
852
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

PAPER

Recovering Traceability Links between Requirements and Source
Code Using the Configuration Management Log∗

Ryosuke TSUCHIYA†a), Nonmember, Hironori WASHIZAKI†, Yoshiaki FUKAZAWA†, Members,
Tadahisa KATO††, Masumi KAWAKAMI††, and Kentaro YOSHIMURA†††, Nonmembers

SUMMARY Traceability links between requirements and source code
are helpful in software reuse and maintenance tasks. However, manually
recovering links in a large group of products requires significant costs and
some links may be overlooked. Here, we propose a semi-automatic method
to recover traceability links between requirements and source code in the
same series of large software products. In order to support differences in
representation between requirements and source code, we recover links by
using the configuration management log as an intermediary. We refine the
links by classifying requirements and code elements in terms of whether
they are common to multiple products or specific to one. As a result of
applying our method to real products that have 60KLOC, we have recov-
ered valid traceability links within a reasonable amount of time. Auto-
matic parts have taken 13 minutes 36 seconds, and non-automatic parts
have taken about 3 hours, with a recall of 76.2% and a precision of 94.1%.
Moreover, we recovered some links that were unknown to engineers. By
recovering traceability links, software reusability and maintainability will
be improved.
key words: traceability recovery, configuration management log, common-
ality and variability analysis, software product line

1. Introduction

Traceability in software development is the ability to trace
the relationships between artifacts. These relationships are
called traceability links. Traceability links are formed be-
tween the following pairs of artifacts: the requirements
specification document and source code that implements
the requirements, design documents and test cases, require-
ments and design, etc. In this paper, we focus on links be-
tween requirements and code elements (e.g., function, class,
file). For example, in CUnit [18] (the target of our evalu-
ation experiments), the requirement “Running tests in Au-
tomated mode” links with the file Automated.c implements
the requirement.

Traceability links can be helpful in several software

Manuscript received June 13, 2014.
Manuscript revised November 12, 2014.
Manuscript publicized January 6, 2015.
†The authors are with the Dept. of Computer Science, Waseda

University, Tokyo, 169–8555 Japan.
††The authors are with Yokohama Research Laboratory,

Hitachi, Ltd., Yokohama-shi, 244–0817 Japan.
†††The author is with Hitachi Research Laboratory, Hitachi, Ltd.,

Hitachi-shi, 319–1292 Japan.
∗This paper is an extended version of a paper presented at the

17th International Software Product Line Conference [1]. We have
added some descriptions that explain how our framework supports
software reuse and maintenance in the Sects. 2.1 and 3.9. More-
over, we have added some discussions to the section of evaluation.

a) E-mail: ryousuke t@asagi.waseda.jp
DOI: 10.1587/transinf.2014EDP7199

engineering tasks such as maintenance and reuse [12]. If
engineers can grasp the relationships between requirements
and source code, they can effortlessly identify the code el-
ements implementing the requirements that they want to
reuse or maintain (e.g., bug fix, modifications for change
request [4]).

It is not practical from the viewpoint of cost that engi-
neers manually recover all traceability links of large prod-
ucts. Moreover, there are links that are difficult to find man-
ually, for example, if there is no apparent similarity in no-
tation between the requirements and code, or if there is no
description of the relationship in the documents. We call
these “non-explicit traceability links.”

We propose a framework to recover traceability links
between requirements and source code in the same series
of large software products. In order to support differences
in representation between requirements and code elements
(e.g., notation, language), we recover links by applying nat-
ural language processing and document retrieval to the con-
figuration management log. However, the granularity of
links recovered from the log is large, so we refine the links
by conducting the commonality and variability analysis.

Our proposed method is semi-automatic; if any of the
recovered links were unknown to engineers, engineers must
manually judge whether they are non-explicit traceability
links or false positives. If the accuracy of the recovery
method is poor, or support information is missing, the de-
cisions take significant costs. Our framework enables engi-
neers to judge the validity of links with practical costs by
reliable accuracy and support information.

The following are the Research Questions addressed in
this study.

RQ1 How accurately can we recover candidate traceabil-
ity links semi-automatically?

RQ2 Can non-explicit traceability links be manually
recovered from candidate links suggested by our
method?

RQ3 Can we recover traceability links within a reason-
able amount of time?

In order to evaluate, we applied the framework to two
products: open source software CUnit and a network con-
trol system developed by a company. CUnit has more than
7KLOC, and the network control system has more than
60KLOC. In CUnit, we recovered traceability links with a
recall of 76.0% and a precision of 70.4%. In the network

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



TSUCHIYA et al.: RECOVERING TRACEABILITY LINKS BETWEEN REQUIREMENTS AND SOURCE CODE
853

control system, we recovered traceability links with a recall
of 76.2% and a precision of 94.1%. Therefore, our frame-
work is effective in the recovery of traceability links regard-
less of the size of the product or the development organiza-
tion. The following are our contributions.

• We have proposed a method to semi-automatically re-
cover traceability links using the configuration manage-
ment log.
• We have proposed a method to refine traceability links by

conducting the commonality and variability analysis.
• We have developed a tool that can recover links in large

products within a reasonable amount of time.
• We have proposed a framework including the process to

recover traceability links using the tool.
• We have applied the framework to actual products that

have over 60KLOC, and have confirmed its validity.

By recovering links between requirements and source code
using our framework, software reusability and maintainabil-
ity is improved with practical costs.

The remainder of the paper is organized as follows.
First, we provide some background information (Sect. 2).
Then, we describe our framework to recover traceability
links (Sect. 3). In Sect. 4, we present our evaluation of the
framework by conducting experiments on two targets. In
Sect. 5, we discuss related works. Finally, we provide a con-
clusion and future works (Sect. 6).

2. Background

2.1 Software Reuse and Maintenance with Traceability

Traceability links between requirements and source code fa-
cilitate the identification of code elements for reuse or mod-
ification especially when engineers do not have advanced
knowledge of the previous product. In fact, in order to han-
dle frequent software change requests, engineers are recom-
mended to reduce the cost of identifying code elements im-
pacted by change requests using traceability links.

Empirical studies have verified the effectiveness of
traceability links in software reuse [3] and maintenance
tasks [4]. Although these studies are not industrial records,
both explicitly show traceability benefits by conducting ex-
periments that conform to actual reuse and maintenance
tasks.

Software Product Line Engineering (SPLE) has been
widely recognized as an efficient method for software reuse.
SPLE aids software development by using reusable core as-
sets (e.g., feature, architecture, and code elements) [5]. In
the extractive approach to develop core assets, we need to
analyze the commonality and variability of existing prod-
ucts. Furthermore, SPLE requires relationships between
those core assets (e.g., traceability links between features
and code elements) to reuse them efficiently [6]–[8].

As described above, traceability links are essential for
software reuse and maintenance. However, we must con-
sider the cost of traceability recovery and management. If

the recovery and management cost exceeds the benefits of
traceability links (i.e., amounts of cost reduction in software
reuse and maintenance), it does not meet the needs of engi-
neers. Therefore, automatic support methods are required to
minimize the cost of recovering and managing traceability
links.

Many previous studies have proposed automatic or
semi-automatic methods to recover traceability links (de-
scribed in Sect. 5.2). However, these methods have a com-
mon weakness — they depend on the representation be-
ing similar between the requirements and source code (de-
scribed in Sect. 2.2). We focus on overcoming this weakness
in this paper.

2.2 Configuration Management Log

If the identifier of code elements (e.g., file name, function
name) and requirements are represented using the same no-
tation and language, automatic recovery of traceability links
using previous methods is easy. However, this is often not
the case. For instance, while the purpose is described in the
requirements, the identifier that signifies the means can be
given to the code elements. In another case, the identifier
can be the short form of requirements. The most difficult
case is when the language is different between the require-
ments and source code in previous methods.

In the above cases, it is difficult to recover links by
comparing the requirements and the identifier of code el-
ements. In order to support differences in expression, an
intermediary is required. Here, we focus on the configu-
ration management log that contains information related to
requirements and source code. It is composed of revisions
that include messages and file paths.

The two targets of our evaluation experiments
use the version management system Apache Subversion
(SVN) [19]. Figure 1 shows an excerpt from a log of CUnit
as specific examples of the revision of SVN. It shows that
the revision has a message and a file path. By examining
these logs, we have confirmed that words related to require-
ments appear in the messages of the log. For example, in
Fig. 1, the word “XML” appears in the message. This word
is strongly correlated with the requirement “Running tests
in Automated mode” because this functional requirement is
the only one that outputs results in XML format. If these
words are recorded along with file paths, we can recover
traceability links without depending on the notation.

Fig. 1 Revision modifying a single file.



854
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

2.3 Commonality and Variability Analysis

Traceability links between requirements and functions can-
not be recovered using file paths in the configuration man-
agement log. Therefore, we use the Commonality and Vari-
ability Analysis (CVA) on the same series of software prod-
ucts so that we can recover traceability links between re-
quirements and functions. We will explain how to recover
links with functions by CVA in Sect. 3.7.

CVA is used to analyze to which products elements
(e.g., requirements, code elements) belong. CVA classi-
fies elements as common to some products or as specific
to a product. Figure 2 shows a concrete example: the re-
quirements “Running tests in Automated mode” is common
to three products, whereas the requirement “Activation of
suites and tests” belongs to product Z only.

CVA is used to support the development of core assets
in SPLE. There are several methods of CVA in software el-
ements (e.g., requirements, architecture). In the following
paragraphs, we describe the methods that we have previ-
ously proposed.

We have proposed a method of CVA of the require-
ments in legacy software products [9]. This method mea-
sures the similarity of sentences using the vector space
model, and analyzes whether or not the requirements are
common to multiple products. In the vector space model
proposed by Salton et al. [10], a sentence is represented by
one vector that depends on the valid words in the sentence.
The contents of the sentence are determined by the direction
of the vector.

There is a method of CVA of code elements using code
clone detection [11]. A code clone is a code fragment that is
identical or similar to another in the code.

2.4 Motivating Example

In many products, the notation and the abstraction level are
different between the requirements and the identifier of code
elements. In CUnit, the requirement “Lookup of individ-
ual suites and tests” links with the functions CU get suite()
and CU get test() that belong to the file TestDB.c. There
are some overlapping words between the requirements and
the identifiers, but they cannot be easily associated through

Fig. 2 Commonality and variability analysis.

comparison. In the network control system used as a tar-
get of our evaluation experiments, the identifier of code ele-
ments is written in English, while the requirements are writ-
ten in Japanese.

Non-explicit traceability links exist in most products.
In CUnit, the user manual describes most traceability links
between requirements and code elements. However, in-
formation on the relevant requirements of some files (e.g.,
MyMem.c) is not mentioned. This information may be un-
necessary if CUnit is used as a testing framework, but it is
useful for derived development based on CUnit. In the net-
work control system, there are many traceability links that
engineers have not grasped because the number of require-
ments and files is quite large.

3. Traceability Link Recovery Framework

3.1 Overview

We propose a framework to recover traceability links be-
tween requirements and source code in the same series of
large software products. Figure 3 shows the overview of our
framework. The targets of our framework are series of large
software products developed by one organization. As inputs,
the assets of requirements and source code are required for
each product. Assets of requirements are documents about
product requirements written in natural language. In our
framework, we focus on requirements that are concrete and
objective (i.e., software functional and non-functional re-
quirements). Our framework mainly treats links with com-
ponent level. However, we can optionally treat links with
function level by refining links with components. In this pa-
per, “component” means source code files or classes. And,
“function” means a subroutine as part of the component.
(e.g., methods of Java classes)

Traceability links can be recovered by finding revisions
that contain words related to requirements in the configura-
tion management log. For refining these links, CVA is con-
ducted prior to recovering links. Finally, we refine traceabil-
ity links using the CVA results in order to enhance accuracy.

Fig. 3 Overview of our framework.



TSUCHIYA et al.: RECOVERING TRACEABILITY LINKS BETWEEN REQUIREMENTS AND SOURCE CODE
855

Our framework is divided into the following seven
steps.

Step (1). CVA of Requirements
Step (2). CVA of Code Elements
Step (3). Keyword Setting
Step (4). Classification of Revisions
Step (5). Recovery of Traceability Links
Step (6). Auto Refine of Traceability Links
Step (7). Manual Refine of Traceability Links

The following sections describe each step in detail.

3.2 CVA of Requirements

We use the method mentioned in Sect. 2.3 for CVA of re-
quirements to measure the similarity of requirements.

Each requirement is treated as a sentence in this
method, and the vector space model is applied to repre-
sent each sentence by a vector determined by the valid
words (nouns, verbs, and adjectives) in the sentence. For
a sentence Sx containing M valid words, i.e., v1, v2, · · · , vM ,
w(vp, Sx) (1 ≤ p ≤ M) is the number of appearance of vp in

Sx. Sx is represented by the M-dimensional vector
−→
dx defined

as follows:

−→
dx = (w(v1, Sx),w(v2, Sx), · · · ,w(vM , Sx))

The similarity between the two sentences Si and S j is
obtained as the cosine of the angle between the two sentence
vectors

−→
di and

−→
d j (cosine similarity). SSim(Si, S j) (Sentence

Similarity, 0 ≤ SSim ≤ 1) is defined using the cosine simi-
larity as follows:

SSim(Si, S j) =
−→
di
−→
d j∣∣∣−→di

∣∣∣
∣∣∣−→d j

∣∣∣

By measuring the similarity SSim between the require-
ments in each product, each requirement is classified as be-
ing common to some products or as being specific to one
product. If SSim exceeds a threshold set by the users, the
corresponding requirements are judged to be identical. The
classification result is represented as a subset of the set of all
products targeted. For instance, in Fig. 2, the set of all prod-
ucts targeted is {X,Y,Z}. The requirement “Running tests in
Automated mode” belongs to {X,Y,Z}. On the other hand,
the requirement “Lookup of individual suites and tests” be-
longs to {Y}.

3.3 CVA of Code Elements

In this step, CVA of code elements is conducted at the gran-
ularity of both components and functions. Source code is
needed as input. In the same way as requirements, code el-
ements are classified as either common or specific. As in a
previous study, we use code clone detection for the analysis.

Each code element is composed of tokens (e.g., op-
eration, identifier). Token(Ex) represents the total number

of tokens for a code element Ex. Clone(Ex, Ey) represents
the number of tokens of code clones between Ex and Ey.
The similarity between Ex and Ey is determined by the ra-
tio of the number of code clone tokens to the total num-
ber of tokens. CESim(Ex, Ey) (Code Element Similarity,
0 ≤ CESim ≤ 1) is defined by the following formula:

CESim(Ex, Ey) =
Clone(Ex, Ey) ∗ 2

Token(Ex) + Token(Ey)

If CESim(Ex, Ey) exceeds a threshold set by the users, Ex

and Ey are determined to be identical. This similarity mea-
surement is conducted for all code elements that share code
clones, and each code element is classified by the products
to which it belongs. The classification result is represented
in the same way as requirements.

3.4 Keyword Setting

We utilize words related to requirements appear in the mes-
sages of the configuration management log. In this step,
keywords that characterize each requirement are set so that
they can be used to identify the components related to the
requirements in a later.

First, as candidates of keywords, words that have a
large TF-IDF value are extracted from the documents that
describe the summary of requirements. TF-IDF is a method
for word weighting using term frequency and inverse docu-
ment frequency. In addition, proper nouns, including abbre-
viations, are extracted as candidates.

Then, engineers set the keywords by adding, deleting,
modifying, or combining the candidate words.

3.5 Classification of Revisions

If we use revisions that simultaneously modify components
of multiple domains to recover traceability links, unrelated
requirements and components may be linked. Unfortu-
nately, simultaneous revisions often occur. Therefore, in
order to extract useful information while avoiding false pos-
itives, our framework automatically classifies revisions into
the following three types based on the number of domains
they affect. Here, domain is a directory that has files imple-
menting the same feature.

Type A. Revisions modifying components of a single do-
main.
Traceability links recovered from this type are the most
reliable. The revision in Fig. 1 is classified as this type.

Type B. Revisions modifying components of multiple
domains below the threshold number.
Because poorly related features are simultaneously
modified in some cases, traceability links recovered
from this type of revision should be distinguished from
traceability links recovered from Type A revisions.

Type C. Revisions modifying components of multiple
domains greater than or equal to the threshold number.
This type of revision causes false positives, so it is re-
moved from targets of search in the latter steps.



856
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

The threshold number is set by users. As a guideline, if there
are a lot of Type A revisions, users expect Type B revisions
the reliability rather than their number, so they should set
a low threshold number. Conversely, if there are few Type
A revisions, users require a lot of Type B revisions, so they
should set a high threshold number.

At the end of this step, a refined log with the revisions
classified and Type C revisions removed is outputted. This
refined log is used in the following steps.

3.6 Recovery of Traceability Links

3.6.1 Traceability Links Recovery Method

In this method, revisions that have message containing the
keywords set in Step (3) (Keyword Setting) are identified
to determine the implementation points. The number of
keyword appearance must be above the threshold num-
ber, which is tuned to the number of words in the revi-
sion message. When most of revision messages have the
large number of words, we need to set the large number
to the threshold of keyword appearance. Then, the re-
quirements connected with the keywords are linked with
the modified components written as file paths in the revi-
sion. For example, CUnit has the requirement “Running
tests in Automated mode.” If the word “XML” is set as a
keyword of this requirement, the method searches for revi-
sions that have a message containing the word “XML” in
the configuration management log to determine the imple-
mentation points. One such implementation point would be
in the revision in Fig. 1. In this revision, the component
Automated.c is modified. As a result, a traceability link be-
tween the requirement “Running tests in Automated mode”
and the component Automated.c is recovered. The same op-
eration is conducted for all requirements to identify and link
the related components.

3.6.2 Types of Traceability Links

For each traceability link recovered, the requirement and the
component should belong to the same group of products as
classified by CVA. If not, this information can be used to re-
fine traceability links. We classify traceability links into five
types using the CVA results. We first define the following
terms.

k is the number of targeted products. Ri represents the
set of requirements for each product. Then, R (the set of
requirements in all targeted products) is defined by the fol-
lowing formula:

R =
k⋃

i=1

Ri

Likewise, Ci represents the set of components for each prod-
uct. Then, C (the set of components in all targeted products)
is defined by the following:

C =
k⋃

i=1

Ci

If P(C) represents the power set of C, then, ϕ (the relation-
ship between R and P(C) obtained from the configuration
management log) is defined as following:

ϕ: R→ P(C)

Similarly, if P(P) represents the power set of the targeted
products P, then, IR (the relationship between require-
ments and the set of products that have the requirements)
and IC (the relationship between components and the set
of products that have the components) are defined by the
following:

IR: R→ P(P)

IC: C → P(P)

Finally, c (one of the components ϕ(r) linked to the require-
ment r) is defined by the following:

r ∈ R �→ ϕ(r) ⊂ C

c ∈ ϕ(r)

IR(r) is the set of products that have the requirement r. IC(c)
is the set of products that have the component c. Then, as a
result of the comparison between IR(r) and IC(c), traceabil-
ity links between r and c are classified into the following
five types. Figure 4 shows examples of when products X, Y
and Z are targeted.

Type1. IR(r) = IC(c)
e.g., IR(r) = IC(c) = {X,Y,Z}
The requirement and the component belong to the same
group of products.

Type2. IR(r) ⊃ IC(c)
e.g., IR(r) = {Y,Z}, IC(c) = {Y}
The set of products that have the component is a proper
subset of the set of products that have the requirement.

Type3. IR(r) ⊂ IC(c)
e.g., IR(r) = {Z}, IC(c) = {Y,Z}
The set of products that have the requirement is a
proper subset of the set of products that have the
component.

Type4. (IR(r) � IC(c)) ∧ (IR(r) � IC(c)) ∧
(IR(r) ∩ IC(c) � ∅)

Fig. 4 Types of traceability links.



TSUCHIYA et al.: RECOVERING TRACEABILITY LINKS BETWEEN REQUIREMENTS AND SOURCE CODE
857

e.g., IR(r) = {X,Z}, IC(c) = {X,Y}
Conditions of Type 1, 2 and 3 are not satisfied. How-
ever, the sets of products include common products. In
the example, X is common product.

Type5. (IR(r) ∩ IC(c) = ∅)
e.g., IR(r) = {Z}, IC(c) = {Y}
The sets of products include no common products.

3.7 Auto Refine of Traceability Links

In this step, we refine links using the classification described
in the previous step.

1) Recovery of traceability links between requirements and
functions
When a traceability link between a requirement and a
component is of Type 3, the requirement may link with
functions of the component. If the component has func-
tions whose results of the CVA are the same as those
of the requirement, these functions may link with the
requirement.

Figure 5 shows an example in three products
of CUnit {2.01, 2.10, 2.12}. The traceability link be-
tween the requirement “Lookup of individual suites
and tests,” which belongs to the product {2.12}, and
the component TestDB.c which belongs to the products
{2.01, 2.10, 2.12} is recovered by Step (5). These CVA
results are different, but the component TestDB.c has
functions that belong only to the product {2.12}. Some of
these functions may link with the requirement “Lookup
of individual suites and tests”. If links of Type 3 are
recovered, functions whose results of the CVA are the
same as those of the requirement are demonstrated to
users.

2) Suggestion of the presence of sub requirements
When a traceability link between the requirement and the
component is of Type 2, the granularity of the require-
ment may be large. Sub requirements whose results of
the CVA are the same as those of the component may
exist. However, we only suggest the presence of these
because we do not stratify requirements.

3) Elimination of false positives
Traceability links of Types 4 and 5 may be false positives
because the products to which the requirement and the
component belong are different. Therefore, these links
are removed from the results.

Fig. 5 Recovery of links between requirements and functions.

3.8 Manual Refine of Traceability Links

To check the validity of the links recovered, engineers re-
view the links as follows.

First, engineers look at the traceability matrix to see if
there are any requirements that link with a huge range of
components. If they find such a requirement, a keyword for
the requirement may be a word that is widely used in the
configuration management log. In this case, the engineers
must go back to Step (3) to review the keyword setting.

Next, for traceability links whose relationship is hard
to understand at a glance, engineers check their validity by
reviewing the revision messages from which they were re-
covered. If their validity is confirmed, the recovery of these
non-explicit traceability links is considered a success.

Finally, engineers identify traceability links between
requirements and functions using information obtained in
Step (6). In Fig. 5, functions that belong only to the prod-
uct {2.12} have been suggested to link with the requirement
“Lookup of individual suites and tests.” However, there is a
possibility that these functions have been suggested to link
with other requirements in the same way. Therefore, engi-
neers have to identify correct links from candidates obtained
in Step (6).

3.9 Application of Framework

3.9.1 Usage of Framework

When engineers would like to reduce the cost of mainte-
nance tasks (especially modifications for change request),
traceability recovery techniques including our framework
can help them. Traceability links are particularly required
in case that change requests for software occurs frequently
and continuously. If engineers didn’t ensure links in the de-
velopment phase, they have to apply the traceability recov-
ery techniques in the early phase of maintenance in order to
ease the later maintenance tasks.

However, it’s not sufficient to recover links only once.
Engineers have to manage traceability links continuously
because status of the links is changing with the passage of
time. If they continue to use the first recovered links, those
links may cause misleading.

Our framework can apply to the management of trace-
ability links because the configuration management log has
records of modification and addition of source code. For ex-
ample, when new requirements and components are added
or existing components are modified after recovering trace-
ability links, the configuration management log is updated.
If we recover links again using the latest log, we can reflect
the changes and update traceability links.

If engineers introduce SPLE to their product series,
CVA of existing assets is required in order to develop core
assets. Our framework cannot extract core assets that can
be used immediately. However, our framework can support
the extraction of reusable assets by CVA and the recovery of



858
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

traceability links between the assets.

3.9.2 Scope of Framework

Our framework targets the software products using the
configuration management log. When engineers would
like to recover traceability links, they cannot use methods
comparing representation between requirements and source
code if documents are written in their native language (not
English). However, if they have the configuration manage-
ment log written in their native language, they can apply our
framework to recover links. Industrial products developed
by companies often use documents written in their mother
tongue in the same manner as the network control system
used as a target of our evaluation experiments. Therefore,
approaches independent of the representation similarity, in-
cluding our framework, may contribute to the industry.

Applicable source code languages of our framework
conform to those of the code clone detection technique. The
current applicable languages of our tool are Java, C and
C++. However, by adding features, it’s possible to apply
the other languages supported by the code clone detection
tool (e.g., C#, Visual Basic and Cobol).

Regarding the variation realization techniques, our
framework is not applicable to some cases because we con-
duct CVA of code elements by comparing contents of func-
tions. When the contents are different between two same
name functions, our framework determines that they are dif-
ferent functions. However, our framework doesn’t consider
the difference of parameters and the presence of macro.
Therefore, even if parameters are different between func-
tions, we cannot distinguish between those functions that
have similar contents.

4. Evaluation

4.1 Overview

We carried out experiments targeting two groups of prod-
ucts, which are different in terms of their size and develop-
ment team. One is open source testing framework CUnit,
and the other is the network control system developed by a
company. Both targets are implemented in the C language.
We experimented with three versions of each target. Ta-
ble 1 shows the SLOC and number of requirements of each
version.

For CUnit, we extracted the requirements from the user
manual and recovered the traceability links between them
and the 9 components in CUnit. We evaluated the validity
of the results by comparing them with the links mentioned
in the user manual.

We extracted the requirements of the network control
system from its design documents of features. We targeted 5
modules that cover the basic features of the network control
system. A module is a group of components. Engineers pre-
viously prepared links between requirements and modules

Table 1 SLOC and number of requirements of our target systems.

Table 2 Recall and precision.

to evaluate the validity of our results. However, their granu-
larities were larger than those of the links recovered by our
method. After recovering links between requirements and
components, we linked these requirements with the mod-
ule that contains the corresponding components. This elim-
inated the difference in granularity. The SLOC in Table 1
represents the size of the five modules. The size of the en-
tire system is 1.4 ∼ 1.7 MLOC.

We used the log of SVN in both targets to obtain the
revision. CUnit had 156 revisions and the network control
system has 5727 revisions.

First, we recovered traceability links between require-
ments and components (or modules in the network control
system) by conducting Steps (1) ∼ (5).

With regard to the threshold of keyword appearance,
for CUnit, the threshold number was set to 1 because few
words are contained in revision messages. On the other
hand, for the network control system, we set three different
threshold numbers to study the relationship between key-
word appearance and accuracy of traceability links. The
thresholds were 1, 5 and 10.

Next, we confirmed the traceability links between re-
quirements and functions by conducting Step (6). Finally,
we looked for the non-explicit traceability links by con-
ducting Step (7). Engineers of the developer team con-
ducted the review for the network control system, but we
conducted the review ourselves for CUnit because CUnit is
open source software. For the automatic parts, we used our
tool implemented in Java and the code clone detection tool
CCFinderX [20].

4.2 Results

Table 2 shows the results of the recovery of traceability links
for each target. The second column, Thres (Threshold), con-
tains the threshold numbers of keyword appearance. The
third column, Rel (Relevant), contains the number of pre-
viously known traceability links that we used to evaluate
our method. The fourth column, Ret (Retrieved), contains
the number of traceability links retrieved by Step (5). The
fifth column, Rel ∩ Ret, gives the number of traceability
links that were both previously known and retrieved by Step



TSUCHIYA et al.: RECOVERING TRACEABILITY LINKS BETWEEN REQUIREMENTS AND SOURCE CODE
859

(5). Recall, Precision, and F-m (F-measure) are defined as
follows:

Recall =
Relevant ∩ Retrieved

Relevant

Precision =
Relevant ∩ Retrieved

Retrieved

F −measure = 2 · Precision · Recall
Precision + Recall

We present the accuracy of our method for recovering
known links in this section. In next sections, we show re-
sults for each target in terms of the recovery of links be-
tween requirements and functions, recovery of non-explicit
links, and the time taken to recover links. Here, we used the
results with the highest F-measure. (For the network control
system, the threshold number is 5.) However, we can also
apply Step (6) and Step (7) to the other cases.

4.2.1 CUnit

3 of the 27 links retrieved for CUnit by Step (5) were of
Type 3. These were links between requirements that be-
long to the product {2.12} and components that belong to the
products {2.01, 2.10, 2.12}. We extracted functions that be-
long to the product {2.12} from these components using our
tool, and found that some of these functions were mentioned
in the user manual as being related to the corresponding
requirements.

13 of the 27 links retrieved by Step (5) were not men-
tioned in the user manual. By reviewing the revision mes-
sages for these links, we determined that 5 of the links
were valid. These links were concerned with the compo-
nent MyMem.c, which manages the memory. Therefore,
MyMem.c links with requirements regarding adding, delet-
ing, and initializing tests. However, the relationship be-
tween MyMem.c and those requirements were not men-
tioned in the user manual. When we included these 5 links
to Relevant, Recall became 76.0%, Precision 70.4%, and F-
measure 0.731.

Regarding the time taken to recover links in CUnit,
most of our framework is automated, and the running time
of our tool was 1 minute 40 seconds. The semi-automated
parts of our framework (Steps (3) and (7)) took 30 minutes
each.

4.2.2 The Network Control System

3 of the 17 links retrieved by Step (5) were of Type 3. These
were links between requirements that belong to the prod-
ucts {3.02, 3.03} and components that belong to the products
{3.01, 3.02, 3.03}. We extracted functions that belong to the
products {3.02, 3.03} from these components using our tool,
and found that the identifiers of some of these functions used
the short form of the requirements.

6 of the 17 links retrieved by Step (5) were not men-
tioned by engineers. By reviewing revision messages, we
determined that 5 of the links were valid. When we included

these 5 links to Relevant, Recall became 76.2%, Precision
94.1%, and F-measure 0.842.

Regarding the time taken to recover links in the net-
work control system, the running time of our tool was 13
minutes 36 seconds. Step (3) took approximately 2 hours,
and Step (7) took approximately 1 hour.

4.3 Discussion

4.3.1 Research Questions

RQ1 How accurately can we recover candidate
traceability links semi-automatically?

For CUnit, Recall was 70.0%, and Precision was 51.9%.
For the network control system, Recall was 68.8%, and Pre-
cision was 64.7%.

With regard to false negatives, we failed to recover ap-
proximately 30% of known links. We have not been able
to recover traceability links involving components that have
not been modified in the period of the configuration man-
agement. For example, if a component that is reused from
past assets is not modified, only the record of adding it re-
mains. This will make it difficult for our framework to re-
cover traceability links involving this component. However,
traceability links of reusable past assets tend to be known to
engineers, so the engineers may recover these links easily.

With regard to Precision, it was high enough to judge
the validity of remain links (i.e., non-explicit traceability
links or false positives).
RQ2 Can non-explicit traceability links be manually

recovered from candidate links suggested by our
method?

In CUnit, 5 of 13 traceability links that were not mentioned
in the user manual were refined as non-explicit traceabil-
ity links. Consequently, Recall became 76.0%, and Preci-
sion became 70.4%. In the network control system, 5 of 6
traceability links that were not grasped by engineers were
refined as non-explicit traceability links. Consequently, Re-
call became 76.2%, and Precision became 94.1%. The re-
sults show that non-explicit traceability links can be suc-
cessfully recovered.

With regard to false positives, when the name of an as-
set treated by multiple requirements is set as the keyword
of these requirements, a revision message containing the
keyword will cause the components tied to the revision to
be linked with all of these requirements. If the same key-
word needs to be used for multiple requirements, the possi-
bility of the number of false positives increasing should be
considered.

In both targets, we could recover links between require-
ments and functions. This shows that using CVA is effective
in the recovery of links with functions.
RQ3 Can we recover traceability links within a rea-

sonable amount of time?
In CUnit, the automatic parts took 1 minute 40 seconds,
and the non-automatic parts took about 1 hour. In the net-
work control system, the automatic parts took 13 minutes 36



860
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

seconds, and the non-automatic parts took about 3 hours.
These results show that traceability links can be recovered
within a reasonable amount of time. Moreover, when we
applied our framework to 35 modules (200 KLOC) of the
network control system, the running time of our tool was 58
minutes 12 seconds.

4.3.2 Threshold of Keyword Appearance

For CUnit, we didn’t set the threshold number to over 2 be-
cause there were not any revisions including 2 or more key-
words. In the configuration management log of CUnit, most
of revisions have one line message. In the case that revision
messages have the small number of words, we have to set
the small threshold number.

For the network control system, we set three differ-
ent thresholds. Table 2 shows the relationship between the
threshold and the accuracy. In the case of the small thresh-
old, Recall is high. On the other hand, in the case of the
large threshold, Precision is high. Therefore, users need to
adjust the threshold number in accordance with the purpose.
If users put emphasis on completeness, they should set a
small threshold. If they give priority to correctness, they
should use a large threshold.

4.3.3 Scalability of Framework

The number of components is small in our experiments.
When we selected targets of experiments, there were some
conditions. The target needs to have some versions with
the configuration management log (The scope of our frame-
work). And, the information of previously known traceabil-
ity links is required in order to evaluate the accuracy. Ex-
cept for CUnit, we could not find products satisfying the
conditions from open source software. On the other hand,
we prepared the previously known traceability links for only
five modules in the network control system because of engi-
neer’s time constraints.

If we apply our framework to products including more
components, the time cost and the accuracy of recovery are
influenced. The time taken in automatic parts of our frame-
work will increase because the code clone detection is con-
ducted as many times as the number of combinations be-
tween code elements. And, the manual refine of links be-
comes difficult with increasing the number of components.
Therefore, it increases not only cost but also misjudgment
of users. As a result, the accuracy of recovery will decrease.

However, the execution of recovering all links is not
repeated frequently. Therefore, the automated process of
our framework doesn’t have to finish recovering links of the
large product in a few minutes. Regarding the manual pro-
cess, in the use case in which users want to recover links
of the specific requirements or components, the time cost of
our framework may be allowable.

4.3.4 Qualitative Comparison with Previous Methods

Most of previous methods compare the representation be-
tween requirements and source code to recover links. There-
fore, these methods are not effective for software using a
non-English language. If we apply these methods to the
network control system (using Japanese), the accuracy of
recovery would be inferior to our framework.

On the other hand, in CUnit, there are many words
shared between requirements and source code. So, previ-
ous methods can recover links with higher accuracy than
our framework. However, our framework has the ability re-
covering non-explicit traceability links which may be over-
looked by previous methods.

In countries of non-English speaking, the documents
are often written in their native languages. Therefore, our
framework is effective for software developed in those coun-
tries. On the other hand, many of the open source software
projects have the configuration management log including
low quality log messages in comparison with commercial
products. Our framework is not effective for such software.

Previous methods and our framework have the
strengths and weaknesses respectively. Therefore, we
should selectively use them depending on the situation.
And, we would like to combine our framework and previous
methods to improve the accuracy and the applicable scope.

4.4 Limitations

4.4.1 Dependence of Log Messages

Our frame work is highly dependent on the quality of log
messages. If engineers do not record detailed information
about modifications in log messages, our framework cannot
work well. For example, if a revision only contains “Fix” in
the log message, our framework cannot use such a revision
to recover links. As in Fig. 1, at least one meaningful phrase
is required for each revision.

4.4.2 Threats to Validity

We manually set the keywords for each requirement and em-
pirically got the trends of unsuitable or effective keywords.
This may have affected the accuracy and costs of our eval-
uation, and is a threat to internal validity. In the future, we
should confirm the influence of having multiple people set
keywords on accuracy and costs.

The two targets we used are different in terms of soft-
ware domain and the development organization. These
factors should not significantly affect the validity of our
framework.

In our evaluation, Relevant consisted of links known
in advance and correct links recovered by our framework.
However, there should be some links that were not known
and could not be recovered. Therefore, if we include these
links to Relevant, Recall may become lower. We should



TSUCHIYA et al.: RECOVERING TRACEABILITY LINKS BETWEEN REQUIREMENTS AND SOURCE CODE
861

conduct experiments using benchmarks in order to evaluate
our framework more accurately.

5. Related Work

5.1 Traceability Issues and Benefits

Arkley et al. have conducted a survey of nine software
projects using questionnaires and interviews [2]. They have
identified three issues related to traceability: the usability of
tools and the necessity of additional input data; a lack of un-
derstanding on how to employ the traceability information;
and a lack of perception of direct benefits to the main devel-
opment process. Researchers in the traceability field should
aim to overcome these issues. Traceability recovery tools,
including our tool, have not been able to completely over-
come the issue of usability. We should reduce the manual
process and additional input data in the future.

Mäder et al. have conducted a controlled experiment
with 52 subjects performing real maintenance tasks on two
third-party development projects: half of the tasks with and
the other half without traceability [4]. Through the exper-
iment, they have shown that subjects with traceability per-
formed on average 21% faster on a task and created on av-
erage 60% more correct solutions. This empirical study has
affirmed the usefulness of requirements traceability. In or-
der to maximize traceability benefits, the cost of recovering
and maintaining traceability links should be reduced. We
believe that studies of traceability recovery, including our
study, address this important issue.

5.2 Traceability Recovery

Antoniol et al. have proposed a method to recover traceabil-
ity links between code and documentation using informa-
tion retrieval technologies, such as the probabilistic model
and the vector space model [12]. They compare the identi-
fier in source codes with the words in documents to recover
links. In contrast, we recover links using the configuration
management log. Our framework can recover links even if
the identifier in source codes and the words in documents
are different.

Marcus et al. have proposed a method to recover links
between documentation and source code using latent seman-
tic indexing (LSI) [13]. They measure the similarity of latent
semantic between documentation and source code to recover
links, which significantly decreases the dependency on the
similarity of representation. However, LSI cannot deal with
linguistic differences. They use the comments and identi-
fier names within the source code. Hence, they require that
the same language be used in the documentation and source
code in order for their method to work well.

Dagenais et al. have proposed a method to recover
traceability links between an API and learning resources by
using code-like terms in documents and analyzing their con-
texts [14]. Our framework does not require code-like terms
in documents because it uses the configuration management

log to recover links.
There are additional studies that have compared the

representation between requirements and source code to re-
cover links [15], [16]. Our framework is intended to cover
the weakness of their methods rather than to be upward-
compatible with them. Our method does not depend on
the representation, but it may be inferior to their methods
for targets in which there is little difference in the repre-
sentation between requirements and code. So the complete-
ness and correctness of the traceability link recovery may
be improved by combining our framework with previous
methods.

Kaiya et al. have proposed a method to find change im-
pacts on source codes caused by requirements changes [17].
They use documents written in Japanese, and identify re-
quirements from Japanese sentences and implementation
points from English sentences. In our method, we use the
configuration management log. In the log, requirements and
implementation points are distinguished as messages and
file paths, so our framework does not depend on the lan-
guage of targets.

6. Conclusion and Future Work

We have proposed a framework that includes the process to
recover traceability links between requirements and source
code. We have recovered links using the configuration man-
agement log, and have refined the links by applying CVA
and having engineers review them. Moreover, we have ap-
plied the framework to actual products that have more than
60KLOC, and have confirmed its validity. Our framework
enables cost reduction of the recovery of traceability links,
and the recovery of non-explicit traceability links. Recover-
ing traceability links may increase the reusability and main-
tainability of software. For future work, we will consider the
hierarchical structure of requirements and code elements,
and aim to improve our methods for keyword setting and
refining links. And, we should conduct comparison exper-
iments with previous methods in order to argue that our
framework can cover the weakness of previous methods.

Acknowledgments

We thank Kentaro Kumaki for providing a prototype tool of
the CVA of requirements.

References

[1] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M. Kawakami,
and K. Yoshimura, “Recovering traceability links between require-
ments and source code in the same series of software products,”
17th International Software Product Line Conference (SPLC’13),
pp.121–130, 2013.

[2] P. Arkley and S. Riddle, “Overcoming the traceability benefit prob-
lem,” 13th IEEE International Conference on Requirements Engi-
neering (RE’05), pp.385–389, 2005.

[3] R. Pooley and C. Warren, “Reuse through requirements traceability,”
3rd International Conference on Software Engineering Advances
(ICSEA’08), pp.65–70, 2008.



862
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

[4] P. Mäder and A. Egyed, “Assessing the effect of requirements trace-
ability for software maintenance,” the 28th IEEE International Con-
ference on Software Maintenance (ICSM’12), pp.171–180, 2012.

[5] K.C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line
engineering,” IEEE Softw., vol.19, no.4, pp.58–65, 2002.

[6] W. Jirapanthong and A. Zisman, “Supporting product line develop-
ment through traceability,” the 12th Asia-Pacific IEEE Software En-
gineering Conference (APSEC’05), pp.506–514, 2005.

[7] S.A. Ajila and A.B. Kaba, “Using traceability mechanisms to sup-
port software product line evolution,” the IEEE International Con-
ference on Information Reuse and Integration (IRI’04), pp.157–162,
2004.

[8] S. Mohalik, S. Ramesh, J.V. Millo, S.N. Krishna, and G.K. Narwane,
“Tracing SPLs precisely and efficiently,” the 16th International Soft-
ware Product Line Conference (SPLC’12), vol.2, pp.186–195, 2012.

[9] K. Kumaki, R. Tsuchiya, H. Washizaki, and Y. Fukazawa, “Support-
ing commonality and variability analysis of requirements and struc-
tural models,” MAPLE 2012, SPLC’12, vol.2, pp.115–118, 2012.

[10] G. Salton and M.J. McGill, Introduction to modern information re-
trieval, McGraw-Hill, New York, 1983.

[11] K. Yoshimura, D. Ganesan, and D. Muthig, “Defining a strategy to
introduce a software product line using existing embedded systems,”
Proc. 6th ACM & IEEE International conference on Embedded Soft-
ware (EMSOFT ’06), pp.63–72, 2006.

[12] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Softw. Eng., vol.28, no.10, pp.970–983, 2002.

[13] A. Marcus and J.I. Maletic, “Recovering documentation to source
code traceability links using latent semantic indexing,” the 25th
International Conference on Software Engineering (ICSE’03),
pp.125–135, 2003.

[14] B. Dagenais and M.P. Robillard, “Recovering traceability links be-
tween an API and its learning resources,” the 34th International Con-
ference on Software Engineering (ICSE’12), pp.47–57, 2012.

[15] X. Chen, “Extraction and visualization of traceability relationships
between documents and source code,” the 25th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp.505–
510, 2010.

[16] A. De Lucia, R. Oliveto, and G. Tortora, “ADAMS re-trace: Trace-
ability link recovery via latent semantic indexing,” the 30th Interna-
tional Conference on Software Engineering (ICSE’08), pp.839–842,
2008.

[17] H. Kaiya, A. Osada, K. Hara, and K. Kaijiri, “Design, implementa-
tion and evaluation of a system for finding change impacts on source
codes caused by requirements changes,” IEICE Trans. Inf. & Syst.
(Japanese Edition), vol.J93-D, no.10, pp.1822–1835, Oct. 2010.

[18] CUnit, http://sourceforge.net/projects/cunit/
[19] Apache Subversion, http://subversion.apache.org/
[20] CCFinderX, http://www.ccfinder.net/

Ryosuke Tsuchiya received the B.E. de-
gree in Information and Computer Science from
Waseda University, Tokyo, Japan in 2013. He
is now a master course student of Depart-
ment of Information and Computer Science,
Waseda University. His research interests in-
clude software engineering especially software
traceability.

Hironori Washizaki is an associate pro-
fessor at Waseda University, Tokyo, Japan. He
is also a visiting associate professor at National
Institute of Informatics, Tokyo, Japan. He ob-
tained his Doctor’s degree in Information and
Computer Science from Waseda University in
2003. His research interests include software
reuse, patterns and quality assurance. He has
served as members of program committee for
many international conferences including ASE,
SEKE, PROFES, APSEC and PLoP. He has also

served as members of editorial board for several journals including Journal
of Information Processing.

Yoshiaki Fukazawa received the B.E., M.E.
and D.E. degrees in electrical engineering from
Waseda University, Tokyo, Japan in 1976, 1978
and 1986, respectively. He is now a professor of
Department of Information and Computer Sci-
ence, Waseda University. Also he is Director,
Institute of Open Source Software, Waseda Uni-
versity. His research interests include software
engineering especially reuse of object-oriented
software and agent-based software.

Tadahisa Kato received the B.S. and M.S.
degrees in mathematics from Tokyo Institute
of Technology, Tokyo, Japan, in 2003, 2005.
He is currently a researcher at Yokohama Re-
search Laboratory, Hitachi Ltd, Japan. He is
working on research of software development
methods and applying these methods to actual
product development. His research interests in-
clude software product line, model-based devel-
opment and formal method.

Masumi Kawakami received the B.E. and
M.E. degrees in knowledge-based information
engineering from Toyohashi University of Tech-
nology, Aichi, Japan, in 1998. He is currently a
senior researcher at Yokohama Research Labo-
ratory, Hiatachi Ltd, Japan. He is working on
research of software development method and
applying these method to actual product devel-
opment. His research interests include model-
based development, software product line and
test automation.

Kentaro Yoshimura is a Senior Researcher
of Hitachi Research Laboratory at Hitachi, Ltd.
Yoshimura received his Ph.D. degree in Infor-
mation Science and Technology from Osaka
University in 2009. His research interests are
centered on software product line engineering
and legacy software system analysis.


