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PAPER

MVP-Cache: A Multi-Banked Cache Memory for Energy-Efficient
Vector Processing of Multimedia Applications

Ye GAO†a), Masayuki SATO†,††b), Nonmembers, Ryusuke EGAWA†,††c), Hiroyuki TAKIZAWA†††,††d),
and Hiroaki KOBAYASHI†,††e), Members

SUMMARY Vector processors have significant advantages for next
generation multimedia applications (MMAs). One of the advantages is that
vector processors can achieve high data transfer performance by using a
high bandwidth memory sub-system, resulting in a high sustained com-
puting performance. However, the high bandwidth memory sub-system
usually leads to enormous costs in terms of chip area, power and energy
consumption. These costs are too expensive for commodity computer sys-
tems, which are the main execution platform of MMAs. This paper pro-
poses a new multi-banked cache memory for commodity computer systems
called MVP-cache in order to expand the potential of vector architectures
on MMAs. Unlike conventional multi-banked cache memories, which em-
ploy one tag array and one data array in a sub-cache, MVP-cache associates
one tag array with multiple independent data arrays of small-sized cache
lines. In this way, MVP-cache realizes less static power consumption on
its tag arrays. MVP-cache can also achieve high efficiency on short vector
data transfers because the flexibility of data transfers can be improved by
independently controlling the data transfers of each data array.
key words: vector architecture, multimedia application, multi-banked
cache memory

1. Introduction

Media processors are required to achieve a higher perfor-
mance because their target applications, multimedia appli-
cations (MMAs), will process an unprecedented amount of
data in the future in order to improve the quality of media
services. For example, a next generation video application,
8K video, needs to process 64×more data than current stan-
dard definition videos [1], and a 3D computer vision appli-
cation for super resolution images [2] needs to process 25 to
200× more data than current ones.

In order to efficiently process the large amount of me-
dia data, the vector architecture [3] becomes one of the best
candidates for the design of high performance media proces-
sors. This is because the vector architecture could efficiently
compute and transfer the large amount of media data by ex-

Manuscript received July 3, 2014.
Manuscript publicized August 22, 2014.
†The authors are with Cyberscience Center, Tohoku University,

Sendai-shi, 980–8578 Japan.
††The authors are with JST CREST, Kawaguchi-shi, 332–0012

Japan.
†††The author is with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8578 Japan.
a) E-mail: gaoye@sc.isc.tohoku.ac.jp
b) E-mail: masayuki@sc.isc.tohoku.ac.jp
c) E-mail: egawa@isc.tohoku.ac.jp
d) E-mail: tacky@isc.tohoku.ac.jp
e) E-mail: koba@isc.tohoku.ac.jp

DOI: 10.1587/transinf.2014EDP7227

ploiting data level parallelism involved in MMAs. MMAs
usually contain packs of independent data that have the same
operations, which can be processed in parallel [4]. The pack
is called a vector, and the number of elements in a vector
is called vector length in this paper. The vector architecture
can process each vector by one instruction, and thus their
hardware resources such as parallelized functional units and
cache ports can be kept busy as continuously as possible. As
a result, the vector architecture can potentially achieve high
computing performance for MMAs.

Modern vector architectures usually employ a multi-
banked cache memory in order to improve their data transfer
performance [5]–[8]. The memory subsystem with multi-
banked cache memory can provide data to parallelized func-
tional units at a sufficient transfer rate. Therefore, the
vector architectures could achieve high sustained computa-
tional performance. Since some previous researches have
shown that MMAs have high data reusability [9], [10], the
multi-banked cache memories also have a high potential for
MMAs.

However, conventional multi-banked cache memories
of vector processors cannot satisfy the design requirements
of MMAs. There are at least two requirements that should
be considered when designing a multi-banked cache mem-
ory for MMAs. One is that the multi-banked cache memory
should efficiently transfer vectors of various lengths because
MMAs contains not only long vectors but also short vectors.
The other is that the multi-banked cache memory should
achieve low energy consumption. This is because, as the
main execution environment of MMAs, commodity com-
puter systems cannot invest so much energy consumption
for a cache memory. However, conventional multi-banked
cache memories of vector processors cannot satisfy both of
the requirements at the same time. They either have low
data transfer performance for short vectors or cost high en-
ergy consumption. Therefore, a multi-banked cache mem-
ory needs to improve its data transfer performance for short
vectors at low energy consumption.

To this end, this paper proposes a multi-banked cache
memory for vector processors called MVP-cache. Unlike
conventional multi-banked cache memories that consist of
one data array and one tag array in each bank, MVP-cache
associates one tag array with multiple independent data ar-
rays of small-sized cache lines. In this way, MVP-cache
could reduce its energy consumption by decreasing the num-
ber of tag arrays. At the same time, MVP-cache can also
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achieve high performance on short vector data transfers be-
cause the flexibility of data transfers could be improved so
that all the data arrays can fully utilize their bandwidth for
transferring short vectors.

The rest of the paper is organized as follows. Section 2
clarifies the challenges for designing a multi-banked cache
memory for MMAs. Section 3 describes the details of MVP-
cache, and Sect. 4 evaluates the performance of MVP-cache.
Section 5 gives the conclusions of this paper.

2. Challenges for Designing a Multi-Banked Cache
Memory for MMAs

This section aims to clarify the drawbacks of conventional
multi-banked cache memories in order to show challenges
for designing a multi-banked cache memory for MMAs.

Multi-banked cache memories have a high potential to
improve data transfer performance. A multi-banked cache
memory typically consists of multiple independent cache
banks, called sub-caches, and each sub-cache is connected
to cache ports of the vector unit via interconnection fabric.
The vector unit is the hardware unit that is in charge of vec-
tor processing in the vector architecture. When a cache hit
occurs, data can be simultaneously transferred from/to mul-
tiple independent sub-caches. In this way, the data transfer
performance could be improved in comparison with a sin-
gle bank cache memory. Although the multi-banked cache
memories bring additional energy consumption for vector
processors, it is smaller than the energy saving induced by
reducing the number of off-chip memory accesses.

Conventional multi-banked cache memories can be
classified into the multi-banked cache memories with large
cache lines (MBC-L) [11] and with small cache lines (MBC-
S) [7]. In this paper, a multi-banked cache memory is clas-
sified into MBC-S if its cache line size is 8 bytes or smaller,
otherwise it is classified into MBC-L. The borderline be-
tween MBC-S and MBC-L is set at 8 bytes because it is
the size of one double-precision floating-point data, which
is one of the most common data type for vector processors.

2.1 MBC-L

MBC-L allocates several data elements with consecutive ad-
dresses in the same sub-cache. Let V be a vector of eight
double-precision floating-point elements. Then, Fig. 1 (a)
shows an example of MBC-L and the data layout of V . In
this example, there are four sub-caches, and each of them
can transfer 64-bit data per cycle. The cache line size of this
MBC-L is assumed to be 32 bytes. In this case, since each
cache line can store four elements, the consecutive elements
V[0] to V[3] are stored in sub-cache0, and elements V[4] to
V[7] are stored in sub-cache1.

The drawback of MBC-L is that MMAs with short vec-
tors cannot make a good use of its high cache bandwidth.
Figure 1 (a) illustrates the drawback of using MBC-L for
MMAs with short vectors. The vector V only has eight el-
ements. Those eight elements are stored in the cache lines

(a) MBC-L.

(b) MBC-S.

(c) MVP-cache.

Fig. 1 Short vector data transfer in MBC-L, MBC-S and MVP-cache.

of sub-cache0 and sub-cache1, and there are no data stored
in the cache lines of sub-cache2 and sub-cache3. There-
fore, the data can be only transferred from sub-cache0 and
sub-cache1 in parallel. Since two of four sub-caches are un-
derutilized, the sustained bandwidth only reaches half of the
peak bandwidth.

In practical uses, the underutilization of sub-caches
due to short vectors will be more serious than the exam-
ple in Fig. 1 (a), where V is assumed to be a vector of
double-precision floating-point values. In a realistic situa-
tion, single-precision floating-point values or integer values
are also commonly used in MMAs. Since the size of these
data is smaller than that of double-precision floating-point
values, the number of vector elements that are stored to-
gether in one sub-cache increases. This leads to even lower
utilization than that in the case of double-precision floating-
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point values. Moreover, to obtain a high cache bandwidth,
a large number of sub-caches would be employed. Espasa
et al. [7] have proposed an MBC-L for a vector ISA exten-
sion. Their MBC-L adopts 16 sub-caches and the cache line
size of each sub-cache is 64 bytes, which is the size of eight
double-precision floating-point elements. This configura-
tion means that, if the length of a double-precision floating-
point vector is shorter than 128, its data transfer potential
would be underutilized.

2.2 MBC-S

In contrast to MBC-L, MBC-S is able to efficiently trans-
fer short vector data. Figure 1 (b) illustrates a data layout
in the case of MBC-S with 8-byte cache lines. Since each
cache line of MBC-S can only store one double-precision
floating-point data, the consecutive elements V[0] to V[3]
are dispersed in sub-cache0 to sub-cache3, respectively. By
making full use the sub-caches, MBC-S is able to transfer
short vector data at a high bandwidth.

On the other hand, MBC-S consumes more energy con-
sumption than MBC-L because the tag array size of MBC-
S is larger than that of MBC-L if they have the same ca-
pacity. MBC-S has to employ larger tag arrays because
its small-sized cache lines lead to a large number of cache
sets. Therefore, the reduction in energy consumption of
tag arrays should be considered when designing a multi-
banked cache memory for MMAs. Although our previous
research [12] has proposed several techniques to reduce the
energy consumption of cache memories, it only reduces the
energy consumption of data arrays.

2.3 Related Work

Espasa et al. have proposed an out-of-order vector architec-
ture [13] and have applied it to Tarantula [7], a vector ex-
tension to the Alpha processor. The cache mechanism of
Tarantula, which is categorized into MBC-L, employs 16
sub-caches and an address re-ordering algorithm [14] to re-
duce the bank conflictions. However, performance degrada-
tion of MMAs with short vectors could occur due to ineffi-
cient short vector transfers of MBC-L.

Batten et al. have noted that not only the access latency
of memory sub-systems but also their bandwidth is very im-
portant to improve the application performance [8]. They
have proposed an inexpensive non-blocking cache memory
for vector architectures to improve the bandwidth and re-
duce the access latency of memory sub-systems. Musa et al.
have designed a vector cache for vector architectures [11].
The vector cache introduces a bypass mechanism and miss
status handling registers to improve the sustain memory
bandwidth to next generation vector supercomputers. How-
ever, both of the two proposals adopt MBC-S and cause high
energy consumption in the tag arrays.

To sum up the above discussion, when considering the
design of a media-oriented processor for commodity com-
puter systems, neither MBC-L nor MBC-S can satisfy re-

quirements of high data transfer performance at low en-
ergy consumption. MBC-L cannot transfer short vectors
efficiently, and MBC-S consumes a large energy on tag ar-
rays. Therefore, a new organization of a multi-banked cache
memory is needed to overcome the drawbacks of MBC-L
and MBC-S.

3. MVP-Cache

3.1 Key Idea and Potential of MVP-Cache

MVP-cache aims to achieve high data transfer performance
for short vectors at low energy consumption. Essentially,
MBC-L consumes low energy on tag arrays because it as-
sociates one cache tag with a large-sized cache line. Mean-
while, MBC-S is efficient on short vector data transfer be-
cause consecutive vector elements are dispersed across dif-
ferent sub-caches due to the small-sized cache line. There-
fore, in order to obtain the advantages of both MBC-L and
MBC-S, MVP-cache associates one tag array with multiple
independent data arrays that employ the small-sized cache
lines. As a result, MVP-cache could reduce the size of tag
arrays compared with MBC-S. At the same time, the inde-
pendent small-sized cache lines of MVP-cache make it pos-
sible to tolerate even shorter vectors than MBC-L. There-
fore, MVP-cache could potentially satisfy the requirements
of high data transfer performance for short vectors at low
energy consumption.

Figure 1 (c) shows the organization of MVP-cache. It is
assumed that MVP-cache has the same capacity as MBC-L
and MBC-S shown in Figs. 1 (a) and 1 (b), respectively. It is
also supposed that MVP-cache associates one tag array with
four data arrays, each of which adopts 8-byte cache lines.
Compared with MBC-S, the size of tag array of MVP-cache
is one-fourth of that of MBC-S because MBC-S associates
one tag array with one data array.

Moreover, Fig. 1 (c) also shows the data layout in
MVP-cache. The consecutive elements V[0] to V[3] can be
dispersed in the different independent data arrays because
each cache line in data arrays can only store one double-
precision floating-point element. In this way, MVP-cache
could transfer short vectors by fully using the bandwidth,
while MBC-L can only use a half of the bandwidth as men-
tioned in Sect. 2.1. Therefore, MVP-cache is potentially
more efficient for MMAs with short vectors than MBC-L.

3.2 Organization of MVP-Cache

Figure 2 shows a block diagram of MVP-cache. As men-
tioned in Sect. 3.1, MVP-cache associates one tag array with
multiple data arrays consisting of small-sized cache lines in
a sub-cache. Each of data arrays adopts the cache line size
of 8 bytes, which is the size of a double-precision floating-
point value, and is independently connected to cache ports
of the vector unit via a crossbar. The cache lines that are
associated with the same tag act as an atomic unit of data
management and miss handling. If a cache hit occurs, cache
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Fig. 2 Block diagram of MVP-cache.

lines that are associated with the same cache tag will be
transferred.

Unlike conventional cache memories, MVP-cache as-
sociates one cache tag with multiple cache lines, which are
located in different data arrays. However, sometimes not all
these cache lines are required to transfer their data, such as
in the situations of unaligned data accesses, stride accesses
and indexed memory accesses. Therefore, it is necessary
to ascertain which cache lines are required. MVP-cache
realizes such a kind of control by adding a new field in a
cache request, called Mask Bits. If a mask bit is set to one,
the cache line should be transferred from the corresponding
data array to the vector unit, otherwise the data transfer is
disabled. In this way, MVP-cache avoids transferring the
unnecessary data and improves its energy efficiency.

3.3 Data Transfer Control Information of MVP-Cache

In order to control the data transfer of MVP-cache, its cache
controller needs some cache access information including
Request Info, Address Info and Mask Bits. Request info
stores information of the cache port IDs requested by a
cache access. Address Info is the target address of the cache
access. Mask Bits own the hints that which data arrays in
a sub-cache should carry out data transfers. Address Info is
used to judge if a cache access hits or misses, while Request
Info and Mask Bits are used by the crossbar allocator to gen-
erate the connections between MVP-cache and cache ports
of the vector unit.

The cache access information is generated according
to memory addresses and stored in the data request queues.
Steps to generate Request Info, Address Info and Mask Bits
are shown in Fig. 3 and described as follows.

Step 1 Generate the memory addresses accessed by a vec-
tor load/store instruction, and determine the cache port
IDs used for the accesses. Each memory address
contains fields of cache tag, set ID, sub-cache
ID, data array ID and bytes in a cache line.
These fields can be obtained by using logical SHIFT
and bit-wise AND operations. For example, a data ar-

Fig. 3 Generation of Request Info, Address Info and Mask Bits.

ray ID can be obtained as follows. Suppose that the
number of data arrays in each sub-cache is 2N . The
logical SHIFT operation is used to remove the least
significant three bits because the cache line size is 8
bytes. Then, the bit-wise AND operation is used to re-
trieve the least significant N bits from the shifted value
that is the data array ID of a given memory address.
The other fields can also be calculated from a memory
address.

Step 2 Decode data array IDs to set mask bits. If the
data array ID of a memory access is n, the n th
mask bit should be set as one, because the data array
ID means that the specified data array owns the data
that should be transferred.

Step 3 Check whether there are the same memory ad-
dresses in the generated addresses. The cache tag,
set ID and sub-cache ID of all access addresses are
compared each other. If they are the same, it means that
they would access the same set of the data arrays in the
same sub-cache.

Step 4 If there are the same memory addresses, their cache
port IDs, memory addresses, and mask bits are
merged to generate Request Info, Address Info, and
Mask Bits, respectively. For Mask Bits, they are merged
by using the bit-wise OR operation with the other mask
bits. For cache port IDs, they are merged by using
logical SHIFT and bit-wise AND operations to hold the
whole information.

Step5 Dispatch the final results to the corresponding re-
quest queues according to the Sub-cache ID.

The MVP-cache controls data transfers by using mask
bits. This means that MVP-cache requires more compli-
cated control than MBC-S and MBC-L. The complicated
control potentially leads to a longer cache access latency
and a larger area of control logics. Regarding the longer
access latency, it has been shown in [15] that the long ac-
cess latency of MVP-cache could be effectively hidden by
using the out-of-order vector processing mechanism. More-
over, regarding the area of control logics, the overhead is
extremely small. The additional hardware of MVP-cache on
control logics is for the buffer to store the mask bit. We sup-
pose that the buffer contains 128 entries, which corresponds
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to entries of the vector memory instruction buffer. We also
suppose that the number of data arrays is 128, which is the
maximum number used in the evaluation. Since the number
of mask bits equals the number of data array, the buffer size
equals 2KB (128 bits × 128 entries). Compared with 4MB
cache capacity used in the evaluation, the buffer only takes
0.05% extra area.

3.4 MVP-Cache Crossbar Allocator

The MVP-cache controller adopts an n×m allocator to con-
trol the crossbar, where n is the number of data arrays of
all sub-caches, and m is the number of cache ports. The
base design of the allocator and crossbar is described in
[16], [17]. The input of the allocator is a request matrix
R = (ri, j)n×m, where the element ri, j = 1 means that data
array i needs to use cache port j. The output of the al-
locator is a grant matrix G = (gi, j)n×m, where the element
gi, j = 1 means that data array i is allowed to use cache port
j. G = (gi, j)n×m is used to configure the crossbar of MVP-
cache.

MVP-cache uses Mask Bits to control which data array
transfers the data to the vector unit. Therefore, it is also
necessary to design an algorithm that generates the request
matrix R = (ri, j)n×m with the concern of Mask Bits. The
algorithm is shown in Algorithm 1. The globalMaskBit[i]
and globalRequestIn f o[i] mean the Mask Bits and Request
Info of all sub-caches, respectively. They are generated by
combining the local Mask Bits and Request Info of each sub-
caches together. By using Algorithm 1, Mask Bits can be
used to control data transfers that are really necessary for
the vector unit as mentioned in Sect. 3.2.

3.5 Tag Array Conflicts of MVP-Cache

A situation of memory accesses to the different sets in the
same sub-cache is called a tag array conflict in this paper.
The tag array conflicts lead to performance degradation be-
cause a sub-cache can judge a cache hit or miss only once
per cycle. Tag array conflicts frequently occur in the case
of stride accesses. The stride access is a kind of accesses
to every k-th vector element, where k should be bigger than
two. For example, the accesses to V(0), V(2), V(4) . . . are
a stride access whose stride length is two. A longer stride

Algorithm 1 Generation of Request Matrix R = (ri, j)n×m

Using Mask Bits and Request Info
1: for i = 0→ n − 1 do
2: for j = 0→ m − 1 do
3: if globalMaskBit[i] == 1 and j == globalRequestIn f o[i]

then
4: r[i][ j]← 1
5: else
6: r[i][ j]← 0
7: end if
8: end for
9: end for

length may increase the probability that vector elements to
be accessed are located in the different sets in the same sub-
cache. Therefore, the longer the stride length is, the more
tag array conflicts occur.

In this paper, we tune two parameters of MVP-cache
in order to reduce the tag array conflicts in stride accesses.
One is the numbers of sub-caches. The other is the num-
bers of data arrays in one sub-cache. Increasing the num-
ber of sub-caches leads to a higher probability that memory
accesses are dispersed across different sub-caches, while in-
creasing the number of data arrays increases the probability
that memory accesses are concentrated on the same set in
the same sub-cache. However, the increase in the numbers
of data arrays or sub-caches also brings extra energy con-
sumption. A large number of data arrays would lead to high
power consumption on the crossbar between data arrays and
cache ports of the vector unit. Meanwhile, increasing the
number of sub-caches would lead to high the energy con-
sumption of tag arrays. Therefore, this paper evaluates var-
ious combinations of the numbers of data arrays and sub-
caches in order to find an energy-efficient configuration of
MVP-cache for MMAs.

4. Performance Evaluations

4.1 Experimental Methodology

In order to evaluate MVP-cache, a simulator of the vector
processor shown in Fig. 4 is developed based on the Simple-
Scalar toolset [18]. The original SimpleScalar is used for
the scalar unit of the vector processor. In addition, an out-
of-order vector processing mechanism (OVPM) and MVP-
cache are implemented in SimpleScalar. OVPM has been
proposed in [15] to efficiently process short vectors and hide
the long access latency of MVP-cache. During the execu-
tion, if a vector instruction is identified in the decode stage,
it is dispatched to the vector memory instruction buffer or
the vector arithmetic instruction buffer. The vector instruc-
tions in the two instruction buffers are passed to the corre-
sponding vector issue queues as long as their operands are

Fig. 4 Baseline processor used in the evaluation.
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Table 1 Configuration of MVP and memory sub-system.

Parameters Value
Process Technology 32 nm
Processor Frequency 1GHz

Vector ALU Pipeline Latency 10 cycles
Vector Multiplier Pipeline Latency 15 cycles
Vector Division Pipeline Latency 20 cycles

Number of Vector Lanes 8
Number of Architectural Vector Registers 16

Number of Physical Vector Registers 96
Entries per Vector Register 128 entries

The size of VMIB and VAIB 128 entries
The size of Vector Load and Store Queue 512 entries

Number of Cache Ports 8

Cache Capacity 4 MB
Cache Bandwidth 64 bytes/cycle

Cache Line Size of MVP-cache 8 bytes
MVP-cache Access Latency 20 cycles

Number of Sub-caches 4
Number of Data Arrays in a Sub-cache 8

Memory Bandwidth 32 bytes/cycle
Main Memory Latency 100 cycles

Cache Line Size of MBC-S 8 bytes
Cache Line Size of MBC-L 64 bytes

MBC-L Access Latency 10 cycles
MBC-S Access Latency 10 cycles

Number of Sub-caches of MBC-S and MBC-L 32

ready. In the vector memory issue queue, the instructions
wait for the availability of the vector load and store unit,
which consists of an address generation unit, cache ports,
and request queues. If the vector load and store unit be-
comes available, a vector memory instruction is issued to
the unit to generate the memory address and access MVP-
cache. At last, the instruction is passed to the commit unit
and waits to be committed. Therefore, the decode function,
issue function, writeback function and commit function of
SimpleScalar are extended to process vector instructions as
mentioned above.

McPAT0.8 [19] and CACTI6.5 [20] are also used to
evaluate the energy consumption of MVP-cache. The
OVPM specification of MVP-cache MBC-S, and MBC-L
are listed in Table 1. The cache line sizes of MVP-cache,
MBC-S, and MBC-L are 8 bytes, 8 bytes and 64 bytes,
respectively. To fairly compare performances of the three
kinds of cache memories, their cache capacities and cache
bandwidths are set to the same values. All the three multi-
banked memories support the interleaved memory accesses
to hide the access latencies and avoid bank conflicts.

Nine multimedia benchmark programs in Table 2 are
used to evaluate MVP-cache. The benchmark programs of
clip, fft and power are three hot kernels of the 3-D computer
vision algorithm for super resolution images [2]. M×M and
V×M are programs of matrix multiplications, which are
commonly used in MMAs. The other four benchmark pro-
grams are the kernels of MMAs selected from the PAR-
SEC benchmark suite [21] and the ALPbench benchmark
suite [22]. Both of them include emerging MMAs that con-
tain massive data level parallelism. Among the nine multi-
media benchmark programs, only sphinx contains stride ac-

Table 2 Benchmark programs.

Benchmarks Categories Vector Length
sphinx speech recognition 4096

face face recognition 173
ray animation 1080
vips image processing 79
clip computer vision 64
fft computer vision 32

power computer vision 33
M×M Matrix Multiplication 1000
V×M Vector-Matrix Multiplication 1000

Fig. 5 Data transfer performance of MVP-cache.

cesses. The typical stride length of sphinx is 13. The bench-
mark programs are compiled by the PISA cross-compiler, so
as to generate assembly codes defined in the SimpleScalar
toolset. For the vector codes, there are many mature vector
compilers such as NEC’s C compiler of SX-9 (sxcc) [23].
However, since SimpleScalar does not support the cross-
compilation with sxcc, we firstly vectorize the benchmark
programs automatically by using sxcc. Then, referring to
the assembly code generated by sxcc, vector instructions are
manually inserted into the assembly code files generated by
the PISA cross-compiler. At last, the assembly code files are
translated to binary codes as the inputs of the simulator.

To take a clear look at evaluation results, the bench-
mark programs are classified into the short vector category
and the long vector category. The short vector category
contains the benchmark programs face, vips, clip, fft, and
power. The other benchmark programs including ray, V×M,
M×M and sphinx belong to the long vector category.

4.2 Evaluation Results

The purpose of MVP-cache is to achieve high data trans-
fer performance, especially for short vector data transfer, at
low energy consumption. Therefore, the data transfer per-
formance and energy consumption of MVP-cache are com-
pared with those of MBC-S and MBC-L to confirm its effec-
tiveness. Then, the design space of MVP-cache is explored
in order to find the energy efficient configuration for MMAs.

4.2.1 Data Transfer Performance of MVP-Cache

Figure 5 compares sustained bandwidths of MBC-S, MBC-
L and MVP-cache, which are normalized by the band-
width of MBC-S. MVP-cache attains almost the same per-
formance as MBC-S, and higher performance than MBC-
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Fig. 6 Comparison of energy reduction among MBC-S, MBC-L and
MVP-cache.

L. The performance improvement against MBC-L is signif-
icant for MMAs in the short vector category because of the
efficient use of the bandwidths of all sub-caches. The bench-
mark program, vips, is an exception to MMAs in the short
vector category because there is no data reusability in this
benchmark program. However, since most of MMAs have
high data reusability, MVP-cache could effectively achieve
high data transfer performance for MMAs with short vector.

4.2.2 Energy Reduction by MVP-Cache

Figure 6 shows the relative energy consumptions of MVP-
cache, MBC-S and MBC-L, which are normalized by
the energy consumption of MBC-S. Although MVP-cache
achieves almost the same performance as MBC-S as shown
in Fig. 5, it consumes 15% less energy than MBC-S. This is
because MVP-cache consumes a less power on tag arrays by
associating one tag array with multiple data arrays. Mean-
while, MVP-cache attains 10% performance improvement
but only achieves 3.7% energy reduction against MBC-L.
This is because MVP-cache consumes higher power than
MBC-L due to the complex crossbar.

Specially, MVP-cache achieves lower energy con-
sumption than MBC-S and MBC-L for MMAs in the short
vector category. This is due to the energy reduction in
tag arrays against MBC-S and the performance improve-
ment in short vector data transfers against MBC-L. On the
other hand, for MMAs in the long vector category, MVP-
cache achieves lower energy consumption than MBC-S but
slightly higher energy consumption than MBC-L because
MBC-L can also transfer long vectors at a high bandwidth
as well as MVP-cache. Since the energy reduction effect
of MVP-cache in the short vector category is larger than its
energy consumption overhead in the long vector category,
MVP-cache obtains the lowest energy consumption of av-
erage. Therefore, these evaluation results show that MVP-
cache is an energy efficient approach for MMAs.

4.2.3 Discussion on MVP-Cache Configurations

As mentioned in Sect. 3.5, tag array conflicts will occur and
degrade the performance in the case of stride accesses. For
example, in the benchmark programs, sphinx contains long

Fig. 7 Average energy consumption and execution cycles of all
benchmark programs at various configuration of MVP-cache.

stride accesses. The tag array conflicts could be reduced by
increasing the number of sub-caches and the number of data
arrays that are associated with one tag array. However, the
increase in hardware also leads to high energy consumption.
Therefore, in order to find the most energy-efficient config-
uration of MVP-cache, this evaluation clarifies the trade-off
between the reduction in tag array conflicts and the increase
in energy consumption when adjusting the numbers of data
arrays and sub-caches.

Figure 7 shows the average energy consumption break-
downs and execution cycles of all benchmark programs with
changes of the numbers of sub-caches and data arrays. In the
figure, n (n = 1, 2, 4, 8, 16, 32, 64, 128) and m (m = 8, 16,
32, 64, 128) represent the numbers of sub-caches and data
arrays, respectively. Dividing n by m leads to the number of
data arrays that are associated with one tag array. Further,
when changing the number of data arrays, the total capacity
of MVP-cache is kept constant by adjusting the number of
sets in one sub-cache.

As shown in Fig. 7, MVP-cache achieves the lowest en-
ergy consumption in the case of one tag array associated
with 16 data arrays. There are two reasons why such a con-
figuration shows the lowest energy consumption. One is
that, although a larger number of data arrays could reduce
the number of tag array conflicts, the increase in the energy
consumption of the crossbar is also significantly large es-
pecially when the number of data arrays is bigger than 16.
The other is that MVP-cache of eight data arrays consumes
a larger dynamic energy on data arrays than that of 16 data
arrays. This is because MVP-cache of eight data arrays con-
tains a larger number of cache sets in one sub-cache, which
leads to a higher driving energy for each cache access.

Meanwhile, when the number of data arrays is fixed to
16, the energy consumption of MVP-cache reduces with the
decrease in the number of sub-caches because of less tag
arrays. Although a smaller number of sub-caches increase
the frequency of tag array conflicts occurred in sphinx, the
increase in execution cycles is smaller than the reduction
in energy consumption. Therefore, one tag array associated
with 16 data arrays is the most energy efficient configuration
for the MMAs used in this evaluation. We believe that the
proposed technique can also find a reasonable configuration
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Table 3 Lowest-energy configuration for different stride length.

Stride Length Lowest-energy Configuration
Stride 1 data array 16, sub-cache 1
Stride 2 data array 16, sub-cache 1
Stride 3 data array 16, sub-cache 1
Stride 4 data array 32, sub-cache 1
Stride 5 data array 32, sub-cache 1
Stride 6 data array 32, sub-cache 1
Stride 7 data array 32, sub-cache 8
Stride 8 data array 32, sub-cache 8

Fig. 8 Total energy consumption of a processor.

of MVP-cache for other MMAs not evaluated in this work.

4.2.4 Energy Consumption for Different Stride Lengths

In order to investigate energy consumptions in the cases of
different stride lengths, we evaluate MVP-cache by using
some micro benchmark programs. They are designed as
an addition of two vectors with different stride lengths. Ta-
ble 3 shows the lowest-energy configurations of MVP-cache
when changing of the stride length. The results are normal-
ized against the energy consumption in the case of 128 data
arrays and 128 sub-caches.

With the increase in the stride length, the impacts from
stride accesses would also increase. Hence, if the stride
length ranges from one to eight, the lowest energy config-
urations of MVP-cache are different. The configurations of
16 data arrays sharing one tag array, 32 data arrays shar-
ing one tag array and 32 data arrays sharing four tag ar-
rays achieve the lowest energy consumptions for the stride
lengths ranging from 1 to 3, 4 to 6, and 7 to 8, respectively.
On average, these three configurations achieve almost the
same energy consumption. However, since the stride lengths
of most of MMAs are usually less than three [14], the con-
figuration of 16 data arrays sharing one tag array could
be considered the most efficient configuration for MMAs.
These results are also in accord with the result in Sect. 4.2.3.

4.2.5 Total Energy Consumption of Processor

Figure 8 shows the total energy consumptions of vector pro-
cessors with MBC-S, MBC-L and MVP-cache. The en-
ergy consumption of a vector processor with MVP-cache
is 6% lower than those of vector processors with MBC-S
and MBC-L, respectively. Consequently, MVP-cache also
reduces the total energy consumption of the vector proces-

sor.
Specially, compared with the evaluation of the cache

memory, the evaluation of the vector processor shows that
the energy reduction by MVP-cache against MBC-S is de-
creased. This is because the portion of power reduction on
tag arrays in the total processor is less than that in the cache
memory. On the other hand, the energy reduction by MVP-
cache against MBC-L in this evaluation is larger than that
in the evaluation of cache memory. The reason is that, com-
pared with MBC-L, the performance improvement by MVP-
cache contributes to not only static energy reduction of the
cache memory but also that of the total processor.

5. Conclusions

In order to match the demands of high data transfer perfor-
mance and low energy consumption, MVP-cache has been
designed and evaluated. It associates one tag array with mul-
tiple data arrays to reduce the energy consumption of tag
arrays and improve the efficiency on short vector data trans-
fers. Based on the performance evaluations with MMAs, the
effects of MVP-cache are discussed in terms of data transfer
performance improvement and energy reduction. The evalu-
ation results show that MVP-cache can achieve comparable
performance with the other competitive cache organizations,
while the energy consumption of MVP-cache is smaller than
those of the others. It is also found that the configuration of
16 data arrays associated with one tag array is a reasonable
configuration for MMAs used in this paper.

As the future work of this paper, we will consider
the implementation of MVP-cache by using 3D integration
technologies to further reduce the energy consumption.
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