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PAPER

A Satisfiability Algorithm for Some Class of Dense Depth Two
Threshold Circuits

Kazuyuki AMANO†a), Member and Atsushi SAITO†, Nonmember

SUMMARY Recently, Impagliazzo et al. constructed a nontrivial algo-
rithm for the satisfiability problem for sparse threshold circuits of depth
two which is a class of circuits with cn wires. We construct a nontriv-
ial algorithm for a larger class of circuits. Two gates in the bottom level
of depth two threshold circuits are dependent, if the output of the one is
always greater than or equal to the output of the other one. We give a non-
trivial circuit satisfiability algorithm for a class of circuits which may not
be sparse in gates with dependency. One of our motivations is to consider
the relationship between the various circuit classes and the complexity of
the corresponding circuit satisfiability problem of these classes. Another
background is proving strong lower bounds for TC0 circuits, exploiting the
connection which is initiated by Ryan Williams between circuit satisfiabil-
ity algorithms and lower bounds.
key words: satisfiability, exact algorithm, threshold circuit

1. Introduction

Satisfiability problem gives both an integral view on theory
of NP-complete problems which is firstly defined in [6] and
[14], and one of the most useful methods for constraint sat-
isfaction problems in engineering and other practical fields.
In particular, heuristic ways on CNF SAT are applied in the
practical area of various combinatorial search problems such
as boolean circuit design verification.

There are several well known computational problems
related to satisfiability problems. The first one is satisfiabil-
ity for CNF formulas and its generalization, because CNF is
one of fundamental concepts about boolean functions. For
example, Santhanam [17] gives an algorithm with a nontriv-
ial exponent for linear size formulas of AND and OR gates
with fan-in two. The second one is MAX-k-SAT, the opti-
mization version of k-CNF SAT. Even for MAX-3-SAT, no
algorithms with constant savings over brute force search are
known while such an algorithm is constructed for MAX-2-
SAT in [19]. The third one is Integer Linear Programming
(ILP) that is very useful in expressing combinatorial opti-
mization problems both in theory and practice.

Satisfiability for depth two threshold circuits contains
these problems as special cases. Satisfiability for CNF for-
mula can be solved by algorithms solving satisfiability for
depth two threshold circuits. We should note that we do not
obtain a nontrivial algorithm for depth two threshold circuit
satisfiability algorithm as a corollary of the result in [17].
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The reason is that known transformation from a linear size
threshold circuit to formula over AND and OR gates yields
a quadratic blow-up of size. MAX-k-SAT, the optimization
version of k-CNF SAT, can be computed by algorithms solv-
ing satisfiability for depth two threshold circuits, since we
can regard the top threshold gate as a counting device of the
number of satisfied CNFs and an objective function in an
optimization problem. Finally, testing the feasibility for a
0-1 ILP is equivalent to testing the satisfiability of a circuit
with two levels: the bottom consisting of threshold gates and
the top level being an AND gate. So understanding satisfi-
ability of depth two threshold circuits could give us various
view points on both theoretical and practical areas including
the above three problems.

In the paper [13], Impagliazzo et al. constructed the
first nontrivial algorithm with constant savings in the expo-
nent over brute force search for the satisfiability of sparse
depth two threshold circuits which has cn-wires for every
constant c. As a consequence, they also got a similar result
for linear-size ILP. Here we say an algorithm is nontrivial, if
its running time is bounded above by 2n/w(n) where n is the
number of input variables and w(n) is a super-polynomial
function in n. Note that 2n is just the number of assignments
to n input variables. Their main subroutine is an algorithm
for the Vector Domination Problem: given n vectors in Rd,
decide whether there is a pair of vectors such that the first
vector is larger than the second vector in each coordinate.
Relationship between this problem and satisfiability prob-
lem is studied in [19].

The Strong Exponential Time Hypothesis (SETH) is a
well known conjecture about limitations of efficiency of sat-
isfiability algorithms. The statement of SETH is that for ev-
ery δ < 1 there is a k such that k-SAT cannot be solved
in time O(2δn). In particular, an algorithm with constant
savings for depth two threshold circuits of super linear size
would violate SETH [9], since k-CNF for all k can be re-
duced through Sparsification Lemma [10] to superlinear size
depth two threshold circuits [3]. Some algorithms solving
CNF-SAT and MAX-SAT with constant savings when the
formula is linear size are given in [17] and [7]. Assum-
ing the SETH, we can not to solve satisfiability problem for
super linear size depth two threshold circuits with constant
savings as a direct extension of the result in [13].

Thus one of natural directions relating with this result
is extending classes of input circuits and constructing an
algorithm with constant savings under the SETH for such
classes. Considering algorithms for a class of circuits of

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



AMANO and SAITO: A SATISFIABILITY ALGORITHM FOR SOME CLASS OF DENSE DEPTH TWO THRESHOLD CIRCUITS
109

polynomial size is also crucial to circuit complexity theory.
Ryan Williams proved that nontrivial improvement over the
brute force search for the general boolean circuit satisfiabil-
ity problem implies circuit lower bounds [20]. He also ap-
plied this technique to prove super polynomial size bounds
for ACC0 circuits using a novel nontrivial satisfiability algo-
rithm for ACC0 circuits, solving a long standing open prob-
lem [21]. Because of the connection to circuit lower bounds
the power of threshold circuits is extensively studied in [2]
and [5]. The class TC0, which is a class of constant depth
polynomial size threshold circuits, is a well known natural
circuit class larger than ACC0. Current understanding of the
limitations of bounded depth threshold circuits is, however,
inadequate. Exponential lower bounds for such circuits are
only showed for the limited class of depth two and bounded
weight [8]. For larger depth circuits, it is barely super linear
lower bounds that we obtained on the number of wires [12].
Very recently, Ryan Williams obtained a remarkable result
toward the bounded depth threshold circuit lower bounds:
circuit lower bounds for the class ACC0 ◦ THR, using a
sophisticated modification of the previous results [22], but
nontrivial satisfiability algorithm for polynomial size depth
two threshold circuits is not given. For all above reasons, it
is significant to give algorithms for an explicit class which
is a subclass of depth two threshold circuits of super linear
size.

In this paper, we construct a nontrivial algorithm for a
larger subclass of depth two threshold circuits with polyno-
mial number of gates. Two gates in the bottom level of depth
two threshold circuits are dependent, if the output of the one
is always greater than or equal to the output of the other
one. We give a nontrivial circuit satisfiability algorithm for
a class of circuits which may not be sparse in gates with
dependency and which have polynomial size. Lets consider
the following parameterized problem: for given depth two
threshold circuit C of size nc which is sparse in independent
gates such that there exists an unique maximal independent
gate set I′ of size greater than k , compute YES iffC is satis-
fiable, where c is a constant and parameter k in this problem
k is the maximum size of independent gate set of C except
I′. This improves the previous result in [13] in the sense
that we can construct a nontrivial algorithm when we relax
some condition on sparsity in input circuits. We can con-
sider a family of circuits with high dependency which can
compute all boolean functions.More details about this fact
are mentioned in the later.

The rest of the paper is as follows. Firstly, we de-
fine several notions being necessary in other sections in
Sect. 2 and formally state our results in Sect. 3. We give
an overview of the entire algorithm in Sect. 4. In Sect. 4,
we also define a problem: for given a circuit and a graph
containing information about dependency of the circuit out-
put YES if and only if the circuit is satisfiable. We give a
constructive proof of a reduction from our original circuit
satisfiability problem to this problem in Sect. 5. In Sect. 6,
we solve the problem defined in Sect. 4. In Sect. 7, we give
an algorithm whose subroutine is to solve the problem in

Sect. 5 to solve the original satisfiability problem. Finally,
we discuss future work in the last section.

2. Preliminaries

A threshold gate which outputs a boolean value has the label
w1x1 + · · ·wnxn ≥ t, where each of w1, . . . , wm and t is a
real number, and x1, . . . , xn are input boolean variables. For
all boolean inputs (x1, . . . , xm), it outputs 1 if and only if
the statement of the label holds. We give a more precise
definition as follows.

Definition 2.1: Let x1, . . . , xn be boolean variables. Let
w1, . . . , wn, t be real numbers. We define a threshold gate as a
gate computing a boolean function T HRw1,...,wn,t(x1, . . . , xn)
such that T HRw1,...,wn,t(x1, . . . , xn) = 1 ⇐⇒ Σn

i=1wi xi ≥ t. A
depth two threshold circuit is a circuit which has two layers
of threshold gates: the top gate and bottom gates. We as-
sume that there may be some wire from an input variable to
the top gate, and we call such wire a direct wire.

Definition 2.2:
(1) Two gates G1,G2 at the bottom level have dependency, if
∀x ∈ {0, 1}n[G1(x) ≤ G2(x)] ∨ ∀x ∈ {0, 1}n[G2(x) ≤ G1(x)].
In other words, one of two preimages G−1

1 (1),G−1
2 (1) is a

subset of the other one.
(2) A subset of bottom gates is called independent gate set,
if any two gates in the set do not have dependency. A circuit
may contain several independent gate sets.

Definition 2.3: A depth two threshold circuit C is sparse,
if

∑
G∈B

fan-in of G ≤ dn, where d is a constant and B is the

set of all bottom level gates in C.

We define an extension of this notion which involves depen-
dency in circuits.

Definition 2.4: A depth two threshold circuit C is sparse
in independent gates, if there exists some constant d for an
arbitrary independent gate sets I in C (at the bottom level)∑
G∈I

fan-in of G ≤ dn. The constant d is called a sparse con-

stant of C.

2.1 Problems We Consider

Let’s consider the following parameterized circuit SAT
problem.

Definition 2.5:
Name of Problem: k-THR-SAT
Given: Depth two threshold circuit C of size nc which is
sparse in independent gates, where c is a constant.
Parameter: k: Maximum size of independent gate sets of C
which may depend on the number of input variables n.
Compute: YES iff C is satisfiable.

Definition 2.6:
Name of Problem: k-THR-SAT with unique exception
Given: Depth two threshold circuit C of size nc which is



110
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

sparse in independent gates such that there exists an unique
maximal independent gate set I′ of size greater than k, where
c is a constant.
Parameter: k: Maximum size of independent gate sets of C
except I′.
Compute: YES iff C is satisfiable.

Note that we obtain an instance of k-THR-SAT by
eliminating all gates in I′ and wires connecting to them from
C.

2.2 Motivation of Our Setting

In this subsection, we describe several facts on circuits with
high dependency. We think that these explain why the in-
vestigation of threshold circuits parameterized by its depen-
dency is interesting.

Let k-THR be a layer of threshold gates whose maxi-
mum independent gate set size is k, and let THR ◦ k-THR
denote the class of depth two circuits where the top gate is
an arbitrary threshold gate and the bottom level is k-THR.

It is clear that the class THR ◦ k-THR with k = 2n can
compute all boolean functions by emulating DNF formulas.
A bit surprisingly, THR ◦ k-THR is universal even for k = 1.
We describe below the construction of such a circuit for an
arbitrary given function.

Let f (xn−1, . . . , x1, x0) be a boolean function on n vari-
ables. For simplicity, we assume f (0, 0, . . . , 0) = 0. For
0 ≤ j ≤ 2n − 1, let y j denote the binary representation of j
of length n, i.e., y j := (xn−1, . . . , x1, x0) with

∑n−1
i=0 xi2i. Let

G j be the threshold gate whose output is 1 iff
∑n−1

i=0 2i xi ≥ j.
The bottom level of a circuit is consisting of G = {G j |
f (y j) � f (y j−1) (1 ≤ y ≤ 2n − 1)}. Obviously, there is
no pair of independent gates in G. The top gate outputs 1 iff∑

G j∈G w jG j ≥ 1 where the weight w j is f (y j)− f (y j−1) which
is 1 or −1. In fact, the value of f is equal to

∑
G j∈G w jG j. We

note that the top gate can be replaced by a symmetric gate
(i.e., a gate whose output depends only on the sum of its
inputs) that outputs 1 iff

∑
G j∈GG j is odd. This says that

SYM ◦ k-THR is also universal.
We see by these examples that limiting dependency af-

fects not the universality but the complexity, i.e., the number
of gates or wires in a circuit. As was described in Introduc-
tion, for every δ < 1, the existence of 2δn time algorithm for
k-THR-SAT of superlinear size for k = ω(n) would refute
SETH. It is clear from the definition that the class of func-
tions that can be computed by THR ◦ k-THR circuits of size
s(n) contains the one computed by THR ◦ k′-THR circuits
of the same size for every k′ ≤ k. Hence it is interesting
to see the largest value of k such that k-THR-SAT admits
an algorithm with constant savings as well as to study how
the time complexity of circuit satisfiability problem varies
as the dependency of input circuits does.

3. Our Results

We show the following main theorem, which is about a con-
struction of nontrivial satisfiability algorithm for depth two

threshold circuits with bounded size of independent gate
sets.

Theorem 3.1: There is a satisfiability algorithm for k-
THR-SAT with unique exception that runs in time
O(2(1−s)n), where s = 1/dO(d2), and k ≤ nγ for an arbitrary
real constant 0 < γ < 1 and d is a sparse constant of a given
circuit.

In the rest of the sections, our main goal is to prove
the following Lemma 3.1 and we obtain Theorem 3.1 from
Lemma 3.1

Lemma 3.1: There is a randomized satisfiability algorithm
for k-THR-SAT with unique exception in which all random
bits are created by independently tossing a coin, and the
algorithm runs in time O(2(1−s)n), where E[s] = 1/dO(d2),
and k ≤ nγ for an arbitrary real constant 0 < γ < 1 and d is
a sparse constant of a given circuit.

In what follows, we give a way to obtain Theorem 3.1
from Lemma 3.1. A way to get a deterministic algorithm
from a two sided error algorithm with error probability at
most 1/3 is given as follows. This method is generally called
the conditional expectation method.

We consider a randomized algorithm that uses m ran-
dom bits. We can regard all its sequences of coin tosses as
corresponding to a binary tree of depth m. We know that
most paths from the root to the leaf are good, that is, give
a correct answer. It is natural and simple thought to try and
find such a path by walking down from the root and mak-
ing good choices at each step. Equivalently, we try to find
a good sequence of coin flips with considering each single
bit.

We consider formally this intuition. Fix a randomized
algorithm A and an input x, and let m be the number of
random bits used by A on input x. For 1 ≤ i ≤ m and
r1, r2, . . . , rm ∈ {0, 1}, we define P(r1, . . . , ri) as the fraction
of continuations of a randomized computation that are good
sequences of coin tosses. A precise definition is as follows:
if R1, . . . ,Rm are uniform and independent random bits, then
P(r1, . . . , ri) is defined as Pr

R1,...,Rm

[A(x,R1, . . . ,Rm) is correct

|∧i
j=1 “Rj = r j”] = E

Ri+1

[P(r1, . . . , ri,Ri+1)]

By averaging argument, there exists an ri+1 ∈ {0, 1}
such that P(r1, . . . , ri, ri+1) ≥ P(r1, r2, . . . , ri). Thus, at node
(r1, . . . , ri), we pick ri+1 which maximizes P(r1, . . . , ri+1).
Finally, we obtain r1, . . . , rm such that P(r1, r2, . . . , rm) ≥
P(r1, r2, . . . , rm−1) ≥ · · · ≥ P(r1) ≥ P ≥ 2/3, where P is the
fraction of good path from the root. Therefore, we have
P(r1, . . . , rm) = 1, because P(r1, . . . , rm) is either 0 or 1.

For an implementation of this argument, we just con-
struct a deterministic algorithm to compute P(r1, r2, . . . , ri)
for each i. Note that if we show an algorithm in which
all random bits are created by independently tossing a bi-
ased coin then an implementation is given. By the Chernoff
bound, we can construct a randomized algorithm which re-
peats the algorithm in Lemma 3.1 constant times and runs
with error probability at most 1/3. Thus, using the condi-
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tional expectation method, we obtain Theorem 3.1 by re-
peating the algorithm in Lemma 3.1 constant times.

Note that the statement of Theorem 3.1 improves the
following previous result by Impagliazzo et al. [13] in the
sense that we can construct a nontrivial algorithm when we
relax some condition on sparsity in input circuits.

Theorem 3.2 ([13]): There is a depth two threshold circuit
SAT algorithm with n variables and dn wires that runs in
time O(2(1−s)n), where s = 1/dO(d2) and d is an arbitrary
constant.

We first give a rough and qualitative sketch of the out-
line of the algorithm in [13]. For given depth two sparse
threshold circuits, they give three reductions: the first one
transforms an arbitrary ILP instance with small number of
inequalities to an instance of vector domination problem,
and the second one transforms any depth two circuit with
small number of gates to an union of ILP instances with
small number of inequalities, and the third one transforms
a depth two threshold circuit with linear number of wires to
an union of depth two circuits with small number of gates.
Constructing an algorithm with constant savings in the ex-
ponent, we can test satisfiability of depth two sparse thresh-
old circuits with our setting. Our meaning of small number
is the one that the number of gates or inequalities is less than
the number of variables.

The random restriction technique is used to construct
these reduction procedures. The second reduction uses re-
strictions to output wires of bottom gates in depth two
threshold circuits with small number of gates. The third re-
duction uses restrictions to input variables, and we can de-
crease the number of bottom gates because of this restric-
tion. For each restriction to output wires of bottom gates we
obtain an ILP instance with small number of inequalities by
the second reduction, and for each restriction to input vari-
ables we obtain a depth two circuit with small number of
gates by the third one.

Restricting to the output wire of a bottom gate means
obtaining a linear inequality whose variables and coeffi-
cients and the threshold value agree with the label of the
bottom gate. Let’s consider when we obtain a depth two
threshold circuit with small number of gates. The number
of brute force restrictions to bottom gates of which the num-
ber is less than the number of variables is still less than the
number of brute force restrictions to input variables. Be-
cause of this saving, we can constantly save the complexity
of the exponent of the running time.

Restricting variables for the third reduction involves a
little technical argument. We take a random subset of vari-
ables and assign a boolean string to these variables and let
the other unchosen variables remaining. When for a random
subset of input variables these variables are fixed, we con-
sider the following two cases for an arbitrary bottom gate. In
the first case the gate has at most one unfixed fan-in. In the
second case the gate has at least two unfixed input fan-ins.
In the former case, such kind of gates do not cause any trou-
ble for the reduction, because we can eliminate these gates

and decrease the number of bottom gates. In the latter case,
however, we cannot take such straight forward argument. It
is the sparsity of circuits that gives the nice property that
there are not so many such bad gates.

We mention how we obtain an extension of [13] from
our setting. In our setting, the number of restrictions to bot-
tom level gates is bounded above because of dependency of
bottom gates. We first define some partial order on the set
of bottom gates. Hasse diagrams of this relation are useful
to formalize the notion of dependency of bottom gates in
a circuit. Next, we define a mid-point problem: for given
a pair of a circuit and a Hasse diagram relating with the
circuit, output YES if and only if the circuit is satisfiable.
Our main subroutine is a randomized algorithm solving this
problem. Because of an upper bound on the expected num-
ber of restrictions to bottom level gates, the running time of
the randomized algorithm is faster than the complexity of
the trivial exhaustive search. In other words, the expected
exponent of the running time is faster than the one of the
trivial exhaustive search. Our main subgoal is to obtain an
upper bound on the expected exponent of the running time
of a randomized algorithm to check satisfiability. We show
several lemmas about the bounds on the number of restric-
tions. We finally design a randomized algorithm contains
several subroutines: the reduction procedure from satisfia-
bility problem for given depth two threshold circuits to the
mid-point problem and the algorithm solving an interme-
diate problem. We obtain a deterministic algorithm by re-
peating this randomized algorithm constant times, using the
method called the conditional expectation method.

4. An Overview of the Entire Algorithm in Lemma 3.1

4.1 Partial Order on Bottom Gates

We express structures on dependency of bottom level gates
using directed graphs. We first introduce a partial order rep-
resenting the dependency of threshold gates.

Definition 4.1: Let C be a depth two threshold circuit. The
binary relation � on the set of bottom level gates of C is
defined as follows: G1 � G2 ⇐⇒

def
G−1

1 (1) ⊆ G−1
2 (1) for all

G1,G2 ∈ G, where G is the set of bottom gates.

We define a problem using the partial order stated in
the above.

Definition 4.2:
Name of Problem: L′
Given:〈C,H〉 satisfying the following conditions.

• C is an instance of k-THR-SAT with unique exception
• There is no pair of gates G1,G2 s.t. G−1

1 (1) = G−1
2 (1)

• H is a Hasse diagram of a partial ordered set of bottom
level gates in C according to the order �.

Output:YES iff C is satisfiable

We will give a procedure for the problem L′ and this proce-
dure is a critical subroutine of the algorithm constructed in
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Lemma 3.1. The algorithm in Lemma 3.1 first transforms
a given instance of k-THR-SAT to an instance of the prob-
lem L′, and then solves the satisfiability problem using some
structure of Hasse diagram.

The first reduction is given by the following lemma.

Lemma 4.1: There is a reduction which reduces k-
THR-SAT with unique exception to the problem L′ de-
fined above and the reduction runs in deterministic time
O(poly(n)TZOLP[2, n]), where TZOLP[m, n] is the time com-
plexity of the 0-1 Linear Programming with m constraints
and n variables.

Roughly speaking, the reduction described in this
lemma generates a Hasse diagram by checking the depen-
dency of every pair of bottom gates by solving an ILP with
two constraints. The proof of the lemma is postponed to the
next section.

4.2 Restriction to the Bottom Gates and Reduction to ILP

Intuitively, when the dependency of a circuit C is limited,
the output of C is determined by fixing the output of a small
number of bottom gates. By using this property, we can
build a set S of small number of ILP instances such that
C is satisfiable iff at least one instance in S is feasible and
each instance has a small number of constraints. In fact,
our algorithm solves k-THR-SAT by solving such set of ILP
instances. The following lemma, which will be proved in
Sect. 6, states this more formally.

Definition 4.3: For a depth two threshold circuit C, the set
X(C) is defined as {(y1, . . . , ync ) ∈ {0, 1}nc

: yi is the output
of the i-th bottom gate in C, when C runs for an arbitrary
input x ∈ {0, 1}n}.
Lemma 4.2: Let C be an instance of k-THR-SAT with
unique exception. There is a set S of ILP instances with
n variables satisfying the following three conditions: (1) It
holds that C−1(1) =

⋃
S∈S F(S ), where F(S ) is the set of

feasible solutions of S ∈ S, (2) the set S contains at most
|X(C)| ILP instances and (3) each instance in S has at most
2k+ |I′| constraints, where I′ is unique exceptional indepen-
dent gate set in C.

We will use this reduction in the main algorithm which
will be described in Sect. 6.

4.3 The Entire Overview

The construction of an algorithm in Lemma 3.1 is as fol-
lows:
1. Call the reduction procedure in Lemma 4.1 to transform
the given instance of k-THR-SAT with unique exception to
an instance of the problem L′.
2. Find the exceptional unique independent set I′.
3. Run the main algorithm on the input 〈C,H〉 and I′.

We note that we can find I′ in step 2. as follows. First,

let a positive integer l be 1, and repeat increasing l by one
until there uniquely exist an independent set of size l. Next,
search the unique maximal independent set of size greater
than l. Note that the repeating process stops in at most
k steps. In step 3, restriction methods to both input vari-
ables and outputs of bottom gates and the reduction to ILP
in Lemma 4.2 are used.

5. Partial Order in Circuits and Reduction Lemma

At first we give the following lemma on a binary relation
on the set of bottom gates of a depth two threshold circuit
mentioned in the previous section.

Lemma 5.1: Assume that C is an instance of k-THR-SAT
with unique exception, and that there is no two gates G1,G2

in C such that G−1
1 (1) = G−1

2 (1). Then, there exists some
partial ordered set (G,�), where G is a set of bottom gates
of C such that the maximum size of an independent set of
Hasse diagram H of (G,�) is k.

Proof First, we prove the existence of a partial ordered
set. For any instance of k-THR-SAT with unique exception
the following holds. If there is no two equivalent gates at
the bottom level in the instance, then there is a partial or-
dered set (G,�) such that for all G1,G2 ∈ G, G1 � G2 ⇐⇒
G−1

1 (1) ⊆ G−1
2 (1), where G is a set of bottom gates. To prove

this statement we show that the relation � is reflective, asym-
metric and transitive.

It is clear that G−1
1 (1) ⊆ G−1

1 (1) and that G−1
1 (1) ⊆

G−1
2 (1) ∧G−1

2 (1) ⊆ G−1
3 (1) ⇒ G−1

1 (1) ⊆ G−1
3 (1) for all gates

G1,G2,G3. Thus the relation is reflective and transitive.
Finally, G−1

i (1) ⊆ G−1
j (1) ∧ G−1

j (1) ⊆ G−1
i (1) ⇒ i = j,

because there is no pair of two gates which is equivalent.
Thus the relation is asymmetric.

Next we argue the maximum size of independent sets
in a Hasse diagram. Let H = (V, E) be a Hasse diagram of
C stated above. It holds that G−1

i (1) � G−1
j (1) if and only

if either (1) G−1
i (1) � G−1

j (1) or (2) G−1
j (1) � G−1

i (1) or
(3) G−1

i (1) \ G−1
j (1) � ∅ ∧ G−1

j (1) \ G−1
i (1) � ∅. Thus, for

any bottom gates G,G′, the following three conditions are
equivalent.
(i) ¬(G � G′) ∧ ¬(G′ � G).
(ii) (G,G′) � E ∧ (G′,G) � E.
(iii) G and G′ do not have dependency.
Hence, an arbitrary maximum independent set in H corre-
sponds to some maximum independent gate set in C by the
definition of �. �

In the rest of this section, we give the proof of the
lemma describing the reduction from k-THR-SAT to the
problem L′.

Lemma 4.1(restated) There is a reduction which reduces
k-THR-SAT with unique exception to the problem L′ de-
fined above and the reduction runs in deterministic time
O(poly(n)TZOLP[2, n]), where TZOLP[m, n] is the time com-
plexity of the 0-1 Linear Programming with m constraints
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and n variables.
Proof Let P(x),Q(x) be constraints depending on x =
(x1, . . . , xn) ∈ {0, 1}n. Note that ∀x[P(x) ⇒ Q(x)] is equiv-
alent to ∀x[¬P(x) ∨ Q(x)] and is equivalent to ¬[∃x[P(x) ∧
¬Q(x)]] and that ∃x[P(x) ∧ ¬Q(x)] is the YES-condition of
the Integer Linear Programming. Thus we have the follow-
ing procedure for the reduction. In this procedure, the 0-1
Linear Programming with two constraints and n variables is
solved in step 4. and the other steps are computed in poly-
nomial time. Thus, the running time of this procedure is
O(poly(n)TZOLP[2, n]). �

The reduction procedure

1. Let V = {G1, . . . ,Gnc } be a set of bottom gates and let
D be ∅.

2. For all pairs of bottom level gates G,G′ do the follow-
ing steps 3.,4.,5.

3. Let the label of G and G′ be
∑
i∈S

aixi ≥ b and∑
i∈S ′

a′i xi ≥ b′ respectively, where S , S ′ are the sets

of indices of variables connecting to G,G′ respec-
tively.

4. Solve the following instances of Integer 0-1 Lin-
ear Programming with two constraints, that is,
(1)

∑
i∈S

aixi ≥ b and (2)
∑

i∈S ′
a′i xi < b′

5. If there does not exist (x1, . . . , xn) ∈ {0, 1}n satis-
fying the constraints (1) and (2) then D := D ∪
{(G,G′)}(because of G−1(1) ⊆ G′−1(1))

6. For all G,G′ such that (G,G′) ∈ D∧ (G′,G) ∈ D do the
following steps 7., 8.

7. for each bottom gate U let yU be the output wire of
U. The label wGyG +wG′yG′ +

∑
U�G,G′

wUyU ≥ tTOP

in the TOP gate is replaced with (wG + wG′ )yG +∑
U�G,G′

wUyU ≥ tTOP

8. G′ and all input and output wires of G′ are re-
moved from C. Replace V with the set of bottom
gates in C. For any bottom gate U, if (U,G′) ∈
D ∨ (G′,U) ∈ D then D := D \ {(U,G′), (G′,U)}.

9. Output the result 〈C,H = (V,D)〉

6. Main Algorithm

At first we recap a sketch of the outline of the algorithm in
[13]. Remind three reductions for given depth two sparse
threshold circuits: the first one transforms an arbitrary ILP
instance with small number of inequalities to an instance of
vector domination problem, and the second one transforms
any depth two circuit with small number of gates to an union
of ILP instances with small number of inequalities, and the
third one transforms given instance to an union of depth two
circuits with small number of gates.

We show several lemmas about the bounds of the num-
ber of restrictions. We first define several terms being nec-
essary for formal statements of these lemmas.

Definition 6.1: A directed graph H = (V, E) is an Induced
Hasse Diagram (abbreviated I.H.D) of a circuit C which is
an instance of k-THR-SAT with unique exception, if H is the
output 〈C,H〉 of the procedure in the proof of Lemma 4.1.

Definition 6.2:
Validly Ordered Restriction: Let C be an instance of k-
THR-SAT and let H = (V, E). A coloring χ : V �→ {0, 1}
is called a validly ordered restriction (abbreviated V.O.R), if
∀(u, v) ∈ E, χ(u) ≤ χ(v). For a set I ⊂ V , χ(I) denotes the
set {χ(v) | v ∈ I} as usual.
Min-Set, Max-Set for a V.O.R: Let χ be a V.O.R for an
arbitrary I.H.D H = (V, E).

S is a min-set of H for V.O.R χ, if S = {umin ∈ V ∩
χ−1(1) : ∀v ∈ V \ {umin}[v � umin ⇒ χ(v) = 0]}

S is a max-set of H for V.O.R χ, if S = {umax ∈ V ∩
χ−1(0) : ∀v ∈ V \ {umax}[umax � v⇒ χ(u) = 1]}
The covering condition: Let H be an I.H.D and χ be a
validly ordered restriction of H. Let I1, I0 be independent
sets in H.

The pair of independent sets (I1, I0) satisfies the cover-
ing condition for H, if the following condition holds.
Condition: For any v ∈ V \ (I1 ∪ I0) in H, either ∃u1 ∈
I1, u1 � v or ∃u0 ∈ I0, v � u0 according to the order � of H.

We count the number of validly ordered restrictions, and a
lemma in this section is about an upper bound on the number
of these restrictions. Bottom gates in min-set or max-set are
critical to design our algorithm for satisfiability. Satisfiabil-
ity of a circuit depends on information about bottom gates
which are in min-set or max-set of the circuit, when output
of bottom gates are fixed. In other words, we can decide sat-
isfiability, even if we consider only some local information
about bottom gates of a circuit and ignore the other gates.
The covering condition is a condition stating the concept of
min-set and max-set from another viewpoint, and is used in
our algorithm in this section.

Definition 6.3: Let X′H be a set of validly ordered restric-
tions of H. We define IH as a set of pairs of indepen-
dent sets in H which satisfies the covering condition, that
is, IH := {(I1, I0) ⊆ V × V : I1, I0 are independent sets
satisfying the covering condition in H}.

The following lemma is a main lemma of this section,
and rough meaning of this lemma is that we can construct a
satisfiability algorithm using exhaustive search for all inde-
pendent gate sets.

Definition 4.3(restated) For a depth two threshold circuit
C, the set X(C) is defined as {(y1, . . . , ync ) ∈ {0, 1}nc

: yi is
the output of the i-th bottom gate in C, when C runs for an
arbitrary input x ∈ {0, 1}n}.

Lemma 6.1: For an arbitrary instance 〈C,H〉 ∈ L′, let I′ be
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the unique maximal independent set of size greater than k.
Then, |X(C)| ≤ 2|I′ |k2nO(k).

We first show the following lemma to prove Lemma 6.1,
which reduces counting the number of restrictions for a cir-
cuit to counting the number of structures in a graph.

Lemma 6.2: There is a bijection μH : X′H � χ �→ (I1, I0) ∈
IH such that if μH(χ) = (I1, I0) then I1 is the min-set of H
for χ and I0 is the max-set of H for χ.

First, we show two claims. The lemma easily follows from
these claims.

Claim 6.1: Let H be an I.H.D and χ be a validly ordered
restriction of H. Let I1, I0 be min-set and max-set of H for χ
respectively. Then (I1, I0) is a pair of independent sets such
that the covering condition holds for H.

Proof We give a proof by contradiction.
For any fixed χwhich assign 0 or 1 to vertices of H and

for min-set I0 and max-set I1 of H for χ, adding all edges
which is in I0 × I1 preserves validity of χ. In other words,
after adding all edges which is in I0 × I1, χ is still a valid
ordered restriction. Let H′ = (V, E′) be this I.H.D which
is obtained by adding edges to H. Thus I0, I1 are maximal
independent sets in H′.

Assume that I0, I1 do not satisfy the covering condition.
Then either case1 or case2 holds for H′.
case1. ∃u1 ∈ I1, u1 � v and ∃u0 ∈ I0, v � u0, for some
v ∈ V \ (I1 ∪ I0) in H′.

In this case, u1 � u0 contradicts to the assumption that
u1 ∈ I1, u0 ∈ I0.
case2. ∀u1 ∈ I1,¬(u1 � v) and ∀u0 ∈ I0,¬(v � u0), for some
v ∈ V \ (I1 ∪ I0) in H′.

In this case, since I1, I0 are maximal independent sets,
for all v′ ∈ V \ (I1 ∪ I0) it holds that ∀u1 ∈ I1,¬(u1 � v′) ⇒
v′ � u1 and ∀u0 ∈ I0,¬(v′ � u0) ⇒ u0 � v′. Thus we
obtain that there exists a vertex v ∈ V \ (I0 ∪ I1) such that
u0 � v � u1, contradicting to u1 ∈ I1 and u0 ∈ I0. In other
words, for any c ∈ {0, 1} we obtain that χ(v) = c contradicts
to uc ∈ Ic. �

Claim 6.2: For any (I1, I0) which is a pair of independent
sets in H satisfying the covering condition, there uniquely
exists validly ordered restriction χ : V → {0, 1} such that
I1, I0 are min-set and max-set of H for χ, respectively.

Proof For any validly ordered restriction χ it holds that
I1 is max-set implies χ(I1) = {1}, and I0 is min-set implies
χ(I0) = {0}. First, we consider vertices in I0 ∪ I1. Since
I1, I0 are min-set and max-set of H for χ respectively, assign
zero-one value to vertices in I1∪ I0 such that χ(I1) = {1} and
χ(I0) = {0}. Finally we consider the other vertices. For any
v ∈ V \ (I1 ∪ I0), the value χ(v) is uniquely determined by
the definition of covering condition. �

Proof of Lemma 6.2 For any χ ∈ X′H , there uniquely exists
(I1, I0) ⊆ V × V such that I1 is the min-set of H for χ and
I0 is the max-set of H for χ. By Claim 6.1, there is a map

μH : X′H → IH , μH(χ) = (I0, I1) such that if μH(χ) = (I1, I0)
then I1 is the min-set of H for χ and I0 is the max-set of H
for χ. By Claim 6.2, this map μH is a bijective map. �

Proof of Lemma 6.1 Fix an assignment χ|I′ : I′ → {0, 1}.
Let H = (V, E).

We assign 1 to any vertex u ∈ V such that there is some
vertex v ∈ χ|−1

I′ (1) ⊆ I′ such that v � u. We assign 0 to any
vertex u ∈ V such that there is some vertex v ∈ χ|−1

I′ (0) ⊆ I′
such that u � v.

Remove all vertices whose assignment is fixed and all
edges connecting to them. Thus we obtain a subgraph H′
of H such that size of any independent vertex set in H′ is
at most k because we assume the existence of unique ex-
ception. The output pattern set X(C) is a subset of validly
ordered restrictions of H.

By Lemma 6.2 there is a bijective map μH′ : X′H′ →IH′ . Thus for any H′ the cardinality |X′H′ | is bounded
above by |IH′ |. Since |X(C)| ≤ 2|I′ |maxH′ |X′H′ | and |IH′ | ≤(

k∑
i=1

(
nc

i

))2

≤
(

k∑
i=1

nci

)2

≤
(
knck

)2
= k2nO(k), we obtain the de-

sired bound: |X(C)| ≤ 2|I′ |k2nO(k). �
The following lemma is similar to a part of work in

[13], which gives a reduction from an instance of circuit sat-
isfiability to a union of ILPs.

Lemma 4.2(restated) Let C be an instance of k-THR-SAT
with unique exception. There is a set S of ILP instances
with n variables satisfying the following three conditions:
(1) It holds that C−1(1) =

⋃
S∈S F(S ), where F(S ) is the set

of feasible solutions of S ∈ S, (2) the set S contains at most
|X(C)| ILP instances and (3) each instance in S has at most
2k+ |I′| constraints, where I′ is unique exceptional indepen-
dent gate set in C.
Proof For any circuit C and each element in X(C), we ob-
tain the following transformation from a circuit to an ILP
instance, according to the following three kinds of gates.
(i) For gates whose output is fixed to 1 with weights

w1, . . . , wn and threshold t, we have
n∑

i=1
wi xi ≥ t.

(ii) For gates whose output gate is fixed to 0 we require
n∑

i=1
wi xi < t, which is equivalent to

n∑
i=1
−wi xi ≥ −t +mini wi.

(iii) For the top gate, let v1, . . . , vn be the weights of the di-
rect wires, and s be the threshold of the top level gate, and
wFIX be the sum of the weights of the gates whose output is

fixed to 1. Then we require
n∑

i=1
vi xi ≥ s − wFIX .

Thus, the set of these instances satisfies the conditions
(1) and (2). Moreover, the following Fact 6.1 and the def-
inition of min-set and max-set implies that the dependency
of gates in C gives at most 2k + |I′| constraints, and yields
the existence of a set S of ILP instances with n variables
satisfying the condition (3), because it holds that for each
restriction to gates in I′, the circuit C′ which is obtained by
removing all gates in I′ and all wires connecting to them
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from C has min-set and max-set of size at most k. �

Fact 6.1: For boolean functions P1(x), . . . , Pm(x) : {0, 1}n
→ {0, 1}, the following statements hold.
(1) If ∀x ∈ {0, 1}n, P1(x) = 1 ⇒ P2(x) = 1 ⇒ · · · ⇒
Pm(x) = 1 then, it holds that ∀x ∈ {0, 1}n, P1(x) = 1 ∧
P2(x) = 1 ∧ · · · ∧ Pm(x) = 1 ⇐⇒ ∀x ∈ {0, 1}n, P1(x) = 1.
(2) If ∀x ∈ {0, 1}n, Pm(x) = 0 ⇒ Pm−1(x) = 0 ⇒ · · · ⇒
P1(x) = 0 then, it holds that ∀x ∈ {0, 1}n, Pm(x) = 0 ∧
Pm−1(x) = 0∧· · ·∧P1(x) = 0 ⇐⇒ ∀x ∈ {0, 1}n, Pm(x) = 0.

When for a random subset of input variables these vari-
ables are fixed, we consider the following two cases for an
arbitrary bottom gate. The gate has at most one unfixed in-
put wire in one case, and the gate has at least two unfixed
input wires in the other case. In the former case, such gates
are not harmful for our argument about the reduction, be-
cause we can eliminate these gates and decrease the number
of bottom gates. In the latter case, however, we cannot use
such straightforward argument. We define more precisely
such gates to which we cannot directly apply gate elimina-
tion argument.

Definition 6.4: BAD gate
Let U be a subset of variables. BAD gate on U is a bottom
level gate that depends on at least two variables in U.

In other words, if a gate is not BAD then we can eliminate
it or replace it with a direct wire.

Lemma 6.3 ([13]): Consider a depth two threshold circuit
with n variables and dn wires. Let δ > 0 be an arbitrary
positive real number and let Ũ be a random set of variables
such that each variable is not in Ũ with some probability
p independently. There exists a p = 1/dO(d2) such that the
expected number of BAD gates on Ũ is at most 3δpn, where
d is a sparse constant.

The following corollary is easily obtained from this lemma.

Corollary 6.1 ([13]): Consider a depth two threshold cir-
cuit C with n variables, which is a part of 〈C,H〉 ∈ L′. Let
VAR[I′] be a set of variables connecting to the gates cor-
responding to I′, which is unique exceptional independent
gate set in C. Let δ > 0 be an arbitrary positive real number
and let Ũ be a random set of variables such that each variable
is not in Ũ with some probability p independently. Let I′

Ũ
be

a subset of I′ which are also BAD gates on Ũ. There exists
a p = 1/dO(d2) such that E[|I′

Ũ
|] ≤ 3δp|VAR[I′]|, where d is

a sparse constant.

Let C|ρ[Ũ] be a circuit obtained by the operation for a circuit
C that all variables in Ũ is fixed to an arbitrary assignment
ρ[Ũ] : Ũ → {0, 1} and any gate, which is not BAD, is elim-
inated from C or replaced with direct wires in C.

Corollary 6.2: Consider a depth two threshold circuit with
n variables, which is a part of 〈C,H〉 ∈ L′. Let δ > 0 be an
arbitrary positive real number and let Ũ be a random set

of variables such that each variable is not in Ũ with some
probability p = 1/dO(d2), where d is a sparse constant.

E[log |X(C|ρ[Ũ])|] ≤ 3δpn+O(k log2 n+ log2 k), for any
assignment ρ[Ũ] : Ũ → {0, 1}.
Proof By Lemma 6.3, we obtain that log |X(C|ρ[Ũ])| ≤
|IŨ′ | + O(k log2 n + log2 k). Hence Corollary 6.1 and lin-
earity of expectation give us the desired bound. �

Finally we consider an algorithm to solve L′ under
given the unique exception of each instance. Let VAR[I′]
be a set of variables connecting to the gates corresponding
to I′.

We give a description of the main algorithm as follows,
using for all above ingredients. Note that all random bits
are created by tossing a coin independently in the following
algorithm.

Description of the main algorithm
Given: An instance 〈C,H〉, and the exceptional unique in-
dependent set I′ in H. Output:YES if and only if 〈C,H〉 is
a YES instance of L′.

1. Choose a random subset Ũ ⊂ VAR[I′] such that each
variable is not in Ũ with probability p independently.

2. For each boolean assignment to Ũ, fix the value of in-
put variables in Ũ, and do the following steps 3. and
4.

3. Eliminate any gate in I′ whose output is totally
fixed. Replace any gate whose output value is the
value of some input variable x with direct wire
connecting to x. Let VD be a set of variable indices
directly connecting to the top gate. Let Di(i ∈ VD)
be the sum of weights at the top gate such that
these weights are coefficients of outputs of bottom
gates replaced with direct wires connecting to the
i-th variable.

4. For each restriction μ to outputs of remaining
bottom gates in I′ do the following steps 5., 6.,
and 7.

5. Assign 0 to the output of an arbitrary bottom
gate G, if there is some G′ ∈ I′ such that the
output of G′ is fixed to 0 and G � G′. Assign
1 to the output of an arbitrary bottom gate G,
if there is some G′ ∈ I′ such that the output
of G′ is fixed to 1 and G′ � G.

6. Remove all gates whose outputs are totally
fixed from the given circuit which is a part
of given instance of L′. Let H′ be an I.H.D.
which is obtained from H by this removing
operation.

7. Find k as follows. Let l be 1. Repeat in-
creasing l by one until there uniquely exist
an independent set of size l. Let k be l. For
each pair of gate sets (I0, I1) in H′ such that
|I0|, |I1| ≤ k, if (I0, I1) is a pair of indepen-
dent gate sets in H′ and satisfies the cover-
ing condition, then solve ILP for an instance



116
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

which is obtained from the top gate and bot-
tom gates in I0 ∪ I1 ∪ I′ and is constituted by
the following three kinds of inequalities (i),
(ii), and (iii). If satisfying 0-1 vector is found
then HALT and return “YES”.

(i) For bottom gates whose output is fixed
to 1 with weights w1, . . . , wn and thresh-
old t, the corresponding inequality is
n∑

i=1
wi xi ≥ t.

(ii) For bottom gates whose output gate is
fixed to 0, the corresponding inequality

is
n∑

i=1
−wi xi ≥ −t +mini wi.

(iii) For the top gate, let v1, . . . , vn be the
weights of the direct wires, and s be the
threshold of the top level gate, and wFIX

be the sum of the weights of the gates
whose output is fixed to 1. Then for the
top gate, the corresponding inequality is
n∑

i=1
vi xi ≥ s − wFIX .

8. HALT and return “NO”

Note that three kinds of inequalities in this step. appear in
the proof of Lemma 4.2 and that the iterating increment
of l in this step stops in at most k steps. Note also that
Lemma 6.1 which gives an upper bound on the number of
restrictions in steps 2. and 4. is a key to obtain a constant
saving in the exponent in the running time of our algorithm.

7. Analysis of the Expected Savings

In this section our goal is the following lemma about the
expected savings.

Lemma 3.1(restated) There is a randomized satisfiability
algorithm for k-THR-SAT with unique exception in which
all random bits are created by independently tossing a coin,
and the algorithm runs in time O(2(1−s)n), where E[s] =
1/dO(d2), and k ≤ nγ for an arbitrary real constant 0 < γ < 1
and d is a sparse constant of a given circuit.

We remind the construction of an algorithm in
Lemma 3.1 as follows.
1. Call the reduction procedure in Lemma 4.1 to transform
the given instance of k-THR-SAT with unique exception to
an instance of the problem L′.
2. Find the exceptional unique independent set I′.
3. Run the main algorithm on the input 〈C,H〉 and I′.

Let TŨ(n) be the running time of the Main Algorithm.
To consider savings of this algorithm, we only analyze the
exponent log TŨ(n) of the running time of the Main Algo-
rithm, because the time complexity of entire procedure is
at most 3 max{2εn, 2o(n),TŨ(n)} for some positive constant
ε < 1. Note that three quantities 2εn, 2o(n), and TŨ(n) are

respectively corresponding to three steps 1., 2., and 3. in the
above algorithm and that by summing up these three terms
we obtain the bound. We also note that we can find I′ in
step 2. by the exhaustive search for all i (1 ≤ i ≤ k + 1) and
for all i-sets of the vertex set of H and searching maximal
independent set of size greater than k. We use the following
result.

Corollary 7.1 ([13]): Consider a 0-1 Integer Linear Pro-
gram on n variables and m(n) inequalities Let λ be m(n)/n.
Then we can find a solution in time.

2n/2

((
(1/2+λ)n
λn

)
poly(n)

)
≤2(1/2+λ(log(e)+ log(1+1/2λ)))n ·poly(n).

Note that this algorithm is faster than 2n for λ < 0.136
and has some positive constant saving C′ such that running
time is 2(1−C′)n.

Firstly we prove Lemma 3.1 assuming the following
Claim.

Claim 7.1: There exists a constant N0 for any δ > 0,
E[log TZOLP[2k + |I′

Ũ
|, |R|]] ≤ 0.5pn+ 3N0δpn+ o(n), where

R is a set of remaining variables in the main algorithm.

Proof of Lemma 3.1 Let R be a set of remaining vari-
ables in the main algorithm. The expectation of the exponent
of the time complexity is bounded above as follows.

E[log TŨ] ≤ E[log(|{0, 1}|Ũ || · |X(Cρ[Ũ])| · TZOLP[2k +

|I′
Ũ
|, |R|] · poly(|R|))], where |{0, 1}|Ũ || is the number of as-

signments for brute force restriction to a random subset of
variables Ũ. We mention how each operation in the main
algorithm contributes to the above expectation. We remind
that there are two loops in the description of the main algo-
rithm: the inner loop and the outer loop. Note that the term
|X(Cρ[Ũ])| corresponds to restricting procedure to bottom
gates in the steps 4., 5., and 6. and that TZOLP[2k + |I′

Ũ
|, |R|]

corresponds to solving ILP problem in the step 7., where
|I′

Ũ
| is the size of the unique exception when a random sub-

set of input variables is chosen and input variables in the
subset are fixed. Thus by all these observations we obtain
the above bound.

By the linearity of expectation, E[log |{0, 1}|Ũ ||] +
log |X(Cρ[Ũ])|+ log TZOLP[2k+ |I′

Ũ
|, |R|]] = E[log |{0, 1}|Ũ ||]+

E[log |X(Cρ[Ũ])|] + E[log TZOLP[2k + |I′
Ũ
|, |R|]].

We show upper bounds on the above three terms.
Firstly, note that E[|Ũ |] = (1−p)n. By Corollary 6.2, we ob-
tain the following upper bound. E[log |X(C|ρ[Ũ])|] ≤ 3δpn +
O(k log2 n + log2 k). By Claim 7.1, we obtain the following
bound. E[TZOLP[2k + |I′

Ũ
|, |R|])] ≤ 0.5pn + 3N0δpn + o(n).

By summing up these three bounds, we ob-
tain E[log |{0, 1}|Ũ ||] +E[log |X(Cρ[Ũ])|] +E[log TZOLP[2k +
|I′

Ũ
|, |R|]] ≤ (1 − p)n + 0.5pn + 3(N0 + 1)δpn + o(n). There

is some δ, which is a sufficient small constant such that
for some positive constant C′′ we obtain E[log |X(Cρ[Ũ])|] +
E[log TZOLP[2k + |I′

Ũ
|, |R|]] ≤ (1 − (C′′ − o(1)))pn. There-

fore, we obtain a bound E[log TŨ] ≤ (1 − p)n + (1 − (C′′ −
o(1)))pn + O(log n) = (1 − (C′′ − o(1))p)n. The lemma fol-
lows from p = 1/dO(d2). �
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Finally, we give a proof of Claim 7.1 and completes
the entire proof of Lemma 3.1.
Proof of Claim 7.1 We will use Corollary 7.1 to obtain
the desired upper bound. Note that |R| is the number of re-
maining variables and that |I′

Ũ
| + 2k is the number of con-

straints. Recall that λ in Corollary 7.1 is defined as the
number of constraints divided by the number of variables.

Thus λ =
|I′

Ũ
|+2k

|R| .
Firstly, we consider the following two cases; (i)λ ≥

1/2, and (ii) λ < 1/2.
Let’s consider the case (i) λ ≥ 1/2. In this case, 1 ≥

1/2λ and then log(1 + 1/2λ) ≤ 1.
By Corollary 7.1, log TZOLP[|I′

Ũ
| + 2k, |R|] is 0.5|R| +

λ(log(e)+1)|R| ≤ 0.5|R|+ |I
′
Ũ
|+2k

|R| (log(e)+1)|R|. Since Corol-
lary 6.1 implies E[|I′

Ũ
|] ≤ 3δpn, it holds that

E[log TZOLP[|I′
Ũ
| + 2k, |R|]]

≤ 0.5E[|R|] + (log(e) + 1)E[|I′
Ũ
|] + o(n)

≤ 0.5pn + (log(e) + 1)3δpn + o(n).

Let’s consider the case (ii) λ < 1/2. In this case it holds
that |I′

Ũ
| ≤ 1

2 |R| − 2k and log(1 + 1/2λ) ≤ log(1/λ).
Therefore by Corollary 7.1,

log TZOLP[|I′
Ũ
| + 2k, |R|]

≤ 0.5|R| + λ(log(e) + log(1/λ))|R|
≤ 0.5|R| +

|I′
Ũ
| + 2k

|R| (log(e) − log(|I′
Ũ
| + 2k) + log |R|)|R|

Note that − log λ = − log
|I′

Ũ
|+2k

|R| = − log(|I′
Ũ
| + 2k) +

log |R|.
In this case, we consider the following two subcases;

(ii-a) for all real constant β > 0, |I′
Ũ
| + 2k ≤ β|R|, and (ii-b)

there exists some real constant β0 (0 < β0 <
1
2 ), |I′

Ũ
| + 2k >

β0|R|.
(ii-a) for all real constant β (0 < β < 1

2 ), |I′
Ũ
| + 2k ≤ β|R|.

Then, log TZOLP[|I′
Ũ
| + 2k, |R|] ≤ log TZOLP[β|R|, |R|].

Thus, we have

E[log TZOLP[|I′
Ũ
| + 2k, |R|]]

≤ E[log TZOLP[β|R|, |R|]]
≤ (1/2 + β(log(e) + log(1 + 1/2β)))E[|R|]
= (0.5 + β(log(e) + log(1 + 1/2β)))pn.

(ii-b) there exists some real constant β0 (0 < β0 <
1
2 ), |I′

Ũ
| +

2k > β0|R|.
In this case, β0|R| < |I′Ũ | + 2k < 1

2 |R|. Thus, there exists

some real constant α (β0 < α <
1
2 ) such that |I′

Ũ
|+2k = α|R|.

Hence 0.5|R|+ |I
′
Ũ
|+2k

|R| (log(e)−log(|I′
Ũ
|+2k)+log |R|)|R| =

0.5|R| + (|I′
Ũ
| + 2k)(log(e) − log(α|R|) + log |R|) = 0.5|R| +

(|I′
Ũ
| + 2k)(log(e) + log(α−1)). Remind that |I′

Ũ
| ≤ 1

2 |R| − 2k
and log(1 + 1/2λ) ≤ log(1/λ).
Therefore,

E[log TZOLP[|I′
Ũ
| + 2k, |R|]]

=0.5E[|R|]+(log(e)+ log(α−1))E[|I′
Ũ
|]+2k(log(e)+ log(α−1))

≤0.5pn+(log(e)+ log(α−1))(3δp)n+2k(log(e)+ log(α−1))

In the case (ii-a), for any δ > 0, let β be a constant such
that β(log(e) + log(1 + 1/2β)) ≤ 3δ. Thus, in the case (ii-a),
TZOLP[|I′

Ũ
| + 2k, |R|]] ≤ 0.5pn + 3δpn + o(n).

Let N0 be max{log(e) + 1, log(e) + log(α−1)}. Note that
N0 does not depend on δ because α does not depend on δ.
Therefore, there exists some constant N0 for any δ > 0 it
holds that E[log TZOLP[|I′

Ũ
| + 2k, |R|]] ≤ 0.5pn + 3N0δpn +

o(n). �

8. Concluding Remark

In this section, we mention future work: finding nonuniform
circuit classes having super polynomial size lower bounds
against NEXP. We denote O(k)-THR as a layer of threshold
circuits such that the size of maximum independent gate sets
is at most O(k), where k may depend on the number of input
variables.

Let SYM ◦ O(k)-THR ◦ · · · ◦ O(k)-THR︸�������������������������������︷︷�������������������������������︸
d

be a class of

circuits which have the symmetric gate at the top that con-
nects to d layers of threshold gates defined in the above. Let
ACC ◦ THR ◦ O(k)-THR ◦ · · · ◦ O(k)-THR︸�������������������������������︷︷�������������������������������︸

d

be a class of cir-

cuits which have ACC◦THR circuit at the top and also have
d layers of threshold gates defined in the above. It is clear
that this class is larger than ACC◦THR for which super poly-
nomial size lower bounds against NEXP are proved [22].
Proving size lower bounds for these circuit classes against
NEXP by extending the methods developed in this paper is
an interesting future work.
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