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[PAPER

Similar Speaker Selection Technique Based on Distance Metric
Learning Using Highly Correlated Acoustic Features with
Perceptual Voice Quality Similarity*

SUMMARY  This paper analyzes the correlation between various
acoustic features and perceptual voice quality similarity, and proposes a
perceptually similar speaker selection technique based on distance metric
learning. To analyze the relationship between acoustic features and voice
quality similarity, we first conduct a large-scale subjective experiment us-
ing the voices of 62 female speakers and perceptual voice quality similarity
scores between all pairs of speakers are acquired. Next, multiple linear
regression analysis is carried out; it shows that four acoustic features are
highly correlated to voice quality similarity. The proposed speaker selec-
tion technique first trains a transform matrix based on distance metric learn-
ing using the perceptual voice quality similarity acquired in the subjective
experiment. Given an input speech, acoustic features of the input speech
are transformed using the trained transform matrix, after which speaker
selection is performed based on the Euclidean distance on the transformed
acoustic feature space. We perform speaker selection experiments and eval-
uate the performance of the proposed technique by comparing it to speaker
selection without feature space transformation. The results indicate that
transformation based on distance metric learning reduces the error rate by
53.9%.

key words: voice quality, perceptual similarity, acoustic feature, speaker
selection, distance metric learning

1. Introduction

Recent research on text-to-speech synthesis has focused on
generating arbitrary speech given only a small amount of
the target speaker’s speech data. The average-voice-based
speech synthesis technique using model adaptation was pro-
posed [3] for hidden Markov model (HMM)-based speech
synthesis systems [4]. Given only a few minutes of speech
data of the target speaker, this technique can transform an
average voice model to the target speaker’s model and then
synthesize arbitrary speech. However, it was reported that
the similarity of synthesized speech to the target speaker’s
speech is degraded by model transmission formation if the
acoustic feature distance from the average voice model is
large [5]. One useful approach to alleviating this problem
is to select only speakers whose speech is similar to that of
the target speaker when creating the average voice model.
If the similar speakers are carefully selected, this approach

Manuscript received June 5, 2014.
Manuscript revised September 5, 2014.
Manuscript publicized October 15, 2014.
"The authors are with NTT Media Intelligence Laboratories,
NTT Corporation, Yokosuka-shi, 239—-0847 Japan.
*A part of this paper was presented at INTERSPEECH 2011
[1] and at INTERSPEECH 2012 [2].
a) E-mail: ijima.yusuke @lab.ntt.co.jp
DOLI: 10.1587/transinf.2014EDP7183

Yusuke IJIMA'® and Hideyuki MIZUNO', Members

is effective in synthesizing speech whose voice quality ap-
proaches that of the target speaker [6]. Furthermore, in the
cross-lingual speaker adaptation technique [7], if a simi-
lar speaker whose language differs from that of the target
speaker can be chosen, a model training technique based on
similar speaker selection also may be effective in synthesiz-
ing different language speech where the voice quality is sim-
ilar to that of the target speaker. Although the speaker char-
acteristics generally consist of voice quality and prosody,
our study focuses on voice quality because it sounds obvi-
ous that the differences of FO and duration among speakers
give the impression of prosodic similarity, while it is un-
clear which spectral feature impacts voice quality similar-
ity. Therefore, determining the correlation between various
acoustic features and perceptual voice quality similarity is
essential for similar speaker selection. Furthermore, speaker
selection taking account only of voice quality may be effec-
tive for cross-lingual adaptation that can make use only of
global prosodic information.

In the field of automatic speech recognition, a vari-
ety of approaches have been proposed to train the acous-
tic model of the target speaker based on similar speaker se-
lection [8], [9]. These techniques employ acoustic feature
similarities such as likelihood of Gaussian mixture models
(GMMs) [10]. However, even if two speakers have simi-
lar acoustic features’ distributions, their voice quality is not
necessarily perceptually similar. In order to enhance the ef-
fectiveness of speaker selection, we need to identify percep-
tual similar speakers. To do this we rely on two key compo-
nents: (1) identification of acoustic features that have high
correlation with perceptual voice quality similarity, (2) a
speaker selection technique that takes into account the sim-
ilarity of the perceived voice quality, not merely acoustic
similarity.

To realize the first goal, a variety of approaches have
been proposed to analyze the relationship between speaker
characteristics and acoustic features [11]—[13]. Studies have
shown that perceptual similarity is associated with prosodic
features, consisting of fundamental frequency (FO) and
phoneme duration, and acoustic features, consisting of cep-
stral coefficients and the aperiodic component. Because
voice quality and prosody are evaluated simultaneously in
subjective experiments, it was not clear which acoustic
feature significantly influenced the human perception of
voice quality [13]. Furthermore, because published similar-
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ity analyses considered only a dozen speakers at most, the
range in voice qualities covered remains inadequate. For
identifying the various relationships between acoustic fea-
tures and perception in depth, it is essential to analyze the
voices of many speakers.

Regarding the second goal, even if highly correlated
acoustic features with perceptual voice quality similarity are
found, it is not appropriate to simply use the Euclidean dis-
tance of each acoustic feature. Multiple regression analysis
is widely used since it can weight each feature, but “dis-
tance metric learning [14]” (DML) is more effective since
it can take side information into account. Many studies on
DML have demonstrated its usefulness in applications such
as image retrieval [ 15], music retrieval [16], and sentence re-
trieval [17]. This technique can realize speaker selection if
the side information is set properly. We used the perceptual
voice quality similarity obtained from a subjective experi-
ment as the side information. In addition, DML has also
been used for feature space transformation in a number of
studies. For instance, [15] used transformation of the origi-
nal image space for image retrieval. In this paper, since the
perceptual voice quality similarity is used as the side infor-
mation, DML can be considered to be transformation from
acoustic feature space to perceptual voice quality similarity
space.

In this study, our aims are to identify the acoustic fea-
tures useful for the selection of perceptually similar speak-
ers and to propose a speaker selection technique based on
DML. We first conduct a large-scale subjective experiment
using 62 female speakers to identify perceptual voice qual-
ity similarity. In the experiment, to exclude the influence of
prosody, we use speech modified so as to exhibit exactly the
same prosody (FO and phoneme duration). Several acoustic
features highly correlated to perceptual voice quality simi-
larity are found by regression analysis of the results of the
subjective experiment. In the proposed similar speaker se-
lection technique, the transform matrix is first trained on the
basis of DML to convert the acoustic feature space. Given
a speech sample, the acoustic features of the sample are
transformed using a trained transform matrix. Then, a sim-
ilar speaker is chosen on the basis of Euclidean distances
on the transformed acoustic feature space. To evaluate the
proposed technique’s performance, we compare it, in exper-
iments, to speaker selection on an acoustic feature space
without transformation. The results thus obtained demon-
strated the technique’s effectiveness.

This paper is organized as follows. Section 2 overviews
the speech database used and the subjective experiment.
Section 3 presents the correlation analysis conducted to
link acoustic features to perceptual voice quality similarity;
the key acoustic features as regards voice quality similarity
are introduced. The proposed speaker selection technique,
based on distance metric learning, and the results of similar
speaker selection experiments are described in Sect.4 and
Sect. 5, respectively. Section 6 summarizes this paper.
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2. Speech Database and Subjective Experiment

We first conducted a subjective experiment to evaluate voice
quality similarity between many speakers. Speech stimuli
and details of the subjective evaluation are described below.

2.1 Speech Database

We used the speech data of 62 female speakers included in
the NTT-AT Japanese multi-speaker’s speech database [18].
The sampling frequency of the speech was 16 kHz and the
quantization bit rate was 16 bits. This database contains
about 200 phonetically balanced sentences for each speaker.
The speakers’ ages ranged from 18 to 49.

2.2 Speech Samples Generated for the Evaluation

For the subjective experiment, we used a single sentence,
“Shoo enerugii ga sakebarete imasu”, (in English “Energy
savings are desired”) spoken by 62 non-professional female
speakers included in the NTT-AT database.

To analyze the relationship between perceptual voice
quality similarity and acoustic features, this evaluation re-
moved the parameter of the prosody of speech. In this ex-
periment, prosody modified speech with the prosody (FO
and phoneme duration) extracted from a speech uttered by
a speaker other than the chosen 62 speakers in the NTT-AT
database, was employed as the speech stimuli. To gener-
ate the speech stimuli with target prosody, original acous-
tic features (spectrum and aperiodic component) of each
speech were linearly interpolated according to target dura-
tion and the FO was modified to match the target FO. The
interpolation was executed within each manually segmented
phoneme boundary. We used the STRAIGHT [19] vocoder
for speech analysis and synthesis. The analysis frame shift
was | ms.

2.3 Subjective Experiment for Evaluation of Perceptual
Voice Quality Similarity

A subjective experiment using the 62 speech stimuli was
carried out. Subjects heard 3844 pairs (62 X 62) of speech
stimuli, and rated the similarity of the presented speech pair.
In order to counter the bias created by the order of stimuli
presentation, the stimuli were also presented in inverse or-
der. The rating scale is shown in Table 1. The subjects were
32 people (14 males and 18 females) who were listening to
the speech stimuli for the first time. Each pair was evaluated
by eight persons. Let s(i, j) be the perceptual voice quality

Table 1  Evaluation criteria.

Score | Description

3 very similar
2 slightly similar

1 dissimilar
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similarity between speaker i and j averaged over the eval-

uation scores of eight people. The voice quality similarity

matrix component S im(i, j) is represented as follows.
s(i,))+s(j,i . .

Sim(i, j) = { B4 )) (1)

s(@, ) @=)

This yielded the voice quality similarity matrix, Sim(i, j),

for the 62 speakers.

Since each speech stimulus was evaluated by several
different people in the subjective evaluation, the obtained
similarity matrix might have been affected by differences in
the listeners’ evaluation criteria. However, it would be dif-
ficult to avoid this problem by performing a larger scale ex-
periment because of its cost. Furthermore, the huge amount
of evaluations by the same people that would be obtained in
such an experiment might result in a lack of consistency in
the evaluations. Therefore, each speech stimulus was evalu-
ated by eight people we consider a minimum of subjects for
subjective evaluation.

3. Regression Analysis between Perceptual Voice Qual-
ity Similarity and Acoustic Features

3.1 Acoustic Features

In analyzing the relationship between the perceptual voice
quality similarity and acoustic features, we focused on ten
acoustic features as described below.

e Low dimensional (1 to 12 dimensions) cepstral coeffi-
cients (CepL).

e High dimensional (13 to 24 dimensions) cepstral coef-
ficients (CepH).

e Low dimensional (1 to 12 dimensions) cepstral co-
efficients using log spectrum from 0 kHz to 4 kHz
(Cep4k).

e | to 12 dimensional coefficients of DCT value of ape-
riodic component (AP).

e Average value of aperiodic component in full band
(APm).

e Ratio of the power in each sub-band to the power in full
band (PR1-PRY).

PR of i-th sub-band PRi is represented as follows.
PRi = mean(spec;) (2)

mean(spec )

where, spec; and specy,; represent respectively the spec-
trum in i-th band and the spectrum in full band (0 — 8 kHz).
In this study, the spectrum was divided into 5 sub-bands
O-1,1-2,2—-4,4-6, and 6 — 8 kHz), using a spec-
tral division method similar to that used for the aperiodic
component in HMM-based speech synthesis.

Although many auditory features that take human per-
ception into consideration, such as the perceptual linear
predictive (PLP) feature [20], have been proposed, the goal
of this study is not only achieving similar speaker selec-
tion but also applying it to speech synthesis. For this rea-
son, we chose to use the acoustic features generally used
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in speech synthesis, i.e., cepstrum coefficients and an ape-
riodic component. We also used simple acoustic features
such as power ratios (PR1-PR5) since simple features can
be converted easily when synthesizing speech. In addition,
previous studies, such as [21], showed the cepstrum features
of speech, especially for high order cepstra, are affected by
prosodic features. However, since the purpose of this pa-
per is to identify acoustic features that have high correlation
with perceptual voice quality similarity, we did not consider
pitch information so as to exclude the effect of prosodic fea-
tures. Furthermore, it should be noted that we used the cep-
strum obtained from a lower-band rather than a higher-band
log spectrum. This is because we believe that voice quality
similarity would be more affected by the rough character-
istics of the higher-band spectrum than affected by the de-
tailed spectral shape of it. Since we used spectrum power ra-
tio (PR1-PRS), we were able to take into account the rough
characteristics of the higher-band spectrum in the following
analysis.

As the acoustic distance measure of each speaker, we
used the Euclidean distance of these acoustic features for
each speaker’s speech. First, an acoustic feature of the
prosody modified speech used in the subjective experiment
was extracted by STRAIGHT in every frame. Second,
the Euclidean distance between the acoustic feature of one
speaker and that of another speaker’s speech was calculated
in the frame; the average Euclidean distance is defined as
the distance between the two speakers. The analysis frame
shift was 1 ms. Because voice quality characteristics are
chiefly presented by voiced phonemes rather than unvoiced
phonemes, the distance was calculated using only voiced
frames as detected by TEMPO [19].

As a result, the distance matrix of each acoustic feature
was obtained as well as the voice quality similarity matrix.

In order to analyze the relationship between the per-
ceptual voice quality similarity and acoustic features, we
performed single and multiple regression analysis. In all
analyses, the voice quality similarity and the distance matrix
were provided except for the combination of same speaker’s
speech.

3.2 Regression Analysis
3.2.1 Single Regression Analysis

We first calculate single correlation coefficients between the
perceptual voice quality similarity and each acoustic fea-
ture. Figure 1 shows single correlation coefficients for each
acoustic feature. In this figure, because we calculated corre-
lation coeflicients between the distance of acoustic features
and the perceptual voice quality similarity, acoustic features
with negative correlation coefficient have high correlation
with the perceptual voice quality similarity. The value of
correlation coefficients shows that most acoustic features are
correlated with perceptual voice quality similarity to some
extent except for CepH and PRS. In particular, the four
acoustic features CepL, Cep4k, PR1, and PR3 are correlated
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Table 2  Correlation coefficients between all acoustic features.
Cep4k | CepH APm AP PR1 PR2 PR3 PR4 PRS
CepL | 0.448 | —0.145| 0.143 0.232 0.221 0.177 0.235 0.205 0.169
Cep4k —-0.140 | 0.107 0.376 | 0.363 0.331 0.304 | 0.238 | 0.176
CepH -0.241 | -0.286 | —0.293 | —-0.118 | —0.338 | —0.286 | —0.254
APm 0.415 0.381 0.106 | 0.492 | 0.118 | —0.003
AP 0.413 0.372 0.346 0.242 0.177
PR1 0.402 | 0.799 | 0.638 0.489
PR2 0.153 0.022 | 0.063
PR3 0.356 | 0.257
PR4 0.501
0.6 0.6
Correlation coeffient ==—3 Correlation coefficient ==
w04 e S e T 0.4 [ ]
5 S
E 0.2 [ ﬂ """"""""" E &QE) 0.2 [
g o S o
£ -0.2 - - B (_‘3' -0.2 B ! e
® o
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o o
2 ——— JEOS JOSE OO — ® -0.6 -
E) 0.6 _E
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CepL Cep4kCepH APm AP PR1 PR2 PR3 PR4 PR5 CeplL Cep4kCepH APm AP PR1 PR2 PR5
Acoustic feature Acoustic feature
Fig.1  Single correlation coefficients between perceptual voice quality Fig.2  Partial correlation coefficients for each acoustic feature.

similarity and each acoustic feature.

with perceptual voice quality similarity because the values
of the correlation coefficients are around —0.5.

Table 2 lists the correlation coefficients between each
acoustic feature. We can see that PR1 has high correla-
tion with PR3(0.799) and PR4(0.638). It is not desirable
to utilize these acoustic features simultaneously for multi-
ple regression analysis because doing so may cause multi-
collinearity. Other combinations have lower correlation.

3.2.2 Multiple Regression Analysis

Next, we perform multiple regression analysis to investigate
the effect of linearly combining multiple acoustic features.
Eight acoustic features, i.e., CepL, Cep4k, CepH, APm, AP,
PR1, PR2, and PRS5, were utilized as the explanatory vari-
ables of the regression. To avoid multicollinearity, PR3 and
PR4 were not used since we confirmed from Table 2 they
have high correlation with PR1. To obtain precise results
from multiple regression analysis, it is necessary to avoid the
use of these acoustic features simultaneously. We therefore
used PR1, which has the highest single correlation coeffi-
cient. First, a multiple correlation coefficient was calculated
using the above eight acoustic features. We confirmed that
the perceptual voice quality similarity and the estimated one
were highly correlated; the multiple correlation coefficient
was “0.741”. This result indicates that we can use these
acoustic features to estimate voice quality similarity to some
extent.

We also calculate the partial correlation coefficient for
each acoustic feature. The results are shown in Fig.2. The
partial correlation coefficient values indicate that four acous-
tic features (CepL, Cep4k, APm, and PR1) have high corre-
lation coefficients, which matches the results of Sect. 3.2.1.
On the other hand, the other four acoustic features, i.e.,
CepH, AP, PR2, and PRS, have low correlation coefficients.

Furthermore, in order to confirm the impact on simi-
lar speaker selection for each acoustic feature, we investi-
gated the Bayesian information criterion (BIC) values for
each combination of acoustic features. Table 3 shows the
BIC values. In this table, each column shows the combi-
nations of acoustic features which have the minimum BIC
value when changing the number of acoustic features. From
this table, we can see that the BIC values decrease as the
number of acoustic features increase. This implies that these
eight acoustic features are effective for similar speaker se-
lection to some extent. However, since the BIC value re-
ductions are different according to each acoustic feature, the
impact on similar speaker selection is considered to be large
in the order corresponding to Cep4k, CepL, PR1, and APm.
This result is consistent with the result of multiple regres-
sion analysis.

From these results, these four acoustic features, i.e.,
CepL, Cep4k, APm, and PR1, are considered to be acous-
tic features highly correlated with perceptual voice qual-
ity similarity. Thus, in the following speaker selection ex-
periments, we used these four acoustic features. Although
the other acoustic features, i.e., CepH, AP, PR2, and PRS,
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Table 3  Bayesian information criterion values for each combination of
acoustic features.
# of acoustic | combination of BIC
feature acoustic features value
1 (1) Cepdk 3418.2
2 (2) (1)+CepL 2776.1
3 (3) (2)+PR1 23234
4 (4) (3)+APm 2157.4
5 (5) (4)+CepH 2051.1
6 (6) (5)+PR5 1962.9
7 (7) (6)+AP 1900.6
8 (8) (7)+PR2 1895.4

seem to be effective for speaker selection from the BIC
values, we did not use these features since they correlated
poorly with the perceptual voice quality similarity. We also
calculated multiple correlation coefficients by using three
(CepL+Cep4k+PR1) and four (CepL+Cep4k+PR1+APm)
selected features. The multiple correlation coefficients ob-
tained were 0.704 and 0.720, respectively.

4. Speaker Selection Technique Based on Distance
Metric Learning

Next, we use distance metric learning (DML) to propose
a similar speaker selection technique using the obtained
acoustic features. An overview of our proposed selection
system and its details are given below.

4.1 Overview of Proposed Similar Speaker Selection

A block diagram of the proposed method is shown in Fig. 3.
In the proposed technique, we first employ distance met-
ric learning to train a transform matrix using training data
with speaker class. When an input utterance is given, the
input utterance vector, described in Sect. 4.4, extracted from
the input utterance is transformed using the trained trans-
form matrix. After that, k-nearest neighbor (kNN) [22]
classifier-based speaker selection is performed by calculat-
ing the Euclidean distance between the transformed input
utterance vector and the transformed utterance vectors ex-
tracted from all training data. The overall speaker selection
process is summarized below.

Training part:

Step 1 Extract training utterance vectors for each utterance
from all training data.

Step 2 Perform PCA using the extracted training utterance
vectors for dimension reduction.

Step 3 Perform DML (RCA) to obtain the transform matrix
A and transformed utterance vectors (training vec-
tors) using the speaker classes of training data and
dimension-reduced training utterance vectors.

Selection part:

Step 4 Extract an input utterance vector from the input
speech.
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Training Part S
fraining bart
~—
utterance vectors
speaker classes Transformed
of training data utterance vectors
Transform
matrix
Selection Part
input
speech
tt ist;
Hrerance —>| PCA |—>| Transform }—> distance
vector calculation
speaker selected
selection [—> speaker
(kKNN) Speaker

Fig.3  Ablock diagram of the speaker selection system based on distance
metric learning.

Step 5 Perform PCA using the extracted input utterance
vector for dimension reduction.

Step 6 Transform the input utterance vector using the trans-
form matrix A obtained from Step 3.

Step 7 Calculate the Euclidean distances between the trans-
formed input utterance vector and the transformed
training utterance vectors obtained from Step 3.

Step 8 Select one speaker as the most similar speaker, i.e.,
the speaker having the most frequent vectors among
the k nearest neighbor vectors.

Because utterance vectors (described in Sect.4.4) are
generally highly dimensional vectors, it is necessary to re-
duce the number of dimensions of the training vector to
avoid the curse of dimensionality. For this reason, we per-
form PCA to achieve simple dimension reduction in Step
2 and Step 5. After the dimension reduction, DML is per-
formed using the dimension-reduced training vectors.

Details of each component, i.e., distance metric learn-
ing, the utterance vector, the speaker class, and kNN
classifier-based speaker selection, are described as follows.

4.2 Distance Metric Learning

Let us denote a set of N vectors in d-dimensional space as
X ={x; € Rd}ﬁi |» where the Mahalanobis distance between
two vectors x; and x; is defined as

d(xi,xj) =(x; — x)) M(x; - x;) A3)
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where M is a positive semi-definite matrix that satisfies
valid metric properties. The goal of DML is to find an opti-
mal Mahalanobis matrix M from the side information. We
can uniquely decompose any positive semi-definite matrix
to M = AT A. This reduces Eq. (3) to

d(xi,x;) = || A(xi — x)) |I2 “4)

the Euclidean distance after transformation is x; — Ax;.
Thus DML is equivalent to transformation of the vector
space using matrix A.

In this study, in order to avoid the sparse data prob-
lem, we used Relevant Component Analysis (RCA) [23], a
well known supervised distance metric learning method. Al-
though a number of DML techniques, such as Neighborhood
Component Analysis (NCA)[24] and Large Margin Near-
est Neighbour (LMNN) [25], have been proposed to train a
more precise transform matrix A, these techniques generally
require much training data. However, since our proposed
technique requires the perceptual voice quality similarity
obtained from the subjective evaluation, we cannot collect
sufficient training data for such DML techniques. There-
fore, we used RCA to train the transform matrix because
this technique is simple and effective.

4.2.1 Relevant Component Analysis

Given a set of vectors, X = {xi}f\; |» and setting the K class
for each vector, RCA trains global linear matrix M to min-
imize the distance between the vectors in each class. A"_fll}g
optimal transformation by RCA is computed as A = C
and the Mahalanobis matrix is equal to the inverse of the av-

erage covariance matrix of classes, i.e., M = C‘_l, where C
is defined as follows:

1 &
C=5 D0 D i mpi—p)" )
=1

Jj i=1

here, u f denotes the mean of the j-th class, and xj; denotes
the i-th vector in the j-th class; N and N; are the total number
of vectors and the total number of vectors in the j-th class,
respectively.

To apply RCA to speaker selection, we need to define
the class and the vector. In this paper, the class and the vec-
tor are called the speaker class and the utterance vector, re-
spectively.

4.3 Speaker Class Using Perceptual Voice Quality Simi-
larity

To set the speaker class for each speaker, we adopt a speaker
clustering technique based on perceptual voice quality simi-
larity. We utilize the perceptual voice quality similarity ma-
trix as the speaker vector obtained from Sect. 2.3. Let v; be
the speaker vector of speaker i. It is represented as

v; =[Sim(i, 1),--- ,Sim(, j), -+, Sim(i, Ny)] (6)
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where Sim(i, j) represents the perceptual voice quality sim-
ilarity between speakers i and j, and N, represents the num-
ber of speakers participating in the subjective experiment.
In this paper, we set N, to 62. Speaker clustering is done by
applying the k-means algorithm to the speaker vectors.

4.4 Utterance Vector

We utilized the GMM supervector [26] as the utterance
vector to realize a text-independent similar speaker selec-
tion technique because its effectiveness in text-independent
speaker recognition has been confirmed. The GMM super-
vector was created by concatenating the mean parameter of
an individual GMM mixture. Given a speaker utterance,
MAP adaptation is performed using a speaker-independent
GMM that is trained in advance. Let u;; be the mean param-
eter of the adapted GMM’s output distribution for mixture
i and dimension j. The GMM supervector m is represented
as

m=[py, 0 iy, v (N

where M and L represent, respectively, the number of GMM
mixtures and the number of acoustic features’ dimensions.
To advance the field of speaker recognition, i-
vector [27] was proposed to improve the performance of
text-independent speaker recognition. Because the purpose
of this paper is to confirm the effectiveness of applying dis-
tance metric learning to similar speaker selection, we used
the GMM supervector only in the following experiments.

4.5 kNN Classifier-Based Speaker Selection

The k-nearest neighbor (kNN) classifier is the simplest clas-
sifier of all machine learning algorithms in pattern recog-
nition. Because it is an effective and simple technique, it
is used in various research fields. This paper also uses this
technique for speaker selection.

Given an input utterance vector and all training utter-
ance vectors described in Sect. 4.4, the Euclidean distances
between an input vector and all training vectors are calcu-
lated. Next, the k training vectors that have the smallest dis-
tance from the input vector are chosen. Finally, the speaker
that yields the greatest number of selected k training vectors
is selected as the similar speaker.

5. Experiments
5.1 Experimental Conditions

In the following experiments, we used the speech data of
62 female speakers as described in Sect.2.1. We used the
perceptual voice quality similarity between all speaker pairs
(62 x 62) as determined by the subjective experiment as de-
scribed in Sect. 2.3. Thirty sentences uttered by 61 of the
62 speakers were used for the training data and 30 sentences
uttered by the other speaker not included in the training data
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were used as the evaluation data. In the selection experi-
ment, we first select one speaker as the evaluated speaker,
and one speaker was chosen from the remaining 61 training
speakers. We performed a leave-one-out cross-validation
test in order to ensure the validity of the results obtained.

We utilized the four acoustic features with the high-
est correlation with the perceptual voice quality similar-
ity as identified in Sect.3.2.2, i.e., CepL, Cepdk, APm,
and PRI1. These acoustic features were extracted using
STRAIGHT [19]. The analysis frame shift was 5 ms. Al-
though the frame shift was 1 ms in Sect. 2 and 3, we changed
it to 5 ms because a 1 ms frame shift is generally too short
for GMM supervectors. The following experiments were
performed using only voiced frames as in Sect. 3.2.

A speaker-independent GMM was trained from all
speech data uttered by the 62 female speakers (12400 utter-
ances = 62 speakers x 200 utterances) to extract the GMM
supervector. We set the number of nearest neighbors in the
kNN classifier at 5.

To evaluate the speaker selection performance, we used
“average similarity”. The average similarity is calculated
by the perceptual voice quality similarity between the input
speaker and the selected speaker obtained from the above
mentioned subjective experiment in Sect. 2.3. Let sel(utt;;)
be the speaker identified by the speaker selection technique
using utt;;, which represents the j-th utterance uttered by
speaker i. The average similarity is expressed as

1 S
Sim(i, sel(utt;;)) (®)
Nevai i—1 =1

13

J

where N,,,, S, and U represent, respectively, the number
of evaluation utterances (S by U), the number of evalu-
ated speakers, and the number of utterances per evaluated
speaker; Sim(i, sel(utt;;)) represents the perceptual voice
quality similarity between input speaker i and the selected
speaker from utt;;.

5.2 Acoustic Feature Performance

To compare acoustic feature performances, we first per-
formed speaker selection by changing the acoustic features.
In this experiment, we did not use RCA to perform distance
metric learning. In the proposed speaker selection meth-
ods, the optimal selection parameters (i.e., the number of
GMM mixtures and the number of PCA dimensions) dif-
fer for each combination of acoustic features. Therefore,
to set optimal parameters for each combination, we per-
formed a preliminary experiment by changing these param-
eters. In the experiment, we set the number of GMM mix-
tures at 32, 64, and 128 and the number of dimensions of
PCA from 10 to 40. From the obtained results, we respec-
tively set the number of GMM mixtures for four combi-
nations (i.e., CepL, CepL+Cep4k, CepL+Cep4k+PR1, and
CepL+Cep4k+PR1+APm) at 32, 64, 64, and 128, and the
number of PCA dimensions at 31, 30, 28 and 27.

Table 4 shows the average similarity obtained for each
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acoustic feature. We can see that the average similarity in-
creased by adding Cep4k and PR1. On the other hand, the
selection performance hardly changed at all when APm was
added. This is because the utterance vectors we used fail to
make allowance for the temporal characteristics of acoustic
features. In Sect.3, we used speech with exactly the same
prosody (FO and phoneme duration) to exclude the effect of
the prosody. In this section, however, we used GMM su-
pervector, which cannot represent temporal characteristics
because it represents only the average characteristics of the
whole utterance.

5.3 Performance Comparison with Distance Metric Learn-
ing

Next, we performed a speaker selection experiment by
changing the number of speaker classes to investigate the ef-
fectiveness of distance metric learning in similar speaker se-
lection. As suggested by the previous experiment, we used
three acoustic features, i.e., CepL, Cep4k, and PR1. Fig-
ure 4 shows the average similarity for each speaker class.
We can see that the average similarity for each acoustic fea-
ture was improved by distance metric learning using RCA.

However, it can be seen that for the case of two speaker
classes, the average similarity decreased, but the change was
slight, if at all, for four or more classes. This is because
RCA fails to take into account the complexity according to
the number of speaker classes. In general, when the number
of speaker classes is increased, a transform matrix that can
process the details of the acoustic feature space is required.
However, RCA can train only a global transform matrix, and
so cannot take account of the complexity created by the in-
crease in the number of speaker classes.

Table 4  Average similarity for each acoustic feature.
Acoustic feature Average similarity
CepL 2.35
CepL+Cep4k 243
CepL+Cep4k+PR1 2.44
CepL+Cep4k+PR1+APm 241
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Fig.4  Average similarity versus the number of speaker classes.
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5.4 Overall Performance

We investigated the overall speaker selection performance
by combining acoustic features and distance metric learn-
ing. Figure 5 shows the histogram of the similarity between
the selected speaker and the input speaker. The number of
speaker classes was set to 8 from the results of Sect.5.3. It
can be seen that the number of speakers having low simi-
larity decreased with distance metric learning when acous-
tic features were added. When we calculated the selection
error rate, we found it was reduced by 53.9%, i.e., from
20.22% t0 9.31%. A paired t-test we performed confirmed
that the difference between the two methods is statistically
significant at the 1% level. This indicates that the proposed
method can significantly reduce the speaker selection error
rates.

5.5 Comparison with Speaker Recognition Technique

Finally, we compared our proposed technique’s speaker se-
lection performance with that of a conventional speaker
recognition technique based on GMM[10]. To obtain
each speaker’s GMM, we performed MAP adaptation from
a speaker-independent GMM. As the speaker-independent
GMM, we used the same model used in the proposed tech-
nique (described in Sect. 5.1). We used CepL+Cep4k+PR1
as the acoustic feature, and 30 sentences uttered by each
speaker were used for MAP adaptation.

Table 5 shows the average similarity results obtained
from the experiment. These results confirmed that the two
methods (the proposed technique without RCA and the

400
CepL+Cep4k+PR1(w/ RCA) mumm
350 |- CepL(w/o RCA) ===y

800 [
250 [
200 | e

Frequency

10—
100 [
50 ‘

0

Similarity

Fig.5 Histogram of the similarity between the selected speaker and the
input speaker.

Table 5  Performance comparison with GMM-based speaker recogni-
tion.
Method Average similarity
GMM 2.43
Proposed (w/o RCA) 2.44
Proposed (w/ RCA) 2.47
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GMM-based one) have comparable performance. In addi-
tion, applying feature space transformation using RCA con-
firmed that the average similarity obtained in doing so is
higher than that of the GMM-based method. From these re-
sults, we confirmed the effectiveness of the proposed tech-
nique compared with the conventional speaker recognition
technique.

6. Conclusion

In this paper, we analyzed the relationship between the per-
ceptual voice quality similarity and various acoustic features
for perceptually similar speaker selection. First, percep-
tual experiments using 62 female speakers’ voices were de-
signed and the perceptual voice quality similarity matrix be-
tween each speaker was determined. The results of multiple
regression analysis showed that low dimensional cepstrum
coefficient, low dimensional cepstrum coefficient under 4
kHz and the aperiodic component had high correlation to
perceptual voice quality similarity; the multiple correlation
coefficient was “0.741”. Furthermore, we have presented a
new speaker selection technique that takes perceptual voice
quality similarity into account in the selection process. This
technique utilizes distance metric learning to transform the
acoustic feature space into the perceptual voice quality sim-
ilarity space. Experiments showed that the proposed tech-
nique improves speaker selection performance. In partic-
ular, the proposed technique can significantly reduce the
speaker selection error rates.

In future work, we will investigate other distance met-
ric learning techniques, other speaker classes, and other ut-
terance vectors to improve the technique’s speaker selection
performance. Although we have selected acoustic features
using speaker selection by regression analysis, a unified ap-
proach to feature selection (i.e., [28]) will also be performed
to select acoustic features matching our selection method
based on distance metric learning.
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