations. A boolean flag
is attached to each vertex in B(v) to indicate whether or not
the vertex is a candidate for the local join on As(v). The flag
is set to true when a vertex is newly inserted into B(v). In
the local join on As(v), only the dissimilarities between two
vertices where at least one of their flags is set to true are cal-
culated. After the local join, the flag of the remaining vertex
in B(v) is set to false.

To provide simple expressions in the following sec-
tions, new symbols are introduced as follows. Vertices with
a false and a true flag are called an old and a new vertex,
respectively. Let Bo(v) and Bn(v) denote subsets of old and
new vertices in B(v), respectively. Let Ro(v) and Rn(v) de-
note subsets of old and new vertices in R(v), respectively.
Let Ao

s(v) and An
s(v) denote subsets of old and new vertices

in As(v), respectively. We confirm the above symbols us-
ing the graph in Fig. 1. Suppose that the graph is an in-
termediate graph in NN-Descent and vertices in Bo(v) and
Bn(v) are connected from v with blue line edges and red dot-
ted edges, respectively. Then Bo(v2) = ∅ and Bn(v2) = {v4}.
Rn(v4)= {u∈V | v4 ∈Bn(u)}= {v2}.

Sampling enables NN-Descent to avoid a high com-
putational cost in local join. In the sampling, ρK vertices
are randomly sampled from Bn(v) before local join, where
ρ ∈ (0, 1] is the sampling rate. In terms of reverse vertices
u ∈ R(v), ρK vertices each are sampled from Ro(v) and the
already sampled subset of Rn(v). Then As(v), ∀v∈V , is gen-
erated. The local join is executed only for As(v).

Early termination counts the number of updates of
B(v), ∀v∈V in each iteration, and stops the algorithm when
the number of the updates becomes less than δKn, where δ
is a given parameter.

2.3 Hadoop MapReduce

Hadoop is open source software, which contains Hadoop
Distributed File System (HDFS) and Hadoop MapReduce.
HDFS divides a given data set into subsets and stores them
at the machine nodes of a cluster in a distributed file sys-
tem. Hadoop MapReduce is not only a software framework
but also a programming model; the model is designed for
data-intensive parallel computation in shared-nothing clus-
ters [16], [17].

A job in MapReduce is executed in three phases, a
MAP, a SHUFFLE, and a REDUCE phase, in this order.
In the MAP and REDUCE phases, respectively, MapReduce
executes a MAP and a REDUCE function, which are defined
by a user, in each computing node of a cluster. The functions

limit their input-output (I/O) formats to key-value pairs ex-
pressed by <key, value>. In contrast, in a SHUFFLE phase,
MapReduce automatically sorts key-value pairs that are out-
put from the MAP functions by key, and merges the values
for each key. The resultant key-value pairs are used as RE-
DUCE function inputs.

Although MapReduce is simple and easy to use, its
operations are not always optimized for I/O efficiency [16].
MapReduce often suffers from low data transmission effi-
ciency because in a SHUFFLE phase all key-value pairs
generated in a MAP phase are transmitted to computing
nodes executing a REDUCE function. Therefore, designing
MAP and REDUCE functions with high data transmission
efficiency is important if we are to realize high performance
for the entire MapReduce process.

2.4 Simple Extension of NN-Descent for MapReduce

Simple extension of NN-Descent for MapReduce, which is
implied in [15], repeats two MapReduce jobs until the ter-
mination condition is satisfied. The first MapReduce job
generates <v, {B(v), As(v)}> from <v, B(v)>, ∀v ∈ V . The
MAP function first divides the input B(v) into Bo(v) and
Bn(v). Then, the function applies the sampling to Bn(v) and
generates Bn

s(v), which is a set of new vertices sampled from
Bn(v). The function finally emits both <v, B(v)> and <u, v>,
∀u ∈ Bo(v) ∪ Bn

s(v). The REDUCE function receives both
B(v) and a subset of R(v) whose vertices share the same ver-
tex v in the key, generates As(v), and emits key-value pairs of
<v, {B(v), As(v)}>. The second MapReduce job updates B(v)
by local join on As(v), ∀v ∈ V . The MAP function receives
<v, {B(v), As(v)}> and emits key-value pairs of <v, B(v)>, <u,
As(v)\{u}> (∀u ∈ An

s) and <u, An
s(v)> (∀u ∈ Ao

s(v)). The ver-
tex u in the key and one of the vertices in the value of <u,
As(v)\{u}> and <u, An

s(v)> are neighbor’s neighbor vertices
to each other. The vertices in the value of the key-value
pairs (vertices in As(v)\{u} and An

s(v)) are neighbor’s neigh-
bors of the vertex in the key (vertex u) via the vertex v. The
REDUCE function receives <v, {B(v),Ts(v)}>, updates B(v),
and emits the newly updated key-value pair <v, B(v)>. The
pseudo-code of simple extension is available in Appendix.

Simple extension suffers from the disadvantages of high
memory consumption and low data transmission efficiency.
These disadvantages originate in the naı̈ve formats of the
key-value pairs in MapReduce jobs. A dissimilarity calcu-
lation in the local join requires an object entity, e.g., a fea-
ture vector if an object is represented as a point in a feature
space. Hereafter, we use a feature vector instead of an ob-
ject entity for ease of understanding. For this requirement
and the naı̈ve format, each vertex has to retain a feature
vector throughout all the processes in the jobs. In partic-
ular, when an object is a point in a high-dimensional fea-
ture space and a vertex with a high degree, i.e., a hub that
appears in a K-NNG, a serious problem occurs regarding
memory consumption and data transmission efficiency. If
hub v appears in a K-NNG, the REDUCE function in the
first job has to deal with a lot of vertices in R(v) to generate
As(v). This makes the memory consumption too high and
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the processing speed lower. The MAP function in the sec-
ond job emits a lot of key-value pairs, namely the pairs of
the neighbor’s neighbors <u, As(v)\{u}> (∀u∈An

s(v)) and <u,
An

s(v)> (∀u∈Ao
s(v)). The number of neighbor’s neighbors is

too large to transmit through the network, and much larger
than that of the adjacent vertices that are emitted in the first
job. Their transmission leads to increases in network loads
in the SHUFFLE phase. In fact, the heavy network loads in
the second job decrease the efficiency of simple extension as
shown in Sect. 4.4. Thus, simple extension of NN-Descent
for MapReduce is not scalable.

3. Proposed Method
We begin with an overview of the proposed method by pro-
viding its main ideas from an algorithmic perspective. Next,
we explain how to design our key-value pairs that contribute
to a reduction in both memory consumption and network
loads. Finally, we detail each of the four MapReduce jobs.

Hereafter, we focus on a high-dimensional metric fea-
ture space. In the metric feature space, a dissimilarity is
identical to a distance (“dist” for short).

3.1 Overview
Simple extension described in Sect. 2.4 is not scalable. This
is because each vertex in key-value pairs keeps its fea-
ture vector, which causes high memory consumption and
increased network loads. The main idea of the proposed
method is to deal with as many vertices as possible without
costly feature vectors by using low cost information, such as
distance and attributes as described in Sect. 3.2. By intro-
ducing a new symbol ‘*’, we distinguish vertex v∗ accom-
panied by its feature vector from vertex v with no feature
vector, as shown in Fig. 3. Then v∗ has a costly feature vec-
tor, while v has no feature vector and can be loaded onto the
memory and be transmitted at low cost. Similarly, a set in
which each vertex has a feature vector is represented by the
corresponding symbol accompanied by ‘*’ such as R(v)∗.
For instance, in the graph in Fig. 1, R(v4)∗= {v∗1, v∗2, v∗6}, while
R(v4) = {v1, v2, v6}, in which no vertex has a feature vector.
Since each vertex in R(v)∗ has a costly feature vector, R(v)∗
is loaded onto the memory and transmitted at much higher
cost than R(v). The proposed method uses as few vertices
and sets accompanied by ‘*’ such as v∗ and R(v)∗ as pos-
sible by instead using vertices and sets accompanied by no
symbol such as v and R(v).

We divide the processing at each iteration in NN-
Descent into two stages.
Stage 1: Generates As(u)∗ from B(u), ∀u∈V

When creating As(v)∗, simple extension loads almost
all the vertices in R(v)∗ onto the memory, resulting in
high memory consumption. In contrast, we use only
the necessary vertices in R(v)∗ for creating As(v)∗ by
using a tag that is a symbol indicating whether a vertex
is sampled or not, as detailed in Sect. 3.2. This stage is
divided into two sub-steps: (1) we first apply a newly
introduced sampling technique to R(v) and attach a tag
(attribute symbol) to the sampled vertices; (2) we then
create As(v)∗ with only B(v)∗ and the tagged vertices

in R(v)∗. Since we use vertices in R(v) with no feature
vectors and only the tagged vertices in R(v)∗, i.e., not
use redundant vertices in R(v)∗, we can create As(v)∗
with a low memory consumption.

Stage 2: Updates B(u) with As(u)∗, ∀u∈V
Simple extension simply emits many large-size pairs
of neighbor’s neighbor vertices and their feature vec-
tors, <u∗, As(v)∗ \{u∗}> (∀u∗ ∈ An

s(v)∗) and <u∗, An
s(v)∗>

(∀u∗ ∈Ao
s(v)∗), which cause an increase in network load.

In contrast, the proposed method emits pairs of neigh-
bor’s neighbor vertices, where each vertex of value in
the key-value pair has distance, instead of its feature
vector. Then, the proposed method updates B(v) with
only the distance. Since the proposed method emits
neighbor’s neighbor vertices without their costly fea-
ture vectors, it can update B(v) with high transmission
efficiency.

The proposed method consists of four MapReduce jobs
that execute the processes of the two stages: CreateRevVer-
tices, CreateKVertices, CreateAdjVertices and UpdateKVer-
tices. Figure 2 shows an overview flowchart of the four
MapReduce jobs, which are executed in the above order.
The first three jobs correspond to Stage 1, i.e., these MapRe-
duce jobs create As(v)∗, ∀v ∈ V , with a low memory con-
sumption. CreateRevVertices and CreateKVertices execute
sub-step (1) in Stage 1. To tag vertices in R(v), Cre-
ateRevVertices first creates R(v) from B(v). Then, Cre-
ateKVertices creates B(v)∗. This job also applies our sam-
pling technique to R(v) and tags the sampled vertices. Cre-
ateAdjVertices executes sub-step (2) in Stage 1, i.e., creates
As(v)∗ with B(v)∗ and only the tagged vertices in R(v)∗. Note
that these three jobs deal with only adjacent vertices, which
are much fewer than the neighbor’s neighbors. Hence, each
of them can be executed at much lower cost than the first

Fig. 2 Overview flowchart of each iteration in the proposed method.



3146
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Fig. 3 Composition of v and v∗ of value-vertex. While v has no feature
vector and takes low cost for loading onto the memory and for transmission,
v∗ has feature vector and incurs much higher cost.

job in simple extension. UpdateKvertices, the fourth job,
corresponds to Stage 2, i.e., the job updates B(v), ∀v ∈ V ,
with only distance instead of a feature vector. Owing to the
transmission of only the distance, the I/O cost is greatly im-
proved. This results in a significant decrease in the elapsed
time needed for updating B(v), ∀v∈V , as shown in Sect. 4.4.
We explain how to design a key-value pair in Sect. 3.2 and
each MapReduce job using pseudo-codes in Sect. 3.3.

We change sampling in NN-Descent described in
Sect. 2.2 to improve the elapsed time by reducing the num-
ber of iterations. The proposed method samples ρK vertices
from each of Ro(v) and Rn(v) while NN-Descent first sam-
ples ρK vertices from Bn(v) and next samples ρK vertices
from each of Ro(v) and Rn(v). In other words, the proposed
method can be regarded as a method using the sampling rate
of 1.0 (ρ=1.0) for B(v). Our experimental results show that
our sampling technique is useful in the Hadoop MapReduce
framework in Sect. 4.

3.2 Design of Key-Value Pairs
We replace as many feature vectors as possible with the dis-
tance and the attributes as described later. Let us consider a
key-value of <v, u>. We call vertex v and u in the key-value
pair the key-vertex and the value-vertex, respectively. The
key-vertex v consists of an identification number (ID) and
may be accompanied by a feature vector. The value-vertex
u is a vertex with additional information; it consists of an
ID, the distance in between v and u, and three attributes,
and may be accompanied by a feature vector, as shown in
Fig. 3. The distance calculated in UpdateKVertices is kept
at the value-vertex in the key-value pair for updating B(v).
Keeping only the distance without the feature vector leads to
lower network loads. The value-vertex u is a vertex in any of
B(v), R(v), and Ts(v) in most settings. The three attributes,
a1, a2, and a3, are as follows.

a1: holds one of the following three symbols, ‘b’, ‘r’ or ‘t’,
and distinguishes the set that u is in: u ∈ B(v), u ∈ R(v)
or u∈Ts(v);

a2: holds one of the following two symbols, ‘o’ or ‘n’, and
distinguishes whether u is an old or a new vertex on
incremental search;

a3: holds one of the following two symbols, ‘s’ or ‘u’, and
distinguishes whether u is sampled (‘s’) or unsampled
(‘u’) in our sampling technique.

Note that the attributes are essential information when im-
plementing simple extension although this is not mentioned

in [15]. In particular, the introduction of the attribute a3,
i.e., the tag is the key idea for decreasing the memory con-
sumption, as described in Sect. 3.1. A value-vertex can have
at most one symbol per attribute. The distance and the at-
tributes are renewed every time MapReduce jobs are per-
formed.

3.3 MapReduce Jobs

3.3.1 Job1: Create Reverse Vertex Sets R(v)
CreateRevVertices, namely the first MapReduce job, creates
reverse vertex sets (R(v),∀v ∈ V) as shown in Algorithm
1. None of the vertices in R(v) have a feature vector and
they are used for our sampling technique in the next job,
namely CreateKVertices. The MAP function receives <v∗,
B(v)> as its input and emits two types of key-value pair: (1)
<v, v∗>where v∗ keeps its feature vector, the maximum value
represented by infinity for its distance, and no symbols for
its attributes; (2) <u, v>, ∀u ∈ B(v), for creating R(v) in the
SHUFFLE phase. The vertex v in the pair <u, v> is a reverse
vertex of R(u), since R(u) = {v ∈ V | u ∈ B(v)}. By merging
all the pairs in which the key-vertex is u, we can generate
<u, R(u)>. In the SHUFFLE phase, v∗ and ∀u∈R(v) for each
key-vertex v are merged, and <v, {v∗,R(v)}> (∀v ∈ V) are gen-
erated. The REDUCE function generates <v∗, R(v)> from
the input pair <v, {v∗, R(v)}> and then emits it.

Algorithm 1 CreateRevVertices
1: function MAP(v∗, B(v))
2: EMIT(v, v∗)
3: Attach a1 symbol ‘r’ to v
4: for all u ∈ B(v) do
5: Attach u′s distance to v
6: Attach u′s a2 symbol to v
7: EMIT(u, v)
8: end for
9: end function

10: function REDUCE(v, {v∗, R(v)})
11: EMIT(v∗, R(v))
12: end function

Figure 4 shows the data flow in CreateRevVertices
when R(v4) is created, with reference to Fig. 1. The MAP
function receives the input key-value pair whose key-vertex
is v4 and emits <v4, v∗4>. Furthermore, the function also
emits <v4, v1>, <v4, v2>, and <v4, v6>, i.e., <v4, R(v4)>, which
are generated from the key-value pair whose key-vertex p
(= v1, v2, v6) satisfies v4 ∈ B(p). In the SHUFFLE phase,
all the key-value pairs are merged and then <v4, {v∗4, v1, v2,
v6}> = <v4, {v∗4, R(v4)}> is generated. The REDUCE func-
tion receives <v4, {v∗4, R(v4)}> as its input and then emits <v∗4,
R(v4)>.

3.3.2 Job2: Create Approximate K-NN Vertex Sets B(v)∗

CreateKVertices, namely the second MapReduce job, cre-
ates approximate K-NN vertex sets (B(v)∗,∀v∈V) as shown
in Algorithm 2. Furthermore, the job applies our sampling
technique to R(v) and attaches the a3 symbol ‘s’ to the sam-
pled vertices, i.e., tags them. By using the attribute a3, the
next job can create As(v)∗ with a low memory consumption.
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Fig. 4 Data flow in CreateRevVertices that creates R(v4).

First, the MAP function receives <v∗, R(v)> as its input.
Next, the function creates Rs(v) by applying the sampling
technique to R(v) as the original NN-Descent employs the
sampling. The sampled vertices (∀u ∈ Rs(v)) are attached
the a3 symbol ‘s’ to, as shown on Line 11 and inserted into
As(v) in the next job. Finally, the function emits two types
of key-value pair: (1) <v, v∗>; (2) <u, v∗>, ∀u ∈R(v), to cre-
ate B(v)∗ in the SHUFFLE phase. In the SHUFFLE phase,
v∗ and ∀u ∈ B(v)∗ for each key-vertex v are merged, and <v,
{v∗, B(v)∗}> (∀v ∈ V) are generated in the same way as
CreateRevVertices. The REDUCE function generates <v∗,
B(v)∗> from the input pair <v, {v∗, B(v)∗}> and then emits it.

Algorithm 2 CreateKVertices
1: function MAP(v∗, R(v))
2: EMIT(v, v∗)
3: Ro(v)← vertices with a2 symbol ‘o’ in R(v)
4: Rn(v)← vertices with a2 symbol ‘n’ in R(v)
5: Rs(v)← SAMPLE (Ro(v), ρK) ∪ SAMPLE (Rn(v), ρK)
6: Attach a1 symbol ‘b’ to v∗
7: for all u∈R(v) do
8: Attach u′s distance to v∗
9: Attach u′s a2 symbol to v∗

10: if u∈Rs(v) then
11: Attach a3 symbol ‘s’ to v∗
12: else
13: Attach a3 symbol ‘u’ to v∗
14: end if
15: EMIT(u, v∗)
16: end for
17: end function

18: function REDUCE(v, {v∗, B(v)∗})
19: EMIT(v∗, B(v)∗)
20: end function

Figure 5 shows the data flow in CreateKVertices when
B(v4)∗ is created with sampling rate ρ = 1.0. First, the MAP
function receives the input key-value pair whose key-vertex
is v4. Next, the function divides R(v4) into Ro(v4) = {v1, v6}
and Rn(v4) = {v2} by using a2, and then samples ρK(=
1.0×1 = 1) vertices from Ro(v4) and Rn(v4), respectively. We
assume that v6 is sampled from Ro(v4) and v2 from Rn(v4).
Hence, Rs(v4) = {v2, v6} is created. Finally, the function
emits the key-value pairs. In the SHUFFLE phase, all the
key-value pairs are merged and then <v4, {v∗4, B(v4)∗}> is gen-
erated. The REDUCE function receives <v4, {v∗4, B(v4)∗}> as
its input and then emits <v∗4, B(v4)∗>.

Fig. 5 Data flow in CreateKVertices that creates B(v4)∗.

3.3.3 Job3: Create Adjacent Vertex sets As(v)∗

CreateAdjVertices, namely the third MapReduce job, cre-
ates adjacent vertex sets (As(v)∗,∀v ∈ V) by loading only
the tagged vertices onto the memory, as shown in Algorithm
3. The MAP function receives <v∗, B(v)∗> as its input, and
then emits three types of a key-value pair: (1) <v, v∗>; (2)
<v, B(v)∗> for creating As(v)∗; (3) <u, v∗>, ∀u ∈ Bs(v), for
transmitting only the sampled vertices in R(v)∗. The vertex
v∗ in the pair <u, v∗> is the vertex in R(v) that is sampled
in the previous job, namely CreateKVertices. In the SHUF-
FLE phase, v∗ and all the vertices in B(v)∗ and Rs(v)∗ are
collected every key-vertex v. The REDUCE function gener-
ates <v∗, As(v)∗> from the input pair <v, {v∗, B(v)∗, Rs(v)∗}>
and then emits it.

Algorithm 3 CreateAdjVertices
1: function MAP(v∗, B(v)∗)
2: Bs(v)← vertices with a3 symbol ‘s’ in B(v)∗
3: EMIT(v, v∗)
4: EMIT(v, B(v)∗)
5: Attach a1 symbol ‘r’ to v∗
6: for all u∈Bs(v) do
7: Attach u’s distance to v∗
8: Attach u’s a2 symbol to v∗
9: EMIT(u, v∗)

10: end for
11: end function

12: function REDUCE(v, {v∗, B(v)∗, Rs(v)∗})
13: As(v)∗ ← B(v)∗ ∪ Rs(v)∗
14: Remove a3 symbol ‘s’ of vertices in As(v)∗
15: EMIT(v∗, As(v)∗)
16: end function

In simple extension, the first MAP function emits re-
dundant vertices, and the first REDUCE function creates
As(v)∗ by loading almost all the vertices in R(v)∗ onto the
memory, which leads to a high memory consumption. In
contrast, the MAP function in our method emits only the
vertices that are needed for As(v)∗ by using the attribute a3
(Bs(v)), as shown on Line 9, and the REDUCE function cre-
ates As(v)∗ by loading only the vertices in As(v)∗ onto the
memory. Thus, we create As(v)∗ with a low memory con-
sumption.

Figure 6 shows the data flow when As(v4)∗ is cre-
ated. The MAP function receives the input key-value pair
whose key-vertex is v4 and emits <v4, v∗4> and <v4, v∗3> =
<v4, B(v4)∗>. Furthermore, the function also emits <v4, v∗2>
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Fig. 6 Data flow in CreateAdjVertices that creates As(v4)∗.

and <v4, v∗6>, i.e. <v4, Rs(v4)∗>, which are generated from
the key-value pair whose key-vertex p (= v2, v6) satisfies
v4 ∈ Bs(p)∗. The vertex p is the sampled vertex in the MAP
function of the previous job, namely CreateKVertices when
the pair is processed whose key-vertex is v4. In the SHUF-
FLE phase, all the key-value pairs are merged and then <v4,
{v∗4, v∗3, v∗2, v∗6}> = <v4, {v∗4, B(v4)∗, Rs(v4)∗}> is generated.
Finally, the REDUCE function receives <v4, {v∗4, B(v4)∗,
Rs(v4)∗}> as its input and then emits <v∗4, As(v4)∗ = {v∗3, v∗2,
v∗6}>.
3.3.4 Job4: Update Approximate K-NN Vertex Sets B(v)
UpdateKVertices, namely the final MapReduce job, updates
B(v), ∀v∈V by using local join with high data transmission
efficiency. Simple extension described in Sect. 2.4 has an
issue, namely that the MAP function in the second MapRe-
duce job emits a lot of key-value pairs and each has a costly
feature vector. We design UpdateKVertices so that the emit-
ted key-value pair has no redundant feature vector by at-
taching only distance to a value-vertex in the key-value pair
instead of its feature vector.

Algorithm 4 shows the pseudo-code of UpdateKVer-
tices. The MAP function is carefully designed for high
performance in terms of the number of distance calcula-
tions and emitted data size. First, the function uses the
getDistance(u∗1, u∗2) function to obtain the distance between
u1 and u2, where u1 ∈As(v), u2 ∈As(v)\{u1} and at least one
of them is a new vertex. If the distance is already calculated
and cached, the getDistance(u∗1, u∗2) function fetches it from
the cache and returns it, otherwise the getDistance(u∗1, u∗2)
function calculates the distance and caches it. Second, the
MAP function emits the four types of key-value pair: <v,
v∗>, <v, B(v)>, <u, As(v)\{u}>, ∀u ∈ An

s(v), and <u, An
s(v)>,

∀u∈Ao
s(v). Vertex ui ∈As(v) in <u, As(v)\{u}> is a neighbor’s

neighbor of uj ∈ As(v), ui � u j, via vertex v. Before emit-
ting <u, As(v)\{u}> and <u, An

s(v)>, the function removes the
feature vector of the value-vertices to reduce the size of the
key-value pair. Note that the only key-value pair that con-
tains its feature vector is <v, v∗>. In the SHUFFLE phase,
v∗ and all the vertices in both B(v) and Ts(v) for each key-
vertex v are merged, and <v, {v∗, B(v),T s(v)}> (∀v ∈ V) are
generated. The REDUCE function updates B(v) by using
the update(u, B(v)) function, ∀u∈Ts(v). The update(u, B(v))

Fig. 7 Data flow in UpdateKVertices that updates B(v3).

function replaces p (p ∈ B(v)) with u if σ(v, u) < σ(v, p),
where p has the largest distance value in B(v). After the
updates, the function emits the updated <v, B(v)>.

Algorithm 4 UpdateKVerteices
1: function MAP(v∗, As(v)∗)
2: B(v)← vertices with a1 symbol ‘b’ in As(v)∗
3: Ao

s (v)∗ ← vertices with a2 symbol ‘o’ in As(v)∗
4: An

s (v)∗ ← vertices with a2 symbol ‘n’ in As(v)∗
5: Attach a1 symbol ‘t’ to all vertices in Ao

s(v)∗ and An
s(v)∗

6: EMIT(v, v∗)
7: EMIT(v, B(v))
8: for all u∗1 ∈ An

s(v)∗ do
9: for all u∗2 ∈ As(v)∗\{u∗1} do

10: l← getDistance(u∗1, u∗2)
11: Attach l to u∗2
12: end for
13: EMIT(u1, As(v)\{u1})
14: end for
15: for all u∗1 ∈ Ao

s(v)∗ do
16: for all u∗2 ∈ An

s(v)∗ do
17: l← getDistance(u∗1, u∗2)
18: Attach l to u∗2
19: end for
20: EMIT(u1, An

s(v))
21: end for
22: end function

23: function REDUCE(v, {v∗, B(v), Ts(v)})
24: Attach a2 symbol ‘o’ to all vertices in B(v)
25: Attach a1 symbol ‘b’ to all vertices in Ts(v)
26: Attach a2 symbol ‘n’ to all vertices in Ts(v)
27: for all u ∈ Ts(v) do
28: update(u, B(v))
29: end for
30: EMIT(v∗, B(v))
31: end function

Figure 7 shows the data flow in UpdateKVertices when
B(v3) is updated. Suppose that As(v3) = {v4, v5}, As(v5) =
{v3, v6} (As(v3) = A(v3), As(v5) = A(v5)). The MAP func-
tion receives the input pair whose key-vertex is v3, and emits
<v3, v∗3> and <v3, v5> = <v3, B(v3)>. The function emits <v3,
{v2, v6}> and <v3, {v6}>, i.e. <v3, Ts(v3)>, which are gener-
ated from the key-value pair whose vertex p (= v4, v5) sat-
isfies v∗3 ∈As(p)∗. In the SHUFFLE phase, all the key-value
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pairs whose key-vertex is v3 are merged, and the key-value
pair <v3, {v∗3, {v5}, {v2, v6}, {v6}}> = <v3, {v∗3, B(v3), Ts(v3)}>
is generated. Since we suppose that σ(v3, v2) < σ(v3, v5)
and σ(v3, v2) < σ(v3, v6), i.e., v2 is the vertex closest to
v3 in Ts(v3), the REDUCE function updates B(v3) from
B(v3)= {v5} to B(v3)= {v2}, and then emits <v3, B(v3) = {v2}>.

4. Experiments
This section provides the experimental setup in Sect. 4.1 and
reports performance evaluations of the proposed method in
comparison with other methods including simple extension
for MapReduce described in Sect. 2.4.

We first confirm the scalability of the proposed method
in Sect. 4.2, which is an important aspect of performance
for evaluating efficiency in parallel processing [18]–[22].
Next, in Sect. 4.3, we investigate the performance of the pro-
posed method when the graph structural parameter K is var-
ied. NN-Descent suffers from a high computational cost [15]
when a large K value is employed. Finally, we show that the
proposed method relaxes the disadvantages of simple exten-
sion namely its high memory consumption and low network
efficiency.

As the performance measures, we adopted the shuf-
fling cost that mainly corresponds to the transmission cost
of intermediates in the SHUFFLE phase, and utilized the
elapsed time that depends heavily on an amount of memory
consumption and a transmission cost; these alternatives are
used as evaluation measures in other Hadoop MapReduce
related papers such as [20], [22]–[24]. The approximate K-
NNG construction method is more efficient if it is carried
out with smaller shuffling cost and elapsed time.

4.1 Experimental Setup
We used a Hadoop cluster that contained one master node
and 127 computing nodes. Each node had one Intel Xeon
processor E3-1240v2 3.40 GHz with four cores, 16 GB of
RAM, and one 4 TB hard disk. A CentOS 5.8 operating
system, Java 1.6 with a 64-bit server, and Hadoop 0.20.2
were installed on each node. These nodes were connected
to a network whose bandwidth was 1 Gb/s. For our tasks,
we configured the Hadoop environment as follows. (1) The
block size of the distributed file system (DFS) was fixed at
128 MB. (2) Each node allocated 1 GB of virtual memory
(JVM heap size) to the Hadoop daemon. (3) Each com-
puting node allocated 2.5 GB and 4 GB of virtual memory
(JVM heap size) to a Map task and a REDUCE task, respec-
tively. (4) Each computing node ran three MAP tasks and
one REDUCE task. For the experiments in Sect. 4.3, we
employed a server with an Intel Xeon processor E3-1290v2
3.70 GHz, 32 GB of RAM, and a 120 GB Solid State Drive.

We evaluated the proposed method by comparing it
with three approaches, using two types of data sets: a real
large-scale data set (Image) and a synthetic data set (Ran-
dom). We first list the four approaches including the pro-
posed method.

Proposed Method (PRO): The proposed method consists
of the four MapReduce jobs described in Sect. 3. In the

MapReduce job, the newly introduced sampling tech-
nique was employed to reduce the number of the itera-
tions in the MapReduce jobs.

Sophisticated Approach for MapReduce (SOP): This ap-
proach uses the same four MapReduce jobs as the pro-
posed method except for the sampling technique. The
sampling technique in SOP was the same as that in the
original NN-Descent. SOP was evaluated as a base-
line for confirming the effect of the new sampling tech-
nique.

Simple Extension for MapReduce (SIE): A simple MapRe-
duce implementation of NN-Descent is implied in
[15], which uses two MapReduce jobs as described in
Sect. 2.4. In Sect. 4.4, we compare SIE with the pro-
posed method to demonstrate that the proposed method
constructed an approximate K-NNG much faster than
SIE.

NN-Descent on Single Thread (STH): NN-Descent was ex-
ecuted on the server by a single thread to measure its
elapsed time when the graph structural parameter K
was a variable. The original NN-Descent in [15] re-
quires the number of the dissimilarity calculations to
be proportional to K1.5∼1.8. The proposed method was
compared with STH regarding the elapsed time for var-
ious K values.

We prepared two different types of data sets: Image and
Random.
• Image: As a real large-scale data set, we used 80 mil-

lion tiny images [25], which contains 79,302,017 im-
ages with a size of 32 × 32 pixels. The feature vector
for each image is a 384-dimensional Gist vector [26].
We randomly sampled almost the half of the data set,
36,499,700 images, without duplication. To evaluate
the scalability with respect to the data size in
Sect. 4.2.1, we used subsets of 2, 10, 20, 60, 100 per-
cent of the sampled data set.

• Random: We generated 1× 107 vectors with a unit
length in a 16-dimensional Euclidean space by ran-
domly sampling from the uniform distribution and nor-
malizing the Euclidean distance of the vector from the
origin to 1. Then all the vectors are on the surface of the
hyper-sphere in the 16-dimensional Euclidean space.

Moreover, we set three parameters in NN-Descent,
namely the graph structural parameter K, sampling rate ρ,
and parameter for early termination δ, as follows; ρ = 0.5,
δ = 0.001 and we set the default value of K at 100 (K=100)
for Image and 40 (K = 40) for Random. Note that K was
dealt with as a variable in Sect. 4.3.

4.2 Scalability of Proposed Method
The performance of the proposed method was evaluated by
measuring elapsed time, the number of iterations in NN-
Descent, and the recall of the constructed K-NNG. The re-
call was calculated by

Recall =
∑

v∈V ′
Recall(v)/|V ′|,
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Table 2 Performance comparison of the proposed method and the sophisticated approach when they
were applied to real data sets of various sizes. The proposed method successfully reduced the number
of the iterations with higher recalls.

Data size n
Proposed method (PRO) Sophisticated approach for MapReduce (SOP)

Elapsed time (min) # Iterations Recall (%) Elapsed time (min) # Iterations Recall (%)
729,994 52.82 7 98.30 57.28 9 98.30

3,649,970 329.20 9 95.95 329.22 11 95.84
7,299,940 831.25 10 94.36 804.47 12 94.20

21,899,820 3189.85 12 91.20 3242.83 15 90.97
36,499,700 6526.72 13 89.26 6640.33 16 88.44

Recall (v) = ( Number of true K-NNs in B(v) )/K ,

where V ′ denotes the set of vertices whose true K-NNs were
obtained by the brute-force method. In the experiments,
|V ′| = |V | = n for n ≤ 7, 299, 940 and |V ′| = 240, 000 for
both n = 21, 899, 820 and n = 36, 499, 700. We applied the
method to the real data sets, Image, of various sizes.

We evaluated the scalability from two viewpoints, that
is the data size and the number of computing nodes. As
regards the scalability of the data size, we evaluated the per-
formance when the size of the data set was a variable and
the number of the computing nodes was fixed. As regards
the scalability of the number of nodes, the size of the data
set was fixed and the number of the computing nodes was a
variable.

4.2.1 Scalability as Regards Data Size
We used the data sets with five distinct sizes as shown in
Table 2, which were generated from the real data set Image.
The number of computing nodes and the graph structural
parameter K were fixed at 127 and 100, respectively. Ta-
ble 2 summarizes the performance of the proposed method
compared with the sophisticated approach. The difference
between the two methods is in their sampling techniques.
As intended, the proposed method successfully reduced the
number of iterations in NN-Descent, achieving the higher
recalls. In particular, as the size of the data set increased,
the difference in the numbers of iterations increased. This
shows that the proposed method was more efficient for a
large-scale data set than the sophisticated approach.

Figure 8 shows elapsed times of both methods versus
the size of the data set on a log-log scale. We observed that
the curves of the proposed method (PRO) and the sophis-
ticated approach (SOP) were almost proportional to n1.35

and n1.36, respectively. These exponents 1.35 and 1.36 were
close to that of the original NN-Descent 1.14, which was
measured not in terms of the elapsed time but by the num-
ber of dissimilarity calculations. We think that the differ-
ence between these exponents arose from the difference of
the measurement methods. The elapsed time included I/O
costs in addition to distance calculations. Thus the proposed
method was scalable with respect to the size of the data sets.

4.2.2 Scalability as Regards Number of Computing Nodes
We varied the number of computing nodes in the cluster
from 20 to 100. The data size n and the graph structural
parameter K were fixed at n = 729, 994 and K = 100. We
employed the measure [19] expressed by

Fig. 8 Elapsed times of the proposed method (PRO) and the sophisti-
cated approach (SOP) versus data sizes on a log-log scale. The curves of
PRO and SOP are almost proportional to n1.35 and n1.36, respectively.

Speedup (m,m′) =
Elapsed time on m′ nodes
Elapsed time on m nodes

,

where m denotes the current number of computing nodes,
and m′ denotes the standard number of computing nodes.
In an ideal case, Speedup (m,m′) = m/m′. In practice, it is
difficult to achieve an ideal speedup because the data trans-
mission efficiency decreases, i.e., the communication cost
between computing nodes increases with increases in the
number of computing nodes as described in [18], [21].

Figure 9 shows the Speedup(m, 20) of the pro-
posed method and the sophisticated approach for m =

20, 30, · · · , 100, where m′ was set at 20. We observed that
the speedup of both methods increased roughly linearly with
the number of nodes. The speedup properties are similar to
those of the other MapReduce algorithms reported in [21].
Note that the number of computing nodes in our experiments
is larger than those in [21] and [20]. In fact, the number
range was from 20 to 100 in our experiments whereas they
were 1 to 4 in [21] and 2 to 10 in [20]. Thus, our methods
were scalable as regards the number of computing nodes for
larger numbers than those described in [20], [21].

4.3 Performance with Respect to K
NN-Descent is not practical for constructing a K-NNG with
a large K value because NN-Descent requires a computa-
tional cost proportional to K1.5∼1.8 experimentally [15]. We
evaluated the proposed method regarding the performance
with K. In the experiments, the data size was fixed at
7, 299, 940 (n = 7, 299, 940), and the K value was changed
from 20 to 120 in increments of 20. Table 3 summarizes
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Table 3 Performance comparison of the proposed method and NN-Descent on a single thread when
they constructed K-NNGs with various Ks. The proposed method suppressed the increase in the elapsed
time with K and achieved the higher recalls.

K
Proposed method (PRO) NN-Descent on Single Thread (STH)

Elapsed Time (min) # Iterations Recall (%) Elapsed Time (min) # Iterations Recall (%)
20 373.75 31 49.64 302.08 36 48.91
40 481.32 19 75.66 708.16 22 75.06
60 585.97 14 86.25 1421.85 17 85.87
80 756.07 12 91.48 2432.73 14 91.23

100 831.25 10 94.36 3737.91 12 94.20
120 915.48 9 96.11 5320.09 11 96.01

Fig. 9 Speedup of the proposed method (PRO) and the sophisticated ap-
proach (SOP) versus the number of computing nodes. The PRO and SOP
curves increased approximately linearly.

the performance, the elapsed time, the number of iterations
in NN-Descent, and the recall, with the proposed method
(PRO) and NN-Descent on a single thread (STH). Compared
with STH, PRO suppressed the increase in the elapsed time
for large K values, where the approximate K-NNGs were
constructed with high recalls exceeding 90%.

Figure 10 shows the elapsed time of PRO versus K.
The elapsed time was almost proportional to K0.55, i.e., sub-
linear, compared with K1.88 of STH as shown in Fig. 11.
This shows that PRO was more scalable as regards K than
STH. This property is very important since we often need
a sufficiently large value of K to construct an approximate
K-NNG with a high recall from a large-scale data set.

4.4 Comparison with Simple Extension
We compared the proposed method (PRO) with simple ex-
tension (SIE) regarding the transmission efficiency and the
elapsed time. In particular, we focused on the transmission
efficiency in the final MapReduce job of the two approaches.
This is because the transmission efficiency of the final job in
SIE is the main problem as described in Sect. 2.4, and we
would like to know how many improvements UpdateKVer-
tices, namely the final job in PRO, achieves. The trans-
mission efficiency is measured by shuffling cost as is [22],
[24], which is total amount of data transmitted in the SHUF-
FLE phase. The elapsed time of the two approaches was
measured for only the final job (FINAL) and for all the
MapReduce jobs (ALL), respectively. We used the data sets
(Random), which were generated from the synthetic data set

Fig. 10 Elapsed times of the proposed method (PRO) versus K. The
elapsed time was nearly sublinear with respect to K.

Fig. 11 Elapsed times of the NN-Descent on single thread (STH) versus
K. The elapsed time was observed as an almost quadratic curve.

with a size of 1×107 described in Sect. 4.1. The K range was
from 20 to 60. Since SIE often failed to construct a K-NNG
with a larger data size or a larger K value in our system en-
vironment, we adopted the above settings, the full data size
and the maximum K value, which may be small for a large-
scale K-NNG.

Figure 12 shows the shuffling cost and the elapsed time
of PRO and SIE with K = 40 versus the data size, and
Fig. 13 shows the results obtained with a data set size of
1× 107 versus K. Both sets of results show that the pro-
posed method successfully reduced the shuffling cost and
the elapsed time of the final job. This results in shorter
elapsed times for all the jobs. In particular, PRO was around
five times faster than SIE for the full-size data set (1×107), il-
lustrated in Fig. 12(b), and around seven times faster for the
maximum K (K = 60), illustrated in Fig. 13(b). Our novel
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Fig. 12 Shuffling costs and elapsed times of the proposed method (PRO) and simple extension for
MapReduce (SIE) versus data sizes. (a) PRO achieved around five times lower shuffling cost than SIE.
(b) PRO constructed the K-NNG around five times faster than SIE for the full-size data set.

Fig. 13 Shuffling costs and elapsed times of the proposed method (PRO) and simple extension for
MapReduce (SIE) versus K. (a) PRO achieved around five times lower shuffling costs than SIE. (b)
PRO constructed the K-NNG around seven times faster than SIE for the maximum K (K = 60).

MapReduce functions and sophisticated key-value formats
were more effective and efficient for constructing a K-NNG
than SIE.

5. Related Work
This section briefly reviews several methods for K-NNG
construction and K-nearest neighbor join that is a closely-
related problem.

For a low-dimensional metric space where a data set is
not so large, most methods [10], [11] construct an exact K-
NNG by utilizing the triangle inequality, which is a metric
axiom, to reduce the search space. The method described
in [10] first builds an index whose structure is either a tree
or a pivot table, and then finds the K-nearest neighbors of
each object using the index. The method reported in [11] in-
troduces a new pruning metric NXNDIST, which provides
a tighter upper bound on the distance between an object
and its nearest neighbor than traditional pruning metrics.
Although these methods work well in a low-dimensional
metric space, they become inefficient in a high-dimensional
metric space.

A useful method for a high-dimensional metric space
is to construct an approximate K-NNG instead of an exact

one. The methods based on the divide-and-conquer strat-
egy [12]–[14] are its representatives. The method described
in [12] uses the Lanczos algorithm, which can be executed
at low computational cost of empirically O(n1.22∼1.36). The
methods reported in [13] and [14] first randomly divide a
data set into subsets, then construct one K-NN subgraph
from each subset, and finally construct one approximate K-
NNG by connecting the subgraphs. Although the divide-
and-conquer methods are available, they are costly for a
large-scale data set. This is because the pruning based on
the triangle inequality is no longer valid there.

NN-Descent [15] is a heuristic method that efficiently
constructs an approximate K-NNG from a high-dimensional
data set. NN-Descent is based on a simple principle “a
neighbor of a neighbor is also likely to be a neighbor.” From
the perspective of the small-world network [27], [28], the
principle can be interpreted in relation to the hypothesis that
a constructed K-NNG has a high clustering coefficient [27],
[29]. NN-Descent achieves high recall with a small num-
ber of dissimilarity calculations. In fact, NN-Descent out-
performed other approximate K-NNG construction methods
in reported experiments [15]. For a large-scale data set, a
MapReduce implementation of NN-Descent is implied in
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[15], and we implemented NN-Descent as simple extension.
NN-Descent and simple extension are detailed in Sect. 2.2
and Sect. 2.4, respectively.

K-nearest neighbor join (K-NN join) is superordinate
to the K-NNG construction and can be applied to it. In re-
cent work on K-NN join, some approaches [22], [23] utilize
the MapReduce framework for a large-scale data set. H-
zkNN [23] maps a multi-dimensional data set into one di-
mension and performs K-NN join by conducting a sequence
of one-dimensional range searches. PGBJ [22] is another
method for K-NN join and exploits pruning rules based on
the triangle inequality to improve shuffling and computa-
tional costs. Although these methods are efficient for a
large-scale data set in a low-dimensional metric space, they
do not work well for a high-dimensional metric space.

6. Conclusion
We presented an efficient method for constructing approx-
imate K-nearest neighbor graphs (K-NNGs). The method
consists of four MapReduce jobs that employ an appropri-
ate key-value pair format and an efficient sampling strategy.
We designed the format of the key-value pairs, where we
replaced costly feature vectors with the distance and three
attributes. This format led to low memory consumption and
high data transmission efficiency measured in terms of the
elapsed time. Furthermore, we improved the sampling strat-
egy, which reduced the number of iterations in NN-Descent.
This improvement was useful for reducing the elapsed time
and increasing the recall of the constructed approximate K-
NNG.

We confirmed that the proposed method is scalable in
terms of a data size, the number of machine nodes, and the
graph structural parameter K. We demonstrated that the pro-
posed method constructed a K-NNG around five times faster
than simple extension of NN-Descent for MapReduce.

An important problem to solve still remains although
the proposed method successfully achieved efficient K-
NNG construction from a large-scale data set in a high-
dimensional metric feature space. The original NN-Descent
can handle an arbitrary dissimilarity but the proposed
method can deal only with a distance metric. In future work,
we intend to extend the proposed method so that it can deal
with any dissimilarity.
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Appendix: Simple Extension Algorithm

The algorithms for the first and second jobs in simple ex-
tension are shown as a pseudo-code in Algorithms 5 and 6,
respectively. The symbols in the pseudo-code have the same
meaning as in Sect. 2.4.

Algorithm 5 The first job in simple extension
1: function MAP(v, B(v))
2: Bo(v)← old vertices in B(v), Bn(v)← new vertices in B(v)
3: Bn

s (v)← SAMPLE(Bn(v), ρK)
4: EMIT(v, B(v))
5: for all u∈Bo(v) ∪ Bn

s (v) do
6: EMIT(u, v)
7: end for
8: end function

9: function REDUCE(v, {B(v),Ro(v),Rn
s (v)})

10: Bo(v)← old vertices in B(v),
11: Bn

s (v)← sampled new vertices in B(v)
12: Ao

s(v)← Bo(v)∪ SAMPLE(Ro(v), ρK)
13: An

s(v)← Bn
s(v)∪ SAMPLE(Rn

s(v), ρK)
14: As(v)← An

s (v) ∪ Ao
s (v)

15: EMIT(v, {B(v), As(v)})
16: end function

Algorithm 6 The second job in simple extension
1: function MAP(v, {B(v), As(v)})
2: Ao

s (v)← old vertices in As(v), An
s (v)← new vertices in As(v)

3: EMIT(v, B(v))
4: for all u∈An

s (v) do
5: EMIT(u, As(v)\{u})
6: end for
7: for all u∈Ao

s (v) do
8: EMIT(u, An

s (v))
9: end for

10: end function

11: function REDUCE(v, {B(v),Ts(v)})
12: for all u∈Ts(v) do
13: l← calculate dissimilarity σ(v, u)
14: update(u, l, B(v))
15: end for
16: EMIT(v, B(v))
17: end function
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